
Approximating Energy Efficient Paths

in Wireless Multi-Hop Networks

Stefan Funke, Domagoj Matijevic, Peter Sanders

Max-Planck-Institut f. Informatik, 66123 Saarbrücken, Germany
{funke,dmatijev,sanders}@mpi-sb.mpg.de ?

Abstract. Given the positions of n sites in a radio network we consider
the problem of finding routes between any pair of sites that minimize
energy consumption and do not use more than some constant number k
of hops. Known exact algorithms for this problem required Ω(n logn) per
query pair (p, q). In this paper we relax the exactness requirement and
only compute approximate (1+ε) solutions which allows us to guarantee
constant query time using linear space and O(n logn) preprocessing time.
The dependence on ε is polynomial in 1/ε.
One tool we employ might be of independent interest: For any pair of
points (p, q) ∈ P ⊆ Z2 we can report in constant time the cluster pair
(A,B) representing (p, q) in a well-separated pair decomposition of P .

1 Introduction

Fig. 1. A Radio Network and 9, 4, 2, 1-hop paths
from P to Q with costs 9, 36, 50, 100

Radio networks connect-
ing a number of sta-
tions without additional
infrastructure have re-
cently gained consider-
able interest. Since the
sites often have limited
power supply, the energy
consumption of commu-
nication is an impor-
tant optimization crite-
rion. We study this prob-
lem using the following
simple geometric graph
model: Given a set P of n
points in Z2, we consider
the complete graph (P, P×P) with edge weight ω(p, q) = |pq|δ for some constant
δ > 1 where |pq| denotes the Euclidean distance between p and q. The objective
is to find an approximate shortest path between two query points subject to the

? This work was partially supported by the IST Programme of the EU under contract
number IST-1999-14186 (ALCOM-FT).

constraint that at most k edges of the graph are used in the path. For δ = 2 the
edge weights reflect the exact energy requirement for free space communication.
For larger values of δ (typically between 2 and 4), we get a popular heuristic
model for absorption effects [Rap96,Pat00]. Limiting the number of ‘hops’ to k
can account for the distance independent overhead for using intermediate nodes.
For a model with node dependent overheads refer to Section 4.

Our main result is a data structure that uses linear space and can be built in
time O(n log n) for any constants k, δ > 1, and ε > 0. In constant time it allows
to compute k-hop paths between arbitrary query points that are within a factor
(1 + ε) from optimal. When k, δ, and ε are considered variables, the query time
remains constant and the preprocessing time is bounded by a polynomial in k,
δ, and 1/ε.

The algorithm has two main ingredients that are of independent interest.
The first part, discussed in Section 2, is based on the observation that for ap-
proximately optimal paths it suffices to compute a shortest path for a constant
size subset of the points — one point for each square cell in some grid that de-
pends on the query points. This subset can be computed in time O(log n) using
well known data structures supporting (approximate) quadratic range queries
[BKOS,AM00]. These data structures and in particular their space requirement
are independent of k, δ, and ε. Some variants even allow insertion and deletion
of points in O(log n) time. Section 3 discusses the second ingredient. Well sep-
arated pair decompositions [CK92] allow us to answer arbitrary approximate
path queries by precomputing a linear number of queries. We develop a way to
access these precomputed paths in constant time using hashing. This technique
is independent of path queries and can be used for retrieving any kind of infor-
mation stored in well separated pair decompositions. Section 4 discusses further
generalizations and open problems.

This extended abstract omits most proofs which can be found in the long
version of the paper.

Related Work Chan, Efrat, and Har-Peled [EH98,CE01] observe that for
ω(p, q) = f(|pq|δ) and δ ≥ 2, exact geometric shortest paths are equivalent
to shortest paths in the Delaunay triangulation of P , i.e., optimal paths can be
computed in time O(n log n). Note that this approach completely collapses for k
hop paths because most Delaunay edges are very short. The main contribution
of Chan et al. is a sophisticated O(n4/3+γ) time algorithm for computing exact
geometric shortest paths for monotone cost functions ω(p, q) = f(|pq|) where
γ is any positive constant. For quadratic cost functions with offsets ω(p, q) =
|pq|2 +C, Beier, Sanders, and Sivadasan reduce that to O(n1+γ), to O(kn log n)
for k-hop paths, and to O(log n) time queries for two hop paths using linear
space and O(n log n) time preprocessing. The latter result is very simple, it uses
Voronoi diagrams and an associated point location data structure.

