
Surface Reconstruction in Almost Linear Time
under Locally Uniform Sampling

Tamal K. Dey
�

Stefan Funke
�

Edgar A. Ramos
�

Abstract

We describe an implementation of the COCONE algorithm
for smooth surface reconstruction which runs in �����	��
�����
time if the sample is “locally uniform” in addition to being
good in the sense required for the Cocone algorithm. If the
local uniformity condition does not hold, the algorithm still
produces a correct result and its worst case running time is
����������
������ . In contrast, the original Cocone algorithm re-
quires �	������� time in the worst case, even if the sample is
locally uniform.

1 Introduction

We consider the problem of computing a piecewise linear
approximation �� to a smooth surface

�
from a set ��� �

of � sample points (samples). Recently, an algorithm with a
correctness guarantee under certain sampling condition was
proposed by Amenta and Bern [1], and a refined version of
it by Amenta et al. [2], which is refered as the COCONE
algorithm. We review this algorithm in Section 2. Given a
”good” sample set � from

�
, this algorithm outputs a set

of triangles in the Delaunay tetrahedrization of � , that form
a surface that approximates and is also topologically equiv-
alent to

�
. Since computing the Delaunay tetrahedrization

of
�

requires ����� � � time in the worst case [7], the surface
reconstruction algorithm has also this quadratic worst case
time behavior. On the other hand, since the size of �� is
linear in � , it remains the question of whether the surface
�
Dept. of Computer and Information Science, Ohio State University,

Columbus, OH. E-mail: tamaldey@cis.ohio-state.edu�
Max-Planck-Institut für Informatik, Saarbrücken, Germany. E-

mail: funke@mpi-sb.mpg.de. Supported by ESPRIT LTR project
28155 (GALIA) and a scholarship ’Graduiertenkolleg’ by the Deutsche
Forschungsgesellschaft.

Max-Planck-Institut für Informatik, Saarbrücken, Germany. E-mail:
ramos@mpi-sb.mpg.de. Supported by ESPRIT LTR project 28155
(GALIA).

reconstruction can be computed in almost linear time, say�����	��
����� . This is important in practice because current
scanning techniques produce a number of sample points in
the order of several hundred thousands or even up to a mil-
lion. A linear running time is observed experimentally for
the “ball-pivoting” algorithm of Bernardini et al. [4]; how-
ever, there are neither a correctness guarantee nor a theoret-
ical running time analysis for this algorithm (furthermore, it
essentially requires globally uniform sampling). In Section
3, we describe a new implementation of the Cocone algo-
rithm that runs in time �����	��
������ under a “locally uniform”
sampling condition, in addition to the original sampling con-
dition. Such a condition seems reasonable for the output of
current scanning techniques. Recent work of Erickson [8]
shows that there are smooth surfaces with uniform sets of
samples that have a Delaunay tetrahedrization of quadratic
complexity. Therefore, even if the original Cocone algorithm
uses an output sensitive algorithm for computing the Delau-
nay tetrahedrization [5], it could not match the running time
of the new implementation.

2 CoCone Algorithm

2.1 Sampling Condition

The medial axis of a surface
�

in !�" is the closure of the set
of points which have more than one closest point on

�
. The

local feature size lfs �$#%� at a point #'& � is the least distance
from # to the medial axis of

�
. A set � of sample points

from
�

is said to be an (-sample from
�

if every point #)& �
has a sample in � within distance (�* lfs �+#,� .
2.2 Algorithm

For points - and # , let ./-0# denote the vector from - to # . Let 1
be a parameter with 2�341537698;: . The algorithm of Amenta
et al. [2] proceeds in four steps:

1. Compute the Voronoi diagram < of � .

2. For each sample #=&=� do the following: Let ��?> ,
the estimated normal at # , be ./#A@ where @ is the fur-
thest Voronoi vertex of the Voronoi cell < > containing

(some vector to infinity inside the Voronoi cell if it is
unbounded).

