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Abstract

For registration of 3-D free-form surfaces we have
developed a representation which requires no knowledge of
the transformation between views. The representation
comprises descriptive images associated with oriented
points on the surface of an object. Constructed using single
point bases, these images are data level shape descriptions
that are used for efficient matching of oriented points.
Correlation of images is used to establish point
correspondences between two views; from these
correspondences a rigid transformation that aligns the
views is calculated. The transformation is then refined and
verified using a modified iterative closest point algorithm.
To demonstrate the generality of our approach, we present
results from multiple sensing domains.

1. Introduction

Surface registration is the process that aligns 3-D data
sets acquired from different view points or at different
times. A common application of surface registration is to
spatially reconcile multiple views of a scene in order to
generate more complete scene descriptions. Another
application is to determine the position of the sensor as it
traverses a scene by matching scene views taken at different
times. An effective surface registration algorithm must be
able to handle complex scenes and not make any
assumptions about the transformation between views. To
this end, we have developed a surface registration algorithm
based on matching oriented points; this algorithm makes no
assumption about the transformation between views and
works on complex scenes containing free-form and
polyhedral objects.

Our algorithm proceeds as follows: First, two views of a
scene are acquired using a range sensor and converted into
triangular surface meshes. Next, point correspondences are
established using a new representation for matching points
on the surfaces of objects. Next, sets of geometrically
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consistent point correspondences are used to compute a
rigid transformation that aligns the views. Finally, the
transformation is refined and verified using a modified
iterative closest point algorithm.

Our new representation for matching oriented points,
called a spin-image, is the fundamental contribution of this
paper. The concept of a spin-images developed from ideas
in basis geometric hashing [10] and structural indexing
[11]. To create a spin-image, a local 2-D basis is computed
at an oriented point (3-D points with surface normal) on the
surface. The coordinates of the other points on the surface
with respect to the basis are then used in a voting procedure
to create the descriptive spin-image for the point.
Information from the entire surface is used to generate spin-
images, instead of a curve or surface patch in the vicinity of
the point; thus, spin-images are more discriminating than
the curves used in structural indexing. Because bases are
computed from single points, our method does not have the
combinatorial explosion present in basis geometric hashing
as the amount of data is increased. Furthermore, a spin-
image computed at any point on a surface is discriminating,
so the need for extraction of salient features is eliminated.

Although spin-images can also be used in object
recognition [7], the focus of this paper is on 3-D surface
registration. Our approach to registration is similar to others
in that we use correspondences between low-level surface
parameters to calculate rigid transformations that align
views using no prior knowledge about the transformation
between views, Chua and Jarvis [3] present an algorithm for
matching 3-D free-form surfaces by matching points based
on principal curvatures. Bergevin et. al. [2] propose a
registration algorithm based on matching properties of
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Figure 1. An oriented point basis.



triangles generated from a hierarchical tessellation of an
object’s surface. Our approach differs from these because
the spin-image computed at a point is much more
discriminating than principal curvatures and angles
between frames measured at a point. Furthermore,
dependence on computation of second order surface
derivatives makes it difficult to robustly compute principal
curvatures on surfaces.

The idea of encoding the relative position of many points
on the surface of an object in an image or histogram is not
new. Ikeuchi et al. [9] propose invariant histograms for SAR
target recognition. This work is view-based and requires
feature extraction. Guéziec and Ayache [5] store parameters
for all points along a curve in a hash table for efficient
matching of 3-D curves. Their method requires the
extraction of extremal curves from 3-D images.

2. Spin-images

The fundamental shape element we use for matching is
an oriented point, a three-dimensional point with an
associated direction. We define an oriented point O on the
surface of an object using surface position p and surface
normal n. We define surface normal as the normal of the
best fit plane to the point and its neighbors in the mesh
oriented toward the sensor. As shown in Figure 1, an
oriented point defines a 2-D basis (p,n) (i.e., local
coordinate system) using the tangent plane P through p
oriented perpendicularly to r and the line L through p
parallel to n. The two coordinates of the basis are o, the
perpendicular distance to the line £, and B the signed
perpendicular distance to the plane 2 A spin-map S is the
function that maps 3-D points x to the 2-D coordinates of a
particular basis (p,n) corresponding to oriented point O

S (%) = (@ B) = Wle=pl*— - x-p)n- (x-p) (1)

The term spin-map comes from the cylindrical symmetry of
the oriented point basis; the basis can spin about its axis
with no effect on the coordinates of points with respect to
the basis.