Thorup and Zwick [ThoZwi01] show that for general graphs and unrestricted
k, it is impossible to construct a distance oracle which answers queries 2a − 1
approximatively using space o(nn1/a).

2 Fast Approximate k-hop Path Queries

We consider the following problem: Given a set P of n points in Z2 and some
constant k, report for a given query pair of points p, q ∈ P , a polygonal path
π = π(p, q) = v0v1v2 . . . vl, with vertices vi ∈ P and v0 = p, vl = q which consists
of at most k segments, i.e. l ≤ k, such that its weight ω(π) =

∑
0≤i<l ω(vi, vi+1)

is minimized. By πopt = πopt(p, q) we denote an optimal path from p to q under
this criterion.

In the following we assume that the weight function ω is of the form ω(a, b) =
|ab|δ with δ > 1 (the case δ ≤ 1 is trivial as we just need to connect p and q
directly by one hop).

2.1 Preliminaries

Before we introduce our procedure for reporting approximate k-hop paths, we
need to refer to some standard data structures from Computational Geometry
which will be used in our algorithm.

Theorem 1 (Exact Range Query). Given a set P of n points in Z2 one can
build a data structure of size O(n log n) in time O(n log n) which for a given axis
aligned query rectangle R = [xl, xu]× [yl, yu] reports in O(log n) time either that
R contains no point or outputs a point p ∈ P ∩R.

The data structure can be maintained dynamically such that points can be
inserted and deleted in O(log n log log n) amortized time. The preprocessing time
then increases to O(n log n log log n) and the query time to O(log n log log n). All
the log log n factors can be removed if only either insertions or deletions are
allowed.

In fact, the algorithm we will present will also work with an approximate
range reporting data structure such as the one presented in [AM00,AM98]. The
part of their result relevant for us can be stated in the following theorem:

Theorem 2 (Approximate Range Query). Given a set P of n points in
Z2 one can build a data structure of size O(n) in time O(n log n) which for a
given axis aligned query rectangle R = [xl, xu]× [yl, yu] with diameter ω reports
in O(log n + 1

α) time either that the rectangle R′ = [xl + αω, xu + αω] × [yl +
αω, yu + αω] contains no point or outputs a point p ∈ P ∩R′.

The data structure can be maintained dynamically such that points can be
inserted and deleted in O(log n) time.

Basically this approximate range searching data structure works well if the
query rectangle is fat; and since our algorithm we present in the next section
will only query square rectangular regions, all the results in [AM00] and [AM98]
apply. In fact we do not even need α to be very small, α = 1 turns out to be OK.
So the use of an approximate range searching data structure helps us to get rid
of the log n factor in space and some log log n factors for the dynamic version.
But to keep presentation simple we will assume for the rest of this paper that
we have an exact range searching data structure at hand.

2.2 Computing Approximate k-hop Paths for many Points

We will now focus on how to process a k-hop path query for a pair of points p and
q assuming that we have already constructed the data structure for orthogonal
range queries (which can be done in time O(n log n)).

Lemma 1. For the optimal path πopt connecting p and q we have |pq|δ
kδ−1 ≤

|πopt| ≤ |pq|
δ.

Definition 1. We define the axis-aligned square of side-length l centered at the
midpoint of a segment pq as the frame of p and q, F(pq, l).

Lemma 2. The optimal path πopt connecting p and q lies within the frame
F(pq, k(δ−1)/δ|pq|) of p and q.

We are now armed to state our algorithm to compute a k-hop path which is
a (1 + ε) approximation to the optimal k-hop path from p to q.

