Controlled Perturbation for Delaunay Triangulations

Stefan Funke* Christian Klein*

Keywords: Randomized incremental algorithm, randomized
incremental construction, controlled perturbation, floating
point computation, Delaunay triangulations, convex hulls

Abstract

Most geometric algorithms are idealistic in the sense that they are
designed for the Real-RAM model of computation and for inputs in
general position. Real inputs may be degenerate and floating point
arithmetic is only an approximation of real arithmetic. Perturbation
replaces an input by a nearby input which is (hopefully) in general
position and on which the algorithm can be run with floating point
arithmetic. Controlled perturbation as proposed by Halperin et al.
calls for more: control over the amount of perturbation needed for
a given precision of the floating point system. Or conversely, a con-
trol over the precision needed for a given amount of perturbation.
Halperin et al. gave controlled perturbation schemes for arrange-
ments of polyhedral surfaces, spheres, and circles.

We extend their work and point out that controlled perturbation is a
general scheme for converting idealistic algorithms into algorithms
which can be executed with floating point arithmetic. We also show
how to use controlled perturbation in the context of randomized ge-
ometric algorithms without deteriorating the running time. Finally,
we give concrete schemes for planar Delaunay triangulations and
convex hulls and Delaunay triangulations in arbitrary dimensions.
We analyze the relation between the perturbation amount and the
precision of the floating point system. We also report about experi-
ments with a planar Delaunay diagram algorithm.

1 Introduction

Most algorithms of computational geometry are designed
under two simplifying assumptions: the availability of a
Real-RAM and non-degeneracy of the input. A Real-RAM
computes with real numbers in the sense of mathematics,
i.e., it stores real numbers in its registers and performs exact
arithmetic (basic arithmetic, roots of polynomials, trigono-
metric functions, ...) on them. The exact notion of degener-
acy depends on the problem; examples are collinear or cocir-
cular points or three lines with a common point. We call an
algorithm designed under the two simplifying assumptions

Max-Planck-Institut fiir Informatik, Stuhlsatzenhausweg 85, 66123
Saarbriicken, Germany, {funke,cklein,mehlhorn,sschmitt} @mpi-sb.mpg.de

Kurt Mehlhorn* Susanne Schmitt*

N Possible
Perturbations

Forbidden
Areas

Figure 1: The forbidden areas (light gray) for a new point 7 induced
by a Delaunay triangulation. Each forbidden area is induced by a
vertex (a disc centered at it), an edge (a strip around it) or a triangle
(an annulus around its circumcircle) of the current diagram.

an idealistic algorithm. Implementations have to deal with
the precision problem (= the Real-RAM assumption) and the
degeneracy problem (= the non-degeneracy assumption).

The exact computation paradigm [KLN91, JRZ91,
FvWO93, Yap93, MN94, MN99] addresses the precision prob-
lem. It proposes to implement a Real-RAM tuned to geomet-
ric computations. The degeneracy problem is addressed by
reformulating the algorithms so that they can handle all in-
puts. This may require non-trivial changes. The approach is
followed in systems like LEDA [LED] and CGAL [CGA].

Halperin et al. [HS98, HR, HL0O3] proposed controlled
perturbation to overcome both problems. The idea is to solve
the problem at hand not on the input given but on a nearby
input. The perturbed input is carefully chosen, hence the
name controlled perturbation, so that it is non-degenerate
and can be handled with approximate arithmetic. They
applied the idea to three problems (computing polyhedral
arrangements, spherical arrangements, or arrangements of
circles) and showed that variants of the idealistic algorithms
can be made to work. In this paper we extend their work in
several directions:

1. we point out that controlled perturbation and guarded
tests are a general conversion strategy' for idealistic
algorithms, see Section 2,

2. we show how to use controlled perturbation in the con-
text of randomized algorithms, in particular randomized
incremental constructions, see Section 3,

3. we give specific schemes for planar Delaunay triangu-
lations and convex hulls and Delaunay triangulations in
arbitrary dimensions, see Sections 4, 5, and 6, and

4. we show how to generalize the analysis from the pre-
vious item to all surprise-free randomized incremental
constructions, see Section 7.

Note: We want to emphasize that while at first sight the
concept of controlled perturbation might look similar to
the approach of smoothed analysis as pioneered by Spiel-
man/Teng [ST04], the goals and effects are quite different.
The purpose of controlled perturbation is to actually perturb
the input, thereby reducing the required precision of the un-
derlying arithmetic and avoiding explicit treatment of degen-
erate cases. In contrast, the goal of [ST04] is more analytical
in a sense that they examine the combinatorial complexity
of an algorithm when moving from a problem instance ran-
domly to another ’nearby’ instance. That should be seen
rather as a trade-off between worst-case and average-case
analysis than something to actually implement.

2 Guarded Tests and Controlled Perturbation

Geometric algorithms branch on geometric predicates. A
basic predicate for two-dimensional geometry is orientation.
Given three points decide whether they lie on a common
line or form a left turn or form a right turn. Typically,
geometric predicates can be expressed as the sign of an
arithmetic formula E. For example, the orientation predicate
for d + 1 points (po,...,pq) in R? is given by the sign of a
(d+1) x (d+ 1) determinant:

Po1 poa 1

(2.1) orient(po,...,pq) :=sign Do
Pdi Pad 1

The determinant evaluates to zero if and only if the d + 1
points lie in a common hyperplane. In many algorithms this
is considered a degeneracy.