During recognition, we use coordinate systems defined
at specific points on the surface of an object to describe the
shape of the object independently of the object’s pose. We
use oriented point bases, which determine only two of the
three coordinates of points, instead of complete 3-D bases
because an oriented point basis can be determined robustly
and unambiguously almost everywhere on the surface of an
object while a complete 3-D basis cannot. An oriented point
basis is well defined everywhere on the surface of the object
except at surface discontinuities, where first order surface
derivatives are undefined. so surface normal cannot be
computed. When creating a complete three-dimensional
coordinate system, three unambiguous axes must be
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determined. If surface normal, which can be computed
reliably, is chosen as one of the axes, then two axes in the
tangent plane of the surface must be determined to complete
the basis. An obvious choice for these axes would be the
directions of principal curvature on the surface [3] which,
when combined with the surface normal, create the
Darboux frame of the surface. However, determination of
the directions of principal curvature of a surface require the
computation of second-order surface derivatives, so the
resulting axes are very susceptible to noise. Furthermore, as
the surface approaches a plane, the directions of principal
curvature become undefined. Instead of attempting to
calculate a stable 3-D basis at each point, the known stable
information (surface normal) is used to compute a 2-D
basis. Although a spin-map is not a rigid transformation, it
can still be used to describe (albeit incompletely) the
position of a point with respect to other points on the surface
of an object. In the next section we will describe how we use
this fact to encode the shape of objects in an object-centered
fashion.

2.1 Spin-image generation

Each unique oriented point O has a unique spin-map S,
associated with it. When S, is applied to all of the other
points on the surface M, a set of 2-D points is created. We
will use the term spin-image Iy 4, to refer to the result of
applying the spin-map S to the set of points on M. A spin-
image is a description of the shape of the surface because it
is the projection of the relative position of 3-D points that
lie on the surface to a 2-D space where some of the 3-D
metric information is preserved. Since spin-images describe
the shape of the surface independently of its pose, they are
object-centered shape descriptions.

Correspondences are established between oriented
points by comparing spin-images. If spin-images are
represented as a set of 2-D points then comparisons will
have to be made between points sets, a costly and ill-defined
operation. Instead, as explained below, spin-images are
represented as 2-D arrays of floating point numbers that are
compared through image correlation.

To create the 2-D array representation of a spin-image

Figure 2. Some example spin-images for a CAD
model of a valve



for the oriented point O on the surface of an object M, the
following procedure is invoked. For each point x on the
surface of the object, the spin-map coordinates (o) with
respect to O are computed. Next, the bin B that the
coordinates index in the 2-D array of floats is determined by
discretizing (o.,B). Finally, the array is updated by
incrementing the bins surrounding B in the table. In general,
the bin size is set to two times the resolution of the surface
mesh (measured as the median of the edge lengths in the
mesh). Figure 2 shows some spin-images for a CAD object.

In order to spread the position of the point in the 2-D
array to account for noise in the data and the discrete
sampling of the surfaces in the scene, the contribution of the
point is bilinearly interpolated to the four surrounding bins
in the 2-D array. This bilinear interpolation of the
contribution of a point will spread the location of the point
in the 2-D array, making the array less sensitive to the
position of the point.

The idea of spin-images evolved from concepts used in
geometric hashing. Our initial idea was to use all of the
points on the surface of an object in a geometric hashing
algorithm. Unfortunately, constructing coordinate systems
from all tuples of points would lead to a combinatoric
explosion in the indexing [10] (given the large number of
points on the surface). Furthermore, coordinate systems
constructed from tuples of points are very sensitive to the
position of points sensed on the surface. Instead, we decided
to encode the position of points with respect to a 2-D basis
defined with one oriented point, in order to reduce the
combinatoric explosion and position sensitivity. After
matching points using a hash table, we determined that it
would be just as effective and much more efficient to simply
store an image that described the location of other points
with respect to the oriented point instead of performing
lookup in a hash table. From this, the concept of a spin-
image was born. Using images to match points opens up the
entire field of image-based matching, giving us powerful
comparison tools such as image correlation.