QP

α|PQ|/k

k
δ−1
δ |PQ|

Fig. 2. 3-hop-query for P and Q: representatives for each cell are denoted as solid
points, the optimal path is drawn dotted, the path computed by the algorithm solid

k-hop-Query(p,q, ε)

1. Put a grid of cell-width α · |pq|/k on the frame F(pq, k(δ−1)/δ|pq|) with α =
1

4
√

2
· εδ .

2. For each grid cell C perform an orthogonal range query to either certify that
the cell is empty or report one point inside which will serve as a representative
for C .

3. Compute the optimal k-hop path π(p, q) with respect to all representatives
and {p, q}.

4. Return π(p, q)

Please look at Figure 2.2 for a schematic drawing of how the algorithm com-
putes the approximate k-hop path. It remains to argue about correctness and
running time of our algorithm. Let us first consider its running time.

Lemma 3. k-hop-Query(p, q, ε) can be implemented to return a result in time

O(δ
2·k(4δ−2)/δ

ε2 · TR(n) + Tk,δ(
δ2·k(4δ−2)/δ

ε2)), where TR(n) denotes the time for one
2-dimensional range query on the original set of n points and Tk,δ(x) denotes
the time for the exact computation of a minimal k-hop path for one pair amongst
x points under the weight function ω(pq) = |pq|δ.

Let us now turn to the correctness of our algorithm, i.e. for any given ε,
we want to show that our algorithm returns a k-hop path of weight at most
(1 + ε) times the weight of the optimal path. We will show that only using the
representatives of all the grid cells there exists a path of at most this weight.
In the following we assume that the optimal path πopt consists of a sequence of
points p0p1 . . . pj , j ≤ k and li = |pi−1pi|.

Before we get to the actual proof of this claim, we need to state a small
technical lemma.

Lemma 4. For any δ > 1 and li, ξ > 0 the following inequality holds

∑k
i=1(li + ξ)δ
∑k
i=1 l

δ
i

≤

(∑k
i=1(li + ξ)
∑k
i=1 li

)δ

Proof. Follows from Minkowski’s and Hölder’s inequalities.

Lemma 5. k-hop-Query(p, q, ε) computes a k-hop path from p to q of weight
at most (1 + ε)ω(πopt(p, q)) for 0 < ε ≤ 1.

Proof. (Outline) Look at the ’detours’ incurred by snapping the nodes of the
optimal paths to the appropriate representative points and bound the overall
’detour’ using Lemma 4.

2.3 Computing Optimal k-hop Paths for few Points

In our approximation algorithm we reduced the problem of computing an ap-
proximate k-hop path from p to q to one exact k-hop path computation of a
small, i.e. constant number of points (only depending on k, δ and ε). Still, we
have not provided a solution for this problem yet. In the following we will present
first a generic algorithm which works for all possible δ and then quickly review
the exact algorithm presented by [BSS02] which only works for the case δ = 2,
though.

Layered Graph Construction We can consider almost the complete graph
with all edge weights explicitly stored (except for too long edges, which cannot
be part of the optimal solution) and then use the following construction:

Lemma 6. Given a connected graph G(V,E) with |V | = n, |E| = m with
weights on the edges and one distinguished node s ∈ V , one can compute for
all p ∈ V − {s} the path of minimum weight using at most k edges in time
O(km).

Proof. We assume that the graph G has self-loop edges (v, v) with assigned
weight 0. Construct k + 1 copies V (0), V (1), . . . , V (k) of the vertex set V and
draw a directed edge (v(i), w(i+1)) iff (v, w) ∈ E with the same weight. Compute
the distances from s(0) to all other nodes in this layered, acyclic graph. This
takes time O(km) as each edge is relaxed only once. ut

So in our subproblem we can use this algorithm and the property that each

representative has O(δ
2k2

ε2) adjacent edges (all other edges are too long to be
useful) to obtain the following corollary:

Corollary 1. The subroutine of our algorithm to solve the exact k-hop problem

on O(δ
2·k(4δ−2)/δ

ε2) points can be solved in time O(δ
4·k(7δ−2)/δ

ε4) for arbitrary δ, ε.