When evaluating an arithmetic formula E using floating-
point arithmetic, round-off errors occur which might result
in the wrong sign being reported. If this stays undetected,

TThis observation is already implicit in the paper of Halperin and

Leiserowitz [HLO3]. They write in Section 2.1: We look to move the centers
of the circles slightly ... such that when constructing the arrangement (of the
perturbed circles) while using a fixed precision floating point filter, the filter
will always succeed and we will never have to resort to higher precision or
exact arithmetic.

the program may enter an illegal state and disasters might
happen, see [KMP™] for some instructive examples. In
order to guard against round-off errors, we postulate the
availability of a predicate Gg with the following guard
property: If G evaluates to true when evaluated with
floating point arithmetic, the evaluation of E with floating
point arithmetic yields the correct sign. In an idealistic
algorithm A we now guard every sign test by first testing
whether the corresponding guard evaluates to true. If not, we
abort. We call the resulting algorithm a guarded algorithm
and use Ag to denote it. On an input x, Ag will either follow
the same execution path as A or abort after an initial segment
of it. In the former case, we will say that A, succeeds on x.
When A succeeds on x, the combinatorial part of the output
will be correct and the numerical part will be a floating point
approximation of the exact result. In all applications in this
paper, the numerical part of the output will be identical to the
input. Also the running time of Ag on x will be at most the
running time of A on input x; this assumes that the cost of
evaluating a guard is bounded by the cost of evaluating the
corresponding expression and ignores constant factors.

The controlled perturbation version of idealistic algo-
rithm A is as follows: Let d be a positive real. On input x, we
first choose a d-perturbation X of x and then run the guarded
algorithm A, on X. If it succeeds, fine. If not, repeat. What is
a d-perturbation? If the input is a set of points, the following
definition is natural. A §-perturbation of a point is a random
point in the §-ball (or §-cube) centered at the point and for
a set of points a d-perturbation is simply a d-perturbation of
each point in the set. For more complex objects, alternative
definitions come to mind, e.g., for a a circle one may want to
perturb the center or the center and the radius.

The goal is now to show experimentally and/or the-
oretically that A, has a good chance of working on a &-
perturbation of each input and a small value of 3. More gen-
erally, one wants to derive a relation between the precision
p of the floating point system (= length of the mantissa), a
characteristic of the input set, e.g., the number of points in
the set and an upper bound on the maximal coordinate of any
point in the input, and d. Halperin et al. have done so for ar-
rangements of polyhedral surfaces, arrangements of spheres,
and arrangements of circles.

We want to stress that a guarded algorithm can be used
without any analysis. Suppose we want to use it with a
certain 8. We execute it with a certain precision p. If it does
not succeed, we double p and repeat. We elaborate on this
scheme at the end of Section 4.

Guard predicates must be safe and should be effective,
i.e., if a guard does not fire, the approximate sign compu-
tation must be correct, and guards should not fire too often
unnecessarily. It is usually difficult to analyze the floating
point evaluation of G directly. For the purpose of the analy-
sis, we therefore postulate the existence of a bound predicate

E | E | Ew | indg |
¢ = const c c] 0
x+y x®Y | Xsup®ysup | 1+ max(indy,indy)
-y XOY | Xsup DYsup | 1+ max(ind,,ind,)
Xy XOY | Xsup ©Ysup 1 +ind, +ind,
Table 1: Rules for calculating error bounds. @, ©, and ®

stand for floating point addition, subtraction, and multiplication,
respectively. .

‘Be with the property: If Bg holds, G evaluates to true when
evaluated with floating point arithmetic. We next give con-
crete examples for guard and bound predicates:

Straight-Line Evaluation: When E is evaluated by a
straight-line program, it is easy to come up with suitable
predicates Gg and Bp using forward error analysis. For
example, the rules in Table 1 ([IMN99]) recursively define
two quantities Egyp and indg for every arithmetic expression
E such that

|E —E| < B := Eqyp-indg - 277

where E denote the value of E computed with floating point
arithmetic and p denotes the mantissa length of the floating-
point system. (i.e. p = 52 for IEEE doubles). We also write
€ instead of 277. We can then use

22) Ge= (|E| > BE) and B = (|E| > 2Bg),
where Bg is valid since it guarantees that |E| = |[E| - |E —
E| > 2Br — Bg = Bg, by the inverse triangle inequality. Ori-
entation tests and insphere tests in low dimensions, certainly
dimensions 2 and 3, are usually implemented through ex-
pressions and hence straight-line computation.

General Evaluation: For a more complex expression
E, we will evaluate the sign with a program involving
branching. For example, we might compute the sign of
the determinant of a d X d matrix A by computing an LU-
decomposition of the matrix and then determining the signs
of the determinants of L and U (which is simply the parity of
the number of negative elements on the diagonal). Gaussian
elimination [DH91, Section 2.4.2] yields matrices L' and U’
such that every entry of A= L'U’ — A is bounded in absolute
value by f(d)Me, where M is the maximal absolute value of
an entry of A and f(d) depends on the pivoting strategy. For
example, f(d) = d2? for partial pivoting.

Let A/ =L'U’. Then A’ =A+A=A(I+A'A). We
have det(/ —A~'A) = (1 —v;)--- (1 —7,) where the y; are
the eigenvalues of A~'A. Assume |y;| < 1/(100d) for
all i. Then |1 —TT;(1 —v)| < Xilv| < 1/100 and hence
detA’ = detA(1+ 8) with |§| < 1/100. Let Aj,..., A, be
the eigenvalues of A. Then detA = A;---Ay and || <M
for all i since every entry of A is bounded by M. Thus
|A:| > |detA|/M?~" for all eigenvalues of A and hence all

eigenvalues of A~! are bounded by M¢~! /| detA| in absolute
value. Thus the largest eigenvalue of A~'A is bounded
by f(d)M?¢/|detA| in absolute value. This is less than
1/(100d) if | detA| > 100d f(d)M“e. We may thus use

Ga = (IdetL'U’| > 1.01- 1004 f(d) M%)
By = (|detA| > By :=1.01°- 100df(d)Md3) .

Clarkson [Cla92] gave a method for computing the exact sign
of a d x d integer matrix with entries bounded by M with
floating point arithmetic of precision 1.5logd +2logM. It
is not clear to us how to exploit his method in the context of
controlled perturbation.

Controlled

3 Randomized and

Perturbation

Algorithms

Randomized algorithms are abundant in computational ge-
ometry; we are particularly interested in randomized incre-
mental constructions. We use A to denote our randomized
algorithm and assume that it uses at most m = f(n) random
bits on any input of length n. We use x to denote the input and
n € {0,1}™ to denote the random bits used by the algorithm.
We also use the following notation:

T (x,m) denotes the running time of A on input x and
random bits Tt.