3. Put a (Delaunay) triangle B , whose dual Voronoi edge
is CED , in the set F of candidate triangles, if for each
endpoint # of B , there is a point G in CHD such that the
angle between �� > and ./#IG is in ��698KJ . 1MLN698KJPOQ1�� .

4. Extract from F the approximating surface �� .

Intuitively, Step 3 selects a Delaunay triangle if (i) its nor-
mal is “close” to the estimated normal of its vertices, and (ii)
it has a circumsphere that is “not far” from being diametral.

For Step 4, time linear in the number of candidate triangles
suffices. Therefore, we do not elaborate on it (see [1]) and
concern ourselves with a new implementation of Steps 2 and
3.

2.3 Correctness

Amenta et al. show that if � is an (-sample from a smooth
surface

�
, where (SRT2 is sufficiently small, �� approximates�

within error ((for #U& � , a point in �� is within distance
(�* lfs �$#%�) and, furthermore, �� is homeomorphic to

�
.

How small one can choose the parameter 1 in the algo-
rithm, depends on (. For our algorithm which we will present
in the following, we need a slightly smaller 1 , hence enforc-
ing a smaller (to guarantee correctness.

3 The New Algorithm

In addition to the sampling condition mentioned above,
which gives a lower bound on how sparse the sample is de-
pending on the local feature size, we add another condition
which states that any oversampling must be relatively uni-
form. With this extra condition, we show that the new al-
gorithm has a running time �����V��
�W��� . We emphasize that
if this uniformity condition does not hold, the algorithm still
produces a correct output.

3.1 Locally Uniform (-Sample

Let XY&Z!\[and]_^Q&Z`a[be fixed parameters. We say
that ��� �

is a uniform (-sample if it is an (-sample and,
furthermore, it satisfies the following:

Local Uniformity Condition: Let b be the ball with center
at cd& � and radius egfh(i* lfs ��c�� , and suppose b con-
tains]kj7]_^ samples. Then the sphere bml with center
at c and radius J;e contains at most n�X9] samples.

Intuitively, this conditions describes that the sampling
density must not change too rapidly within a short distance
on the surface. It does not imply an absolute upper bound on
the sampling density anywhere, nor a uniform sampling as
defined in [8] (but a sample set that is uniform in [8], is also
locally uniform).

Observation 1 Let c4& �
and eofp(* lfs ��cq� . If the ball

b centered at c with radius e is empty of samples, then the
sphere brl centered at c with radius st*�e , sujvJ , contains at
most] ^ *���n�Xa�w�x+y zN{}|�~�� samples.

3.2 Approximate Nearest Neighbors

A � -th nearest neighbor (NN) of a point G in � is a point
#)&_� such that at most � .Q� other points in � are closer to
G than # , and at least � .Q� other points are no farther from G
than # . A � -th � -approximate nearest neighbor (� -ANN) of
G is a point #)&�� for which �I��G�L�#,�ifh� � O��K��*��I��G�L�#%l$� where
#Il is a � -th NN of G ; � different points #?�KL�# � Lq���q�qL�#%��&��
are ��� -ANNs of G if �%��G�L�#%���df���G�L�#I� [�}� , and #%� is an � -th
� -ANN of G .
Observation 2 Let # � L��q�q�qL�# � be �P� -ANNs of G in � with # �
a � -th � -ANN. Then all #'&'� with �%��G�L�#%�Sf��I��G�L�# � �N8�� � O�K� are included in # � L��q�q��L�# �E�?� .

In our algorithm we need a data structure that for a query
point G reports �d� -ANNs of G in � efficiently. For constant
� , the data structures presented in [3] and [6] can be con-
structed in time �����	��
�W��� and report a set of �d� -ANNs in
time ������
�W�mO��M� . The constant factor in the query time de-
pends on � , but since we do not need to choose � too small,
this dependency is not important. In fact, �	� � suffices.