Reduction to Nearest Neighbor In [BSS02] the authors presented an algo-
rithm which for the special case δ = 2 computes the optimal k-hop path in time
O(kn log n) by dynamic programming and an application of geometric nearest
neighbor search structures to speed up the update of the dynamic programming
table. Applied to our problem we get the following corollary:

Corollary 2. The subroutine of our algorithm to solve the exact k-hop problem

on O(k
3

ε2) points can be solved in time O(k
5

ε2 · log
k
ε) if δ = 2.

2.4 Summary

Let us summarize our general result in the following Theorem (we give the
bound for the case where an approximate nearest neighbor query data structure
as mentioned in Theorem 2 is used).

Theorem 3. We can construct a dynamic data structure allowing insertions
and deletions with O(n) space and O(n log n) preprocessing time such that (1+ε)
approximate minimum k-hop path queries under the metric ω(p, q) = |pq|δ can

be answered in time O(δ
2·k(4δ−2)/δ

ε2 · log n+ δ4·k(7δ−2)/δ

ε4).

The query time does not change when using exact range query data struc-
tures, only space, preprocessing and update times get slightly worse (see Theo-
rem 1). For the special case of δ = 2 we obtain a slightly improved query time

of O(δ
2·k(4δ−2)/δ

ε2 · log n+ δ2·k(5δ−2)/δ

ε2 · log δk
ε)).

3 Precomputing Approximate k-hop Paths for Constant

Query Time

In the previous section we have seen how to answer a (p, q) query in O(log n)
time (considering k, δ, ε as constants). Standard range query data structures
were the only precomputed data structures used. Now we explain how additional
precomputation can further reduce the query time. We show how to precompute
a linear number of k-hop paths, such that for every (p, q), a slight modification of
one of these precomputed paths is a (1+ε)(1+2ψ)2 approximate k-hop path and
such a path can be accessed in constant time. Here ψ > 0 is the error incurred
by the use of these precomputed paths and can be chosen arbitrarily small (the
size of the well-separated pair decomposition then grows, though).

3.1 The Well-Separated Pair Decomposition

We will first briefly introduce the so-called well-separated pair decomposition due
to Callahan and Kosaraju ([CK92]).

The split-tree of a set P of points in R2 is the tree constructed by the following
recursive algorithm:

SplitTree(P)

1. if size(P)=1 then return leaf(P)
2. partition P into sets P1 and P2 by halving its minimum enclosing box R(P)

along its longest dimension
3. return a node with children (SplitTree(P1), SplitTree(P2))

Although such a tree might have linear depth and therefore a naive con-
struction as above takes quadratic time, Callahan and Kosaraju in [CK92] have
shown how to construct such a binary tree in O(n log n) time. With every node
of that tree we can conceptually associate the set A of all points contained in its
subtree as well as their minimum enclosing box R(A). By r(A) we denote the
radius of the minimum enclosing disk of R(A). We will also use A to denote the
node associated with the set A if we know that such a node exists.

For two sets A and B associated with two nodes of a split tree, d(A,B)
denotes the distance between the centers of R(A) and R(B) respectively. A and
B are said to be well-separated if d(A,B) > sr, where r denotes the radius of

cBdcA

r

Fig. 3. Clusters A and B are ’well-separated’ if d > s · r

the larger of the two minimum enclosing balls of R(A) and R(B) respectively. s
is called the separation constant.

In [CK92], Callahan and Kosaraju present an algorithm which, given a split
tree of a point set P with |P | = n and a separation constant s, computes in time
O(n(s2 + log n)) a set of O(n · s2) additional blue edges for the split tree, such
that

– the point sets associated with the endpoints of a blue edge are well-separated
with separation constant s.

– for any pair of leaves (a, b), there exists exactly one blue edge that connects
two nodes on the paths from a and b to their lowest common ancestor lca(a, b)
in the split tree

The split tree together with its additional blue edges is called the well-separated
pair decomposition (WSPD).