T(x) = Ex[T(x,m)] = 27"Y;T(x,m) denotes the ex-
pected running time of A on x. The expectation is taken with
respect to the random bits.

Us(x) denotes the d-neighborhood of x. We use x’ to
denote a random element in Ug(x).

T5(x) = Eveu;(o[T (V)] = gy Levs(T (x') denotes
the d-smoothed running time at x, i.e., the average expected
running time on a random instance in a §-neighborhood of x.
For simplicity, we use summation instead of integration for
the averaging over Us(x). The 8-smoothed running time at x
may be larger or smaller than the running time at x.

The guarded version A, of A satisfies: For every input x
and random bits 7, the execution of A, (x,) is a prefix of the
execution of A(x,m) and T, (x,m) = O(T (x,7)) for all x and
n, where T,(x,7) is the running time of A, on input x with
random bits 7. Let % (x,T) be the indicator variable which is
1 if A4 (x,7) aborts and let

Zsz

T X/EU;,

|U5)I

be the probability that A, fails on a random §-perturbation x’
of x and random bits T, (figure 2). The controlled perturba-
tion algorithm CP is as follows:
repeat
choose a random 3-perturbation x" and random bits 7;
until A, (x',) succeeds.

Figure 2: The x-axis spans the instances in the 8-neighborhood of
x and the y-axis spans the space of random bits. The shaded area
indicates the pairs (x/, 1) for which A, aborts. Observe that there
may be instances for which no random bits work and and that there
may be random bits which work for no instance.

THEOREM 3.1. The expected running time of the controlled
perturbation scheme on input x is bounded by #ﬁm times

the smoothed complexity of A on input x, i.e.,

1
E[Tep(x)] € ———
1—ps(x)
Proof: CP runs A, on a random §-perturbation x” of x with
random bits . This has cost bounded by T(x',7). If the
computation succeeds, we are done. Otherwise, we repeat.
The probability of failing is pg(x). Thus

T5(x) .

T (¥, 1)+ (s 1) Tep ()

TCP <
Zﬁ:x'e%;: 2m. |U5() |
and hence Tep(x) < T3(x) + ps(x) - Tep(x) . O

In the case of randomized incremental constructions the
input x is a set S of n objects and the random bits determine a
permutation of S. The objects in S are considered in the order
of this permutation. The execution of the algorithm naturally
splits into phases, one phase per point. If the probability
of failure in any particular phase is less than c¢/n, the total
probability of failure is less than c.

4 Planar Delaunay Triangulations

A triangulation of a point set S is called Delaunay triangula-
tion (DT (S)) if the interior of the circumcircle of any triangle
in the triangulation contains no point of S. If S contains no
four cocircular points, DT (S) is unique.

There are many algorithms for computing the Delau-
nay triangulation of a point set following the well-known
paradigms for geometric algorithms like divide and conquer,
sweep-line, and also RIC. For all these algorithms the only
geometric predicates required are the orientation and incircle
tests” and the comparison of coordinates.

TThe insphere test in d-dimensions decides for a sequence of d + 2

The maybe most elegant algorithm is the RIC developed
by Guibas, Knuth and Sharir in [GKS92]. In this algorithm
the points are inserted in random order into the triangula-
tion. The starting triangulation consists of a triangle with
endpoints at infinity and hence containing all sites.

When a new point p is inserted, the triangle A(grs)
containing p is located and split into three new triangles
by connecting its vertices to p. Then for each new triangle
A(pab) and its neighboring old triangle A(abc) it is checked
if incircle(a,b,c, p) holds. If not, the edge a,b is replaced
by the edge p,c. This generates two new triangles which
are also checked. The expected number of edges generated
by the algorithm is less than 6n and the number of triangles
generated is at most twice the number of edges generated?
and hence overall the update step takes expected time O(n).

To locate the triangle containing p, a simple acyclic
point location graph is build, in which each node represents
a triangle that existed at some time during the algorithm. If
a triangle is destroyed by splitting it or flipping an edge, its
children in the graph will be the triangles generated by this
operation. To locate a point, we start at the infinite triangle
and check which child triangle contains the point, and then
again check the children of this triangle, until we reach the
bottom of the search graph, and thus have found the triangle
of the current triangulation containing p. In each search step
an orientation test (p,q,r) is performed where (gq,r) is the
common edge of the children triangles.

The expected time of the algorithm is O(rnlogn), which
is the optimal asymptotic running time for the construction
of Delaunay triangulations.

4.1 Controlled Perturbation We derive and analyze the
controlled perturbation version of the algorithm in three
steps. We first derive the guards and bound predicates. Then
we give a quantitative version of the statement: if the input
is in sufficiently general position the guarded algorithms
succeeds. Finally, we show that a &-perturbation with
sufficiently large & transforms any input into a sufficiently
general input with constant probability.

In the following we assume that all coordinates are
bounded by M after the d-perturbation. We use Orient
and Incircle to denote the absolute values of the orientation

points po.....pg.p in R? whether the point p lies outside, on, or in-
side the oriented sphere defined by the first d + 1 points. We have
insphere(po,...,pa,p) = orient(l(po),...,1(pa),l(p)) where for a point
a=(q1,-.-.92) €RY, 1(q) = (q1,-..,94,4% +...+¢3) € R is the lifting
of ¢ onto the paraboloid of revolution in R4*!. For d = 2, the insphere test
is called incircle test.

3The average degree of a node in a planar graph is less than six and hence
backwards analysis [CMS93] gives a 6n bound on the expected number of
edges constructed. Let m be the number of edges constructed. When a point
of degree k is inserted, we generate 2(k — 3) + 3 new triangles (three for
the first three edges and two for each additional edge) and hence the total
number of generated triangles is 2m — 3n.

and incircle determinants. Floating point comparisons of

coordinates are exact and need no guards. Using table 1 we

obtain the error bounds
Boriens =24 'M227p’ Bincircle =432 - M427p .