3.3 Normal Estimation

We cannot afford to estimate the normals via the poles.
Rather we estimate the normal at a sample # as follows:

1. Let #?� be a 1-st � -ANN of # in � .4� #�� .
2. Let # � be a 1-st � -ANN of # among the points in Gm&_�

with �9#?��#%G between n���� and ��� ��� .
3. The estimated normal �� > is equal to the normal of the

triangle �m#�#?��# � .
Correctness. The two vectors . /#�#,� and . /## � are approximately
orthogonal to the normal at # , as guaranteed by the following
lemma from [2]:

Lemma 1 A line segment connecting points ��L�� l & � with �I�Il fUc}(¡* lfs ���,� , cVf�¢ J , makes an angle with the surface
normal within £N¤�¥ �?� ��c}(}8J� from 698KJ .

Therefore, since the angle between these vectors is not too
small, the normal to the plane they determine is an approxi-
mation of the normal at # :

Lemma 2 Assuming that � is an (-sample from
�

,the angle
between the real normal � > at #¦& �

and the normal �� >
estimated by the procedure above is ����(§� .

3.4 Algorithm

In the following, 1 ^ is a constant (angle) whose value follows
from the analysis. The algorithm uses a parameter 1�f¨1 ^ .
For a sample # with estimated normal ��,> , its cocone region© > is the set of points G for which the angle between ./#%G and
�� > is in ��698J . 1ML�698JSO41�� . We describe an alternative im-
plementation of steps 2 and 3 in the COCONE algorithm.

1. Construct a data structure for reporting � -ANNs in � .

2. For every sample #�&�� :

(a) Let ctª=« and # � ª nil.
(b) Repeat while # � � nil¬Q > ª set of c�� -ANNs of #¬ Let #,� be the sample nearest to # in >¬ Let # � be the sample nearest to # in > with

�9# � #�# � between n���� and ��� ��¬ cPª=JV*�c
(c) �� > ª normal of �m##?��# �
(d) Repeat¬Q > ª set of c�� -ANNs of #¬ Compute the Voronoi cell <�> of # with respect

to all samples in >P® © > .¬ Let ��¯¡°�± be the maximal distance of a point on
a Voronoi edge of < > within

© > .¬ if < > ® © > is bounded and ²5³;´Aµ0¶·�¸a�%�+#9LNGK�iR
� � � O4�K�w��¯¡°�± then exit¬ cPª=JV*�c

3. Output a triangle B as candidate if its dual edge appears
in < > within

© > for each vertex # of B .
3.5 Correctness

The algorithm makes sure that the cocone region of each
Voronoi cell (with respect to the estimated normal) is com-
puted exactly: further nearest neighbors are added until one
can be sure that the cocone region is not affected anymore.
Therefore, the same correctness argument as in [1] can be
applied.

3.6 Worst-Case Running Time

Note that for each sample # , the Voronoi cell of ¹ with respect
to > can be computed as the intersection of

 > halfspaces
which can be done in time O(

 > ��
� >). The running
time for each cell computation is clearly dominated by the
’last’ computation of the Voronoi cell which can be as bad
as O(�	��
����). Hence the overall worst-case running time is
O(���?��
����).

3.7 Running Time under Local Uniformity
Condition

We claim that under the Local Uniformity Condition, the
work that has to be done for each sample # is proportional

to the number of triangles adjacent to # in the correct recon-
struction (apart from a ��
� -factor), hence obtaining a total
running time of O(�_*q��
���).