3.2 Using the WSPD for Precomputing Path Templates

In fact the WSPD is exactly what we need to efficiently precompute k-hop paths
for all possible Θ(n2) path queries. So we will use the following preprocessing
algorithm:

1. compute a well-separated pair decomposition of the point set with s =
k(δ−1)/δ · 8δ · 1

ψ

2. for each blue edge compute a (1 + ε)-approximation to the lightest k-hop
path between the centers of the associated bounding boxes

At query time, for a given query pair (p, q), it remains to find the unique
blue edge (A,B) which links a node of the path from p to lca(p, q) to a node
of the path from q to lca(p, q). We take the precomputed k-hop path associated
with this blue edge, replace its first and last node by s and t respectively and
return this modified path.

In the following we will show that the returned path is indeed a (1+ε)(1+2ψ)2

approximation of the lightest k-hop path from p to q. Later we will also show
that this path can be found in constant time. For the remainder of this section let
πPopt(x, y) denote the optimal k-hop path between two points x, y not necessarily
in P such that all hops have starting and end point in P (except for the first
and last hop). We first start with a lemma which formalizes the intuition that
the length of an optimal k-hop path does not change much when perturbing the
query points slightly.

Lemma 7. Given a set of points P and two pairs of points (a, b) and (a′, b′)
with d(a, b) = d and d(a, a′) ≤ c, d(b, b′) ≤ c with c ≤ ψd

k(δ−1)/δ·4δ , then we have

ω(πPopt(a
′, b′)) ≤ (1 + 2ψ)ω(πPopt(a, b).

The following corollary of the above Lemma will be used later in the proof:

Corollary 3. Given a set of points P and two pairs of points (a, b) and (a′, b′)
with d(a, b) = d and d(a, a′) ≤ c, d(b, b′) ≤ c with c ≤ ψd

k(δ−1)/δ·8δ , then we

have ω(πPopt(a
′, b′)) ≤ (1 + 2ψ)ω(πPopt(a, b)) as well as ω(πPopt(a, b)) ≤ (1 +

2ψ)ω(πPopt(a
′, b′).

Proof. Clearly the first claim holds according to Lemma 7. For the second one
observe that d′ = |a′b′| ≥ d− 2 · c and then apply the Lemma again. ut

Applying this Corollary, it is now straightforward to see that the approxima-
tion ratio of the modified template path is (1 + 2ψ)2(1 + ε).

Lemma 8. Given a well separated pair decomposition of a point set P ⊂ Z2

with separation constant s = k(δ−1)/δ·8δ
ψ , the path π(p, q) returned for a query

pair (p, q) is a (1 + 2ψ)2(1 + ε) approximate k-hop path from p to q.

We leave it to the reader to figure out the right choice for ψ and ε to obtain an
arbitrary approximation quality of (1 + φ), but clearly ψ, ε ∈ Ω(φ).

3.3 Retrieving Cluster Pairs for query points in O(1) time

In the previous paragraphs we have shown that using properties of the well-
separated pair decomposition, it is possible to compute O(n) ’template paths’
such that for any query pair (s, t) out of the Ω(n2) possible query pairs, there
exists a good template path which we can modify to obtain a good approximation
to the lightest k-hop path from s to t. Still, we have not shown yet how to
determine this good template path for a given query pair (s, t) in constant time.
We note that the following description does not use any special property of our
original problem setting, so it may apply to other problems, where the well-
separated pair decomposition can be used to encode in O(n) space sufficient
information to cover a query space of Ω(n2) size.

Gridding the Cluster Pairs The idea of our approach is to round the centers
cA, cB of a cluster pair (A,B) which is part of the WSPD to canonical grid points
c̃A, c̃B such that for any query pair (s, t) we can determine c̃A, c̃B in constant
time. Furthermore we will show that there is only a constant number of cluster
pairs (A′, B′) which have their cluster centers rounded to the same grid positions
c̃A, c̃B , so well-known hashing techniques can be used to store and retrieve the
respective blue edge and also some additional information I(A,B) (in our case:
the precomputed k-hop path) associated with that edge.