By plugging them into (2.2) we get guard predicates Goyiens

Gincircle and bound predicates Boriens s Bncircle for the incircle
and orientation test.

LEMMA 4.1. If Goriens and Gincircie hold for all orienta-
tion and incircle tests performed, the guarded algorithm suc-
ceeds.

Let us emphasize one more time that at runtime, only the
guard predicates are evaluated. But since analyzing the
behavior of the guard predicates seems hard, we will show
that under certain conditions, the probability of a bound
predicate failing is not too large. As a bound predicate not
failing implies the successful evaluation of the respective
guard predicate, we can obtain a lower bound on the success
probability for the guarded execution of our algorithm. We
next give geometric interpretations of these conditions.

LEMMA 4.2. Let p, q, and r be three points, A the tri-
angle defined by them and v and R the center and ra-
dius of the circumcircle of A. Then Orient(p,q,r) =2 -
area(A) and Incircle(p,q,r,t) > 2-area(A)R|dist(v,r) — R| >
area(A)>/2|dist(v,7) — R|.

Proof: The first equality is standard. For the second in-
equality, we start with the observation that the determi-
nant Incircle(p,q,r,t) evaluates to six times the signed vol-
ume vol(L) of the simplex L defined by the four points
1(p),l(q),1(r) and I(r). Here I(p) denotes the projection of
p onto the paraboloid P : x> +y> — 7 = 0.

Let I(A) be the triangle defined by the lifted points
1(p), I(q), I(r) and area(l(A)) be its area, and let E be the
plane defined by [(p), I(g), {(r). The equation of E can be
obtained as follows. Let v = (a/2,b/2). The points (x,y)
on the circumcircle satisfy (x —a/2)>+ (y—b/2)>—R>=0
and their liftings have z-coordinate z = x> +y*> = ax + by +
R?> —a?/4 —b? /4. Thus these liftings lie in the plane with
equation z = ax+ by +c and ¢ = R* — a* /4 — b* /4. This is
the equation of E. Finally, let a denote the angle between E
and the (x,y)-plane. Then vol(L) = area(l/(A))h/3 where h
is the distance of /(¢) from the plane E. Also, area(l(A)) =
area(A)/cos(a) and h = cos(a)h,, where h, is the vertical
distance of ¢ from E. Thus

vol(L) = area(l(A))h/3 = area(A)h, /3.

To compute &, we compare the z-coordinates of /(r) and the

projection of # onto E. We have

hy = |(62 +17) — (ate+ bty +¢)|

(r—3)2+ -2 2— a—2+b—2+c
T2) 4 4

= |dist*(v,#) — R*| > R~ |dist(v,1) — R].

Combining our inequalities we obtain Incircle(p,q,r,t) >
2 -area(A)R|dist(v,#) — R|. For fixed circumradius, the equi-
lateral triangle maximizes the area and hence area(A) < 6-
Rcos(m/6) - Rsin(r/6) = 4R?. Conversely R > +/area(A)/2
and hence Incircle(p,q,r,t) > area(A)>/?|dist(v,r) —R|. O

We have now arrived at geometric conditions for success.
Whenever the orientation of three points is tested, they must
form a triangle of area at least Boyiens /2, and whenever the
incircle property is tested for four points, the fourth point
must lie outside an annulus of half-width Bj,jrcre / area(A)3/ 2
around the circumcircle of the triangle A formed by the first
three points. The latter condition is the more stringent one,
as we will see below.

We come to the analysis of the failure probability of
the guarded Delaunay algorithm. For that it is convenient
to require additional properties — let us call them assertions
—, namely that any two perturbed points have distance at least
€ and that any triangle formed in the course of the algorithm
has area at least Eo with Ex > Boyiens /2. We will fix these
constants later. These assertions — as the bound predicates —
do not have to be checked at runtime, but we will argue about
the probability of them being fulfilled.

The expected number of edges constructed by the algo-
rithm is bounded by 6n and hence, by Markov’s inequality,
the probability that more than 24n edges are constructed is at
most 1/4. For the purpose of the analysis, we consider a run
of the guarded algorithm constructing more than 24n edges a
failure and restrict attention to runs constructing at most 24n
edges and hence at most 48n triangles.

For the analysis, we may assume that the perturbation is
chosen in on-line fashion. When we perturb the i-th point,
the positions of the previously inserted points are already
fixed and the new point is perturbed to a random point in
a disc of area m8%. We will choose § such that at most a
1/(4n) fraction of the points in the disc are forbidden by one
of our conditions. We use p to denote the i-th point.

We want that p has distance at least & from all previous
points. This excludes a region of size at most nn&?.

During the insertion of p, we perform a number of
orientation tests orient(q,r, p) and we construct a number of
new triangles A(g,r, p). In each case, (g,r) is a previously
constructed edge. We always want that area(A(g,r, p)) > Ea.
There are at most 24n such pairs (g,r) to consider®. Since

40bserve that we do not have to consider all pairs (g,r), but only those

which formed an edge in some triangulation.

g and r where inserted earlier, we know that dist(g,r) > &.
Hence, if p is placed outside a strip of half-width 2, /&
about the line £(g,r), the triangle has the desired size. The
area of the intersection of such a strip with a circle of radius &
is at most 28 -4&, /€ and hence the total size of the forbidden
region is at most 24n - 83, /E.

We also perform a number of incircle tests
incircle(q,r,s,p). In each such case, the first three
points form a triangle of the current Delaunay triangulation.
There are at most 2n such triangles® and each has area at
least £4. The forbidden region is an annulus of half-width at

most Brcircle/ ?;i/ 2 and the area of the intersection of this an-

nulus with a disk of radius d is at most 213 - 2B,circie/ ‘:i/ 2,
The total size of the forbidden region is thus bounded by

3/2 .
8nTdB ncircle /€ A/ . We summarize:

LEMMA 4.3. Let & and & be positive constants with
& > Borie /2. If 8 > 4n - (nm&* + 192n8Ex/E +
SnnﬁBlnCircle/éz/z), the success probability of the guarded
algorithm is at least 1/2.