Our system finds corresponding points by comparing
spin-images. For the spin-images of two corresponding
points on different views of the same scene to be similar, the
resolution of the surface meshes (i.e., density of points over
the surfaces) must be similar. This is a weaker constraint
than requiring the positions of points to be the same for the
two views. If the resolutions of the meshes are the same,
then on average, each corresponding bin of matching spin-
images will have the same number of points projected into
them, making them correlated. We measure surface mesh
resolution as the median of edge lengths in the mesh.

In general, objects imaged with the same sensor will
have the same resolution. In cases where the density of
points is different, we use a mesh simplification algorithm
[7] to add and remove points from the surface meshes until
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the densities are the same. In most cases, the requirement of
equal resolutions can be weakened, if the density of points
in one view is linearly related to the density in the other
Matching between meshes of different resolutions (10:1) is
demonstrated with elevation maps in Figure 8.

A parameterized model of the effects of scene clutter on
spin-image generation has shown that, if present, scene
clutter is localized in spin-images and the effect of clutter
increases smoothly as clutter is increased. Using this model,
the effects of clutter and self occlusion can be controlled by
setting two parameters that determine which points
contribute to spin-image generation. The first parameter
sets the maximum distance between the oriented point basis
and a point in the mesh contributing to the spin-image. In
general this threshold is set to one half the extent of overlap
between the two meshes. The second parameter sets the
threshold on the maximum angle between the oriented point
basis surface normal and the surface normal of points in the
scene. This threshold prevents points that will be self-
occluded from contributing to the spin-image and is usually
set to 90°.

2.2 Establishing point correspondences

Spin-images generated from different views of a scene
will be similar because they are based on the shape of
objects imaged. However, they will not be exactly the same
due to variations in surface sampling and noise from
different views. A standard way of comparing linearly
related images is the normalized linear correlation
coefficient. The correlation coefficient can be used to rank
point correspondences, so that correct and incorrect
correspondences can be differentiated.

The linear correlation coefficient provides a simple and
established way to compare two spin-images that can be
expected to be similar across the entire image. In practice
spin-images generated from range images will have clutter
(extra data) and occlusions (missing data). To handie clutter
and occlusion robustly, spin-images are compared only in
the bins where both of the images have data. In other words,
the data used to compute the linear correlation coefficient is
taken only from the region of overlap between two spin-
images. In this case, knowledge of the spin-image
generation process is used to eliminate outliers in the
correlation computation.

Since the linear correlation coefficient is a function of
the number of bins used to compute it, the amount of
overlap will have an effect on the correlation coefficients
obtained. The more bins used to compute the correlation
coefficient, the more confidence there is in its value. The
variance of the correlation coefficient is included in the
calculations of the relative similarity between two images
so that the similarity measure between pairs of images with



differing amounts of overlap can be compared An
appropriate similarity function C which we use instead of
the correlation coefficient to compare spin-images P and @
where N is the number of overlapping bins is

C(P, Q) = (atanh(R(P, 0 {35 @
This similarity measure will return a high value for two
images that are highly correlated and have a large number
of overlapping bins. The change of variables, a standard
statistical technique ([4] Chapter 12) performed by the
hyperbolic arctangent function, transforms the correlation
coefficient into a distribution that has better statistical
properties. In particular, under the transformation of
variables, the variance of the transformed correlation
coefficient becomes 1/N-3), which is a simple function of
the number of pixels used to compute R. In Equation 2, A
weights the variance against the expected value of the
correlation coefficient. In practice, A is set to three.

3. Global registration

The similarity measure provides a way to rank
correspondences so that only reasonable correspondences
are established. Suppose we wish to register two surface
meshes: a model and scene. First, spin-images are generated
for all points on a model surface mesh and then these
images are stored in a spin-image stack. Next, a scene point
is selected randomly from the scene surface mesh and its
spin-image is generated. The scene spin-image is then
correlated with all of the images in the model spin-image
stack and the similarity measures (2) for each image pair are
calculated and inserted in a histogram. The images in the
model spin-image stack with high similarity measure when
compared to the scene spin-image produce model/scene
point correspondences between their associated oriented
points. This procedure to establish point correspondences is
repeated for a fraction of scene points (~1/10 total scene
points) that adequately cover the scene surface. The end
result is a set of model/scene point correspondences which
can be filtered and grouped in order to compute
transformation from model to scene.