Lemma 3 Let º be the set of Voronoi edges inside the co-
cone region of a sample # which are dual to triangles of the
correct reconstruction of

�
. If the local uniformity condition

is fulfilled, the number of Voronoi vertices inside the cocone
region is at most O(]_^t* º).
Proof. Consider the maximal empty balls centered at the
intersection points of the surface and the Voronoi edges of
the Voronoi cell of # . For 1�fT1;^ , clearly all Voronoi vertices
within the cocone region must be contained in the union of
these empty balls. Consider one of these balls. Note that
all Voronoi vertices within this ball have distance at most
J;e from # . Therefore when growing the ball to a radius of

� e definitely all defining samples of these Voronoi vertices
are contained in the grown ball. But by Observation 1 this
ball can contain at most]�^S*���X�*�n��Hx+y z»{}|�"N� samples. Hence
summing over all the maximum empty balls one obtains at
most O(] ^ * º) if X is considered as constant.

This lemma implies that computing the Voronoi cell for
the O(] ^ * <�>) nearest neighbors of each sample # suffices
to be sure to have the exact restricted Voronoi cell <A> . Ac-
tually, as the following lemma shows, ����] ^ � nearest neigh-
bors suffice.

Lemma 4 Let < > be the Voronoi cell of # restricted to its
cocone and ��¯¡°�± the furthest distance of a voronoi edge of
< > within the cocone region. Then the number of samples
which have distance less than � *�� ¯¡°N± *�� � OQ�K� is O(] ^).
Proof. Consider a point G on some Voronoi edge of < >
which has distance ��¯¡°�± from # . Let ��l¯¡°N± be the maximal
distance of a point GKl on some Voronoi edge of < > intersected
with the surface. If 15f41;^ , ��l¯¡°N± jT�¯¡°N±�8KJ . Clearly the ball
centered at GKl with radius ��l¯¡°�± must be empty of samples.
The same ball grown to a radius of :	*���l¯¡°N± *�� � O4�K� cannot
contain more than]�^*���X5*wn��Hx+y z»{0|�¼q½ � [�¾�¿À� but definitely con-
tains all samples which have distance at most � *À��¯¡°N±?*�� � O5�K�
from # . 1

Theorem 1 Assuming � is a locally uniform (. sample of
the surface

�
, all candidate triangles can be determined in

time O(�_*}��
����).

1Actually this lemma implies the previous one as it also bounds the num-
ber of adjacent samples of Á in the Delaunay tetrahedrization within the
cocone region.

References

[1] N. Amenta and M. Bern. Surface reconstruction by
Voronoi filtering. Disc.Comput. Geom. 22 (1999), 481–
504. Earlier version appeared in the 14th Annual ACM
Symposium on Computational Geometry, pages 39-48,
(1998).

[2] N. Amenta, S. Choi, T. K. Dey and N. Leekha. A sim-
ple algorithm for homeomorphic surface reconstruc-
tion. In Proceedings ACM Sympos. Comput. Geom.,
2000, 213–222. To appear in International Journal of
Computational Geometry and its Applications.

[3] S. Arya, D. M. Mount, N. S. Netanyahu and R. Sil-
verman. An optimal algorithm for approximate near-
est neighbor searching in fixed dimension. J. ACM
45(6):891–923, (1998).

[4] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva and
G. Taubin. The ball-pivoting algorithm for surface re-
construction. In IEEE Trans. Visualization and Com-
put. Graphics 5 (1999), 349–359.

[5] T.M. Chan, J. Snoeyink, and C.-K. Yap. Output sen-
sitive construction of polytopes in four dimensions
and clipped Voronoi diagrams in three. In Proc. 6th
Annu. ACM-SIAM Sympos. Discrete Algorithms, 282-
291, 1995. Journal version in Disc. Comput. Geom.

[6] C. Duncan and M. T. Goodrich. Balanced aspect ra-
tio trees: Combining the advanatages of � -d trees and
octrees. In Proceedings of Symp. Discrete Algorithms
(SODA 98), 1998.

[7] H. Edelsbrunner. Algorithms in Combinatorial Geom-
etry. Springer Verlag, Heidelberg, 1987.

[8] J. Erickson. Nice point sets can have nasty Delaunay
triangulations. Available from the author’s web site at
www.cs.uiuc.edu. Submitted to the 17th Annual
ACM Symposium on Computational Geometry 2001