Proof: The guarded algorithm fails if during its execution
too many objects are created or some insertion fails. An
insertion fails if the chosen perturbation leaves the point in
a forbidden region. The probability of the former is at most
1/4, the probability of the latter is at most 1/(4n). Hence
the probability of the guarded algorithm failing is at most
1/44+n-1/(4n)=1/2. O

We are aiming for a solution to the inequalities from the
lemma with minimal &, Recall that Bj,ciyce and Boyiens
are functions of M and p. An optimal solution is easily
obtained by numerical methods. For example, assume we
have n = 2% = 64 points each with coordinates in the range
[-127,...,127] (i.e. M = 27) and we are running our
implementation on a SUN Sparc station which provides long
doubles of p = 112 bit precision. For & = 0.4-103 and
Ex =0.2-1071°, the above theorem tells us that if we choose
8 =0.10724, the probability of 4,, succeeding is psycc > 1/2
and hence the expected running time of C? is O(nlogn).
We now derive an approximate solution to obtain a
feeling for the quantities involved. In doing so, we will
ignore constant factors. If we choose & such that 8 is at
least three times the value of each term on the right hand side
we are on the safe side, i.e., ignoring constant factors 8% >
n%€?, 8% > n*8&x /€, and 82 > n®8Bicircie/ &Z/ 2, Only one of
the right hand sides increases in & and hence we may assume
that the first constraint is tight, i.e., & = §/n. Analogously
we may assume that the second constraint is tight, i.e.,
Ex = 8E/n? = 8% /n Thus (from En > Boyient /2), We get
8? > nBBOrient =n’M?27P and & > ”leBlncircle/(82/”3)3/2

5Observe that we do not have to consider all triples

those which form a triangle in the current triangulation.

(g,r,s), but only

or 8* > Bicirelen>’? = M*27Pn'3/2. In other words, 27 >
max((M/8)2n3, (M /8)*n13/2) = (M /8)*n'3/2.

THEOREM 4.1. If the guarded algorithm is executed with
precision p, where p > C(logM —logd + logn + 1) for a
suitable constant C, it succeeds with probability at least 1/2.

4.2 Determining the Optimal Precision Our estimates in
the preceding section are extremely pessimistic and hence
one should not use them in a real implementation. Assume
d is given. We advise to start with a small precision pg
and to double it in case of k repeated failures, for some
constant k. Let [y be the smallest non-negative integer such
that execution with precision 2 p(has error bound less than
1/2. The scheme will terminate after an expected number
of Iy + O(1) rounds. Moreover, if the running time of our
algorithm is p“T(n) for some a > 1 (for example, a = 2,
if the algorithm uses multiplication and multiplication is
implemented by the school method), the expected running
time is O((To<j<sy (2'po)* + Lizy 27700 (2 po)) T (n)) =
O(20pyT (n)) if k > a. A similar scheme can be used to find
the optimal value of § for fixed precision.

4.3 Lazy Perturbations Another perturbation approach
would be to perturb sites only if during their insertion some
predicates could not be certified and then repeat the insertion.
This seems to work well in practice, see Section 8. There are
however two drawbacks. First, in this case the perturbation
depends on the insertion order and hence the probabilistic
analysis based on configuration spaces does not seem to
carry over (at least we were unable to carry it over). Second,
it is necessary to explicitly check the auxiliary assertions that
every edge constructed has length at least & and that every
triangle constructed has area at least . This requires a
change of the algorithm, see [K104] for more details. We
refer to the two approaches as standard and lazy.

5 Convex Hulls in Arbitrary Dimensions

The Idealistic Algorithm: We use the randomized incre-
mental algorithm analyzed in Clarkson, Mehlhorn, and Sei-
del [CMS93]. We use d to denote the dimension of the un-
derlying space and for a set R use convR to denote its convex
hull. We assume our input points to be in general position
and denote them xj, xa, ..., x, in the order of insertion. Let
S={x1,...,x,} be our set of points and let f, be the expected
number of facets of convR for a random subset R C S of size
r. We use CH; to denote the convex hull of the first i points.
The algorithm maintains a triangulation 7 of the current hull
CH. The triangulation is initialized to the simplex spanned
by the first d 4- 1 points. When a point x is added, the triangu-
lation is updated as follows: If x € CH, we leave T as it was.
If x € CH, for every facet F of CH visible from x, we add to
T the simplex S(F,x) = conv(F U{x}). We call F the base

of this simplex and x its peak. A facet F is visible to x when
S(F,x) meets the hull only at F. Let A; (A for additional) be
the facets of CH; which were not facets of CH;_;.

We need the following fact (shown in [CMS93]):

1. The cost of adding point x; is bounded by the number
of facets in Uj;A; visible from x;.

2. The expected number of facets in Uj<;A; is C; :=
Yi<idfi/J.
3. The expected running time of the algorithm is
5 nfj
O(d) L jn 7.

The Guarded Algorithm: The algorithm uses only the
orientation test given by determinant (2.1). When this test
is applied during the insertion of x;, the first d points define
a facet of CH for some j < i and the last point is x;. We
therefore write the test as orient(F,x;) with facet F and point
x;. We use the guard G, defined in section 2.

The Analysis: The perturbation must guarantee
Orient(F,x;) > By for every orientation test performed
by the algorithm, where By is as defined in section 2.
As in the case of Delaunay triangulations, we guarantee
more: namely a minimum relative volume of all faces of all
dimensions. The details are as follows.

Let ho, hi, ...hg—1 be a sequence of positive reals. For
an [-face f define forbidden(f,h;) to be the set of points
with distance less than /&; from the [-flat containing f. So
for a O-face f (= a vertex) forbidden(f, /o) is an open
ball with radius Ao centered at f. For a 1-face f (= an
edge) forbidden(f,4;) is an open hyper-cylinder of radius
h; whose axis is the line containing f.