In the following we assume that we have already constructed a WSPD of the
point set P with a separation constant s > 4. For any point p ∈ Z2, let snap(p, w)
denote the closest grid-point of the grid with cell-width w originated at (0, 0)
and let H : Z4 → (I ×E)∗ denote a hash table data structure which maps pairs
of integer points in the plane to a list of pairs consisting of some information
type and a (blue) edge in the WSPD. Using universal hashing [CW79] this data
structure has constant expected access time.

c̃A

c̃B

2dlog(d/s)e

d = |cAcB |

Fig. 4. Cluster centers cA and cB are snapped to closest grid points c̃A and c̃B

Preprocessing

– For every blue edge connecting clusters (A,B) in the split tree

• cA ← center(R(A)), cB ← center(R(B))
• w ← |cAcB |/s
• w̃ ← 2dlogwe

• c̃A ← snap(cA, w̃)
• c̃B ← snap(cB , w̃)
• Append ((I(A,B), (A,B))) to H[(c̃A, c̃B)]

Look at Figure 4 for a sketch of the preprocessing routine for one cluster pair
(A,B). Clearly this preprocessing step takes linear time in the size of the WSPD.
So given a query pair (s, t), how to retrieve the information I(A,B) stored with
the unique cluster pair (A,B) with s ∈ A and t ∈ B?

Query(p, q)

– w′ ← |pq|/s
– w̃1 ← 2dlogw

′e−1

– w̃2 ← 2dlogw
′e

– w̃3 ← 2dlogw
′e+1

– for grid-widths wi, i = 1, 2, 3 and adjacent grid-points c̃p, c̃q of p and q
respectively

• Inspect all items (I(A,B), (A,B)) in H[(c̃p, c̃q)]

∗ if p ∈ A and q ∈ B return I(A,B)

In this description we call a grid-point g̃ adjacent to a point p if |g̃p|x, |g̃p|y <
3
2 w̃,

where | · |x/y denotes the horizontal/vertical distance. Clearly there are at most
9 adjacent points for any point p in a grid of width w̃. In the remainder of this
section we will show that this query procedure outputs the correct result (the
unique I(A,B) with s ∈ A and t ∈ B such that (A,B) is blue edge in the WSPD)
and requires only constant time. In the following we stick to the notation that
w̃ = 2dlog |cAcB |/se, where cA, cB are the cluster centers of the cluster pair (A,B)
we are looking for.

Lemma 9. For s > 4, we have w̃i = w̃ for some i ∈ {1, 2, 3}.

This Lemma says that at some point the query procedure uses the correct
grid-width as determined by cA and cB . Furthermore for any given grid-width
and a pair of query points p and q, there are at most 9 · 9 = 81 pairs of adjacent
grid points to inspect. We still need to argue that given the correct grid-width
w̃, the correct pair of grid points (c̃A, c̃B) is amongst these ≤ 81 possible pairs
of grid points that are inspected.

Lemma 10. For w̃i = w̃, c̃A and c̃B are amongst the inspected grid-points.

The last thing to show is that only a constant number of cluster pairs (A,B)
can be rounded during the preprocessing phase to a specific pair of grid positions
(g̃1, g̃2) and therefore we only have to scan a list of constant size that is associated
with (g̃1, g̃2). Before we can prove this, we have to cite a Lemma from the original
work of Callahan and Kosaraju on the WSPD [CK92].

Lemma 11 (CK92). Let C be a d-cube and let S = {A1, . . . , Al} be a set of
nodes in the split tree such that Ai∩Aj = ∅ and lmax(p(Ai)) ≥ l(C)/c and R(Ai)
overlaps C for all i. Then we have l ≤ (3c+ 2)d.

Here p(A) denotes the parent of a node A in the split tree, lmax(A) the longest
side of the minimum enclosing box of R(A).

Lemma 12. Consider a WSPD of a point set P with separation constant s > 4,
grid width w̃ and a pair of grid points (g̃1, g̃2). The number of cluster pairs (A,B)
such that cA and cB are rounded to (g̃1, g̃2) is O(1).

Proof. Follow from the previous Lemma, see the full version for details.