The relative volume rvol(f) of a face f is the volume of
f when viewed as a subset of its affine hull. Define s, s1,
..., Sgbyso=1and

g
Al

LEMMA 5.1. Let CH = CH; be the current hull and let
p = Xi11 be the point to be inserted. If

“ho hp1si

for/>1.

1. d!-s; > By where By is as defined in section 2,
2. tvol(f) > s; for every I-face f of CH,

3. p ¢ forbidden(F,hy_1) for any facet F of any previous
hull, and

4. p ¢ forbidden(f,h;) of any l-face f of CH

then the insertion of p is succeeds and 2. holds for all faces
of CH' = CH ;.

Proof: When we insert p, we perform orientation tests
orient(F,p) where F is a facet of some previous hull. The

value of orient(F,p) is d! times the signed volume of the
simplex conv(F,p). Let h be the distance of p from the
hyper-plane containing . Then

vol(conv(F,p)) =h-tvol(F)/d > hy—y-sq-1/d = s4

and hence Orient(F, p) is at least d! - 54, which in turn is at
least B;. Thus we can conclude that the insertion is f-safe,
which proves the first part of the theorem.

For the second part observe that an [-face f’ of CH’ is
either an [-face of CH (in which case 2. already holds for f”)
or has the form conv(f, p) with f an [— 1-face of CH. In this
case let & be the distance of p from the affine hull of f. Then

rvol(conv(f,p)) = h-tvol(f) /1 > hy—y -si—1 /1 = sy,
which concludes the proof of the theorem. |

The Lemma gives us a geometric condition for success.
When we perturb a new point, we must avoid the forbidden
regions. We next estimate their size. Analogously to the
Delaunay case, we only need to consider the intersection
with the §-ball around a point. Recall that the volume of
an [-dimensional ball of radius & is £;8' for some constant f;.

LEMMA 5.2. Let U be a d-dimensional ball of radius & and
let f be an l-face. Then

vol(U® Nforbidden(f,h)) _ c¢jcq_y @)d,,

vol(U3) T ¢ (8

Proof: The ratio is maximized if the /-flat containing f
passes through the center of U 8 Hence assume w.l.o.g. that
US is centered at the origin and that the [-flat corresponds
to the flat spanned by the first / coordinate vectors. A point
(x1,...,Xq4) € U Nforbidden(f,) must satisfy both

G5 <8 and X .. HxG <K
and hence is contained in the set defined by
x%+...x,2§82 and x,2+1+...+x[21§h2.

But this set has volume ¢;8' - c4_jh? . d

We need to guarantee 3. and 4. of lemma 5.1 for every inser-
tion. Recall that the expected number of facets constructed
by the algorithm is C,. The probability that more than 4C,
facets are constructed is at most 1/4. We consider any run
which constructs more than 4C,, facets a failure and proceed
under the assumption that at most 4C,, facets are constructed.
Every face is a subset of some facet and hence we may as-
sume that the number of faces of any dimension constructed
by the algorithm is at most N := 4 -2¢C,,. Thus the position
of a new point is constrained by at most N forbidden regions.

It remains to choose the A;’s. Let ¢ = maxc;cy—;/cq.We
fix them so as to make all forbidden regions the same size,
i.e., for < d — 1 we choose &; such that

hl d—1 _ hl
c(8) =3
Set h =hy_1. Then
h
)

for0<I<d—-1lorl1<i<d. FromB; = hohy---hg_1 we
obtain

h /.
b =8(<)4D or hdfiza(g)l/l

hoy h B
& T1 (5)1/ =By or (g)HdZS—d

15i<d
o h B M

_ 1/H, d\1/H,

5= (50) [Ha > (C(g) g)

for some constant C and Hy := Y, 1/n being the n-th
harmonic number. Every forbidden region uses at most a
fraction ch/8 of U® and hence we need

) 1

M d
s (M) C(2ncN)Ha

CN(C(E)‘IS)I/H" < % or

We summarize in:

THEOREM 5.1. If p > dlog(M/8) 4+ HylognC, + O(dHy),
the guarded convex hull algorithm succeeds with probability
at least 1/2.

6 Delaunay Triangulations in Arbitrary Dimensions

The simplest way to construct the Delaunay triangulation
of a set of points in R is to construct the convex hull of
the lifted points in d 4 1-dimensions. The projection of the
lower hull is the Delaunay triangulation. The only predicate
used by the algorithm is the orientation predicate of the
lifted points; it is equivalent to the insphere predicate of the
original points.

We cannot use the results of the preceding section as
we perturb the original points and not the lifted points.
Since the additional coordinate is a function of the original
coordinates we cannot perturb it independently of the others.
However, we can reuse the analysis of the preceding section
and combine it with the analysis of the Delaunay algorithm
in the plane. Details are given in the full paper.

7 Forbidden Regions in Surprise-Free RICs

In the d-dimensional convex hull problem we associated a
forbidden region with each [-face, 0 <[< d, of the current
hull, but not with every [-subset of the current point set, the
reason being that only the former subsets can develop into

facets by further insertions. In this section we generalize
this observation to arbitrary surprise-free RICs. RICs were
introduced by Clarkson and Shor [CS89].

Let S be a set with n elements, which we call objects,
and let 7 (S) be a multi-set of subsets of S. For simplicity,
we assume that all subsets have the same size d. We call
the elements of F(S) ranges. For a region F € F(S) and
an object x € F, we say that F relies on x or x supports
F. For RC S, define F(R) ={F € F(S5); F C R} with
multiplicities preserved. We also assume a conflict relation
C C §x F(S) between objects and regions with the property
that if (x, F) € C then F does not rely on x.

In the convex hull problem, the regions are d-subsets
F of § and each subset occurs twice. The two copies
correspond to the two open halfspaces H (F) and Hx(F)
defined by F. An object x is in conflict with the region
denoting H;(F) iff x € H;(F). The regions in ¥ (S) which
do not conflict with any point in S correspond to the facets of
the convex hull of S.

For a subset R C S, o(R) denotes the set of all F €
F(R) having no x € R with (x,F) € C, that is, Fo(R) is the
set of regions over R which do not conflict with any object
in R. In the randomized incremental construction [CS89] of

Fo(S), the objects are considered in random order xj,...,x,
and, in the general step, Fo(R ;1) is constructed from Fo(R;)
where Rj = {x1,...,x;}.

The only test used by the generic RIC (concrete realiza-
tions may use other tests for increased efficiency) is the con-
flict test C(F, p) between regions F and objects p. Moreover,
when p = x; then F € Fo(F;) for some i < j. The perturba-
tion of S must guarantee that all conflict tests are computed
without error. It is natural to perturb the objects in S one by
one. When x; is inserted, it is perturbed and the perturbations
of xi to x;_; are already fixed. The perturbation must guar-
antee that all conflict tests C(F,x;) with RF € Ui<;Fo(R;)
are safe and it must also “prepare” for conflict tests C(F’, x;)
withk > jandx; € F'.

What do we mean by prepare? For all [, 1 <[<d, define
the [-faces of R; as the set of all /-subsets f of R; for which
there is a d — [-subset ' of S\ R; with fU f" € Fo(R; U f").
If all elements in f’ are inserted before any conflict of the
region fU f’, then the algorithm might perform conflict tests
C(fUf',-). The perturbation of x; must prepare for these
tests. In the convex hull example, assertions 2. and 4. of
Lemma 5.1 serve this purpose.

As in the analysis of the convex hull problem it
seems natural to introduce auxiliary assertions A; for
1 <i<d+1. The assertion A; depends on i ob-
jects and we have: Agyy(R,p) implies that the float-
ing point evaluation of C(R,p) gives the correct re-
sult. For objects py,...,p; define their forbidden region
forbidden(py,...,pj) ={p: “Ajr1(p1,...,pj,p)}. We can
now state and prove the

LEMMA 7.1. Let Fo = Fo(R;) be the current set of conflict
free regions and and p = x;;1 be the point to be inserted. If

1. Ai(f) holds for every I-face f of Fo,

2. p ¢ forbidden(F) for any region F of any Fo(R;) with
J<i

3. p & forbidden(f) of any I-face f of Fo.

then the insertion of p succeeds and 2. holds for all faces of

Fo = Fo(Rit1).

Proof: When we insert p, we perform conflict tests C(F, p)
where F is a region of some Fo(R;) with j <. Since p is not
in the forbidden region of F, we have A4, (F,p) which in
turn guarantees that the floating point evaluation of C(F, p)
returns the correct result.

An [-face f’ of 7, is either an [-face of %y or has the
form (f, p) where f is an [— 1-face of Fy. In the former case
there is nothing to prove. In the latter case, we have A;(f, p)
by the definition of forbidden region.]

How many /-faces can R; have? For a general RIC we have
no non-trivial bound. Call a RIC surprise-free if any [-face,
0 <1 <d, of R; is a subset of some region in Fy(R;). The
RIC:s for convex hulls, Delaunay diagrams and line segment
intersection are surprise-free. In fact, we are not aware of
any RIC which can be turned into an efficient algorithm
and is not surprise-free. There are however RICs which are
not surprise-free. Take for example as the set of regions
all subsets of size d which contain a particular element x.
Before the insertion of x, there are no conflict-free regions.
However, any [-subset of the current point set, 1 <[< d, is
an [-face. For surprise-free RICs the number of /-faces of R;
is bounded by ()| Fo(R;)|.

8 Experiments

We have implemented the controlled perturbation RIC for
Delaunay triangulations in C++. We have implemented
standard and lazy perturbations. Our implementation is able
to use various number types for the underlying arithmetic.
The lazy perturbation algorithm also checks the additional
properties introduced in section 4.1, namely that two points
have at least distance & and that every triangle hast at least
area 5. To test our algorithm, we compiled it with GNU
C++ 3.3 under Linux and ran it on a 3.06GHz Intel Xeon.
As input data set we used grids of various sizes and random
points on the “flower” formed by eight intersecting circles.
All input points have coordinates with absolute value less
than 1000, hence M = 1000. We further compared the
running time of a double version and a double interval
version of our algorithm to an implementation using exact
arithmetic. For all following tests we ran the algorithm a
couple of times and give the average value.

| Grid-size || CP (doubles) | CP (interval) | Exact]

2601 0.05 0.13 0.27
10201 0.23 0.65 1.29
40401 1.10 3.02 5.96
160801 5.23 13.86 26.17

Table 2: Timings for the lazy algorithm on a Grid using controlled
perturbation (CP) or exact arithmetic.

8.1 Behavior of Standard and Lazy Controlled Pertur-
bation First we ran both the standard and lazy approach to
determine the perturbation needed. For this we increase the
perturbation if a predicate fails. The results are shown in
table 3. While both algorithms need considerably smaller
perturbations than suggested by our worst case formulae,
for larger inputs the perturbation required by the lazy algo-
rithm is much smaller. Recall however that the perturbation
bound derived by us does not hold for the lazy algorithm,
and we also do not know if its expected running time is still
O(nlogn). Hence we also monitored the number of trian-
gles generated by the algorithm and the number of performed
point-in-triangle tests. The results are also shown in table 3
and suggest that in practice these values are no worse than
for the normal algorithm. More extensive experiments can be
found in [K104]. We also note that by choosing a higher pre-
cision p or by using interval arithmetic, the required amount
of perturbation can be drastically reduced, in particular the
standard perturbation algorithm is then able to solve the large
instances with a reasonably small amount of perturbation.

8.2 Running Time of the Lazy Algorithm Since the lazy
algorithm gives a better perturbation bound and our experi-
ments suggest that it is usable in practice, we compared it to
an exact implementation of the RIC Delaunay algorithm. We
also ran our algorithm a second time with interval arithmetic
instead of the static bounds given by table 1. While inter-
val arithmetic gives smaller perturbations, its running time
is much worse. It is however still faster than the exact im-
plementation. Timings are shown in table 2. Observe that
for the lazy algorithm, the auxiliary assertions need to be
checked. But this only requires the calculation of three ad-
ditional expressions per incircle test, which furthermore are
numerically less demanding than the incircle test itself.