Putting everything together we get the main theorem of this section:

Theorem 4. Given a well-separated pair decomposition of a point set P with
separation constant s > 4. Then we can construct a data structure in space
O(n · s2) and construction time O(n · s2) such that for any pair of points (p, q)
in P we can determine the unique pair of clusters (A,B) that is part the well-
separated pair decomposition with p ∈ A, q ∈ B in constant time.

Together with the results of the previous Section we obtain the following
main result of our paper:

Theorem 5. Given a set of points P ⊂ Z2, a distance function ω : Z×Z→ R+

of the form ω(p, q) = |pq|δ, where δ ≥ 1 and k ≥ 2 are constants, we can
construct a data structure of size O(1

ε2 ·n) in preprocessing time O(1
ε4 ·n log n+

1
ε6 ·n) such that for any query (p, q) from P , a (1+ ε)-approximate lightest k-hop
path from p to q can be obtained in constant O(1) time which does not depend
on δ, ε, k.

We also remark that there are techniques to maintain the well-separated pair
decomposition dynamically, and so our whole construction can be made dynamic
as well (see [CK95]).

4 Discussion

We have developed a data structure for constant approximate shortest path
queries in a simple model for geometric graphs. Although this model is motivated
by communication in radio networks, it is sufficiently simple to be of independent
theoretical interest and possibly for other applications. For example, Chan, Efrat,
and Har-Peled [EH98,CE01] use similar concepts to model the fuel consumption
of airplanes routed between a set P of airports.

We can also further refine the model. For example, the above flight applica-
tion would require more general cost functions. Here is one such generalization:
If the cost of edge (p, q) is |pq|δ+Cp for a node dependent cost offset Cp, our re-
sult remains applicable under the assumption of some bound on the offset costs.
In Lemma 5 we would choose the cell representative as the node with minimum
offset in the cell (this can be easily incorporated into the standard geometric
range query data structures). The offset could model distance independent en-
ergy consumption like signal processing costs or it could be used to steer away
traffic from devices with low battery power.

References

[AM00] S. Arya and D. M. Mount:Approximate range searching, Computational Ge-
ometry: Theory and Applications, (17), 135-152, 2000

[AM98] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, A. Wu: An optimal
algorithm for approximate nearest neighbor searching, Journal of the ACM,
45(6):891-923, 1998

[BSS02] R. Beier, P. Sanders, N. Sivadasan: Energy Optimal Routing in Radio Networks
Using Geometric Data Structures Proc. of the 29th Int. Coll. on Automata,
Languages, and Programming, 2002.

[BKOS] M. de Berg, M. van Krefeld, M. Overmars, O. Schwarzkopf: Computational
Geometry: Algorithms and Applications, Springer, 1997

[CK92] P.B. Callahan, S.R. Kosaraju: A decomposition of multi-dimensional point-sets
with applications to k-nearest-neighbors and n-body potential fields, Proc. 24th
Ann. ACM Symp. on the Theory of Computation, 1992

[CK95] P.B. Callahan, S.R. Kosaraju: Algorithms for Dynamic Closest Pair and n-
Body Potential Fields, Proc. 6th Ann. ACM-SIAM Symp. on Discrete Algo-
rithm, 1995

[CW79] J.L. Carter and M.N. Wegman. Universal Classes of Hash Functions. Journal
of Computer and System Sciences, 18(2):143–154, 1979

[CE01] T. Chan and A. Efrat. Fly cheaply: On the minimum fuel consumption prob-
lem. Journal of Algorithms, 41(2):330–337, November 2001.

[EH98] A. Efrat, S. Har-Peled: Fly Cheaply: On the Minimum Fuel-Consumption Prob-
lem, Proc. 14th ACM Symp. on Computational Geometry 1998.

[MN90] K. Mehlhorn, S. Näher: Dynamic Fractional Cascading, Algorithmica (5),
1990, 215–241

[Pat00] D. Patel. Energy in ad-hoc networking for the picoradio. Master’s thesis, UC
Berkeley, 2000.

[Rap96] T. S. Rappaport. Wireless Communication. Prentice Hall, 1996.
[ThoZwi01] M.Thorup and U.Zwick. Approximate Distance Oracles Proc. of 33rd

Symposium on the Theory of Computation 2001.