9 Conclusions

We pointed out that controlled perturbation is a general
scheme for converting idealistic algorithms, i.e., algorithms
designed for non-degenerate inputs and the Real-RAM
model of computation, into algorithms which can be exe-
cuted with multi-precision floating point arithmetic: every
branch on the sign of an expression E is guarded by a guard
predicate G with the property: if Gg evaluates to true when
evaluated with floating point arithmetic, the evaluation of £

Standard Perturbation Lazy Perturbation
Input, pts triangles | locates || avg.perturbation || max.perturbation. | avg.perturbation

Flower, 400 3396 6220 0.05877 0.001 0.001
Flower, 2000 17319 43065 0.20473 0.0076 0.0023
Flower, 10000 100389 284043 0.79845 127.83 51.76
Grid, 441 3367 7516 0.00308 0.001 0.001
Grid, 2601 23255 | 62217 0.00675 0.0076 0.0043
Grid, 10201 91981 293882 0.01299 0.292 0.105

Grid, 160801 1448884 | 6514681 0.05181 exceeded grid-size

Table 3: Comparison of lazy and standard perturbation

with floating point arithmetic will give the correct sign. One
obtains the guard predicates by error analysis.

Instead of executing the program on the actual input it
is executed on a perturbed input x selected at random from a
d-neighborhood of the true input. For fixed input parameters
(number of objects, maximal coordinate of any object), the
perturbation bound & and the precision p of the floating point
system depend inversely on each other, the smaller §, the
larger p, and vice versa. The details of the relation can
be determined either analytically or experimentally. In the
experimental setting and for fixed , one simply doubles p
starting from a small value, say po = 52, the precision of
native double precision floating point arithmetic, until the
algorithm succeeds.

In the analysis, one has to give geometric meaning to
statements of the form: the value of an expression E is larger
than a certain bound Bg. The geometric interpretations lead
to forbidden regions for the placement of points.

If one is only interested in implementing a CP algorithm,
interval arithmetic can be used to check the guard predicates
without having to actually derive them. Hence the only
additional knowledge needed is what a -perturbation of the
input objects means.

References

[CGA] CGAL (Computational Geometry Algorithms Library).
http://www.cgal.org.

[Cla92] K.L. Clarkson. Safe and effective determinant evaluation.
In Proceedings of the 31st Annual Symposium on Foundations
of Computer Science (FOCS’92), pages 387-395, 1992.

[CMS93] K. Clarkson, K. Mehlhorn, and R. Seidel. Four re-
sults on randomized incremental constructions. Computa-
tional Geometry: Theory and Applications, 3:185-212, 1993.
http://www.mpi-sb.mpg.de/ mehlhorn/ftp/CMS-FourResults.ps.

[CS89] K.L. Clarkson and P.W. Shor. Applications of random
sampling in computational geometry, II. Journal of Discrete
and Computational Geometry, 4:387-421, 1989.

[DH91] P. Deuflhard and A. Hohmann. Numerische Mathematik:
Eine algorithmisch orientierte Einfiihrung. Walter de Gruyter,
1991.

[FvW93] S. Fortune and C. van Wyk. Efficient exact integer arith-

metic for computational geometry. In 7th ACM Conference on
Computational Geometry, pages 163-172, 1993.

[GKS92] L. Guibas, D. Knuth, and M. Sharir. Randomized
Incremental Construction of Delaunay and Voronoi Diagrams.
Algorithmica 7: 381-413, 1992.

[HLO3] D. Halperin and E. Leiserowitz. Controlled perturbation
for arrangements of circles. In SoCG, pages 264-273, 2003.

[HR] D. Halperin and S. Raab. Controlled perturbation for ar-
rangements of polyhedral surfaces with application to swept
volumes. available from Halperin’s home page; a preliminary
version appeared in SOCG 1999, pages 163—-172.

[HS98] Halperin and Shelton. A perturbation scheme for spher-
ical arrangements with application to molecular modeling.
CGTA: Computational Geometry: Theory and Applications,
10, 1998.

[JRZ91] M. Jinger, G. Reinelt, and D. Zepf. Computing correct
Delaunay triangulations. Computing, 47:43-49, 1991.

[KLN91] M. Karasick, D. Lieber, and L.R. Nackman. Efficient
Delaunay triangulation using rational arithmetic. ACM Trans-
actions on Graphics, 10(1):71-91, January 1991.

[K104] C. Klein. Controlled Perturbation for Voronoi Diagrams.
Master Thesis, Universitét des Saarlandes, 2004.

[KMP*] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. Yap.
Classroom examples of robustness problems in geometric
computations. to appear in ESA 2004, http://www.mpi-
sb.mpg.de/ mehlhorn/ftp/ClassRoomExample.ps.

[LED] LEDA (Library of Efficient Data Types and Algorithms).
http://www.mpi-sb.mpg.de/LEDA/leda.html.

[MN94] K. Mehlhorn and S. Néher. The implementation of ge-
ometric algorithms. In Proceedings of the 13th IFIP World
Computer Congress, volume 1, pages 223-231. Elsevier Sci-
ence B.V. North-Holland, Amsterdam, 1994. http://www.mpi-
sb.mpg.de/ mehlhorn/ftp/ifip94.ps.

[MN99] K. Mehlhorn and S. Naher. The LEDA Platform for Com-
binatorial and Geometric Computing. Cambridge University
Press, 1999. 1018 pages.

[STO4] Daniel A. Spielman and Shang-Hua Teng. Smoothed
analysis of algorithms: Why the simplex algorithm usually
takes polynomial time, In Journal of the ACM 51(3), 385—
463, 2004

[Yap93] C.K. Yap. Towards exact geometric computation. In Pro-
ceedings of the 5th Canadian Conference on Computational
Geometry (CCCG’93), pages 405-419, 1993.