Similarity Measure Histogram

300
200 L .
fourth ouflier
100 S;L;Od ;Jopu‘:fr: ’rhres\h\ild
s outliers (4)
07 0 1 2 3

simitarity measure
Figure 3. Similarity measure histogram

Possible corresponding model points are chosen by
finding the upper outliers in the histogram of similarity
measures for each scene point. This method of choosing
correspondences is reliable for two reasons. First, if no
outliers exist, then the scene point has a spin-image that is
similar to all of the model spin-images, so definite
correspondences with this scene point should not be
established. Second, if multiple outliers exist, then multiple
model spin-images are similar to a single scene spin-image,
so multiple model/scene point correspondences should be
considered in the matching process. We use a standard
method for automatic detection of outliers in a histogram
([4] Chapter 1); correspondences that have similarity
measures that are greater than the upper fourth plus three
times the fourth spread of the histogram are statistical
outliers. Another useful property of the transformation of
variables (hyperbolic arctangent) used in the similarity
measure is magnification of the correlation coefficients that
are close to unity, making the detection of outliers in the
similarity measure histogram easier. Figure 3 shows a
similarity measure histogram with detected outliers.

3.1 Grouping correspondences

Multiple correspondences are established between
model and scene to account for sensor noise, scene
symmetry and inherent symmetry in the spin-image
representation. In  order to compute plausible
transformations from model to scene, it is necessary to filter
the correspondences and then group them into sets that are
geometrically consistent First, to eliminate
correspondences between points that are outside of the area
of overlap between the two views, correspondences with
similarity measure that falls below a threshold are removed
from consideration.

Two oriented point correspondences [s;,m;] and [s,,m;]
are geometrically consistent if their spin-map coordinates
(1) are within some distance threshold D...

[, (m2) =S ()| <Dy S (mp) =S, (5] <Dy (3)

Using distance between spin-map coordinates is a compact
way to combine the constraints on position and normals
using a single threshold. The threshold D, is set to two
times the resolution of the model surface mesh.

With a list of N correspondences remaining after
filtering, there exist a combinatoric number of possible sets
of correspondences which can be used to compute a
transformation between model and scene. To avoid this
combinatoric explosion, geometric consistency and the
similarity measure are used to partition the remaining
correspondences into sets which can be used to compute
plausible transformations. First the correspondences are
sorted based on similarity measure. A set of
correspondences is then created by iteratively adding



correspondences in similarity measure rank order to the
current set that are geometrically consistent with the current
set. The end result is a disjoint partition of the
correspondences where, in general, correspondences with
high similarity measure are grouped together.

A plausible transformation 7 from model to scene is
calculated from each geometrically consistent group
{[m;,s;]} of correspondences by minimizing [6]

2
E; = zus[ -T(m)|". 4)
The transformations and associated correspondence groups
are then input into a verification procedure.

3.2 Iterative closest point verification

The purpose of verification is to find the best
transformation between model and scene by eliminating
transformations that are inconsistent when all of the scene
data is compared to all of the model data. Our verification
algorithm is a formulation of the iterative closest point
algorithm [1][13] that can handle partially overlapping
point sets and arbitrary transformations between model and
scene because it is initialized with a transformation

Views

Initial Correspondences

Figure 4. Registration of two views of a plastic
model of the head of venus (taken with a
structured light range sensor) demonstrating the
spread of correspondences during verification.
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generated from independently determined  point
correspondences. This is in contrast to traditional ICP [1]
which requires an initial guess of the transformation
between model and scene and assumes that one point set is
a proper subset of the other.

Verification starts with an initial set of point
correspondences from which the transformation of model to
scene is computed This transformation is then applied to the
model surface mesh. Next, correspondences are spread
from each initial correspondence as follows: For each scene
point in an initial correspondence, the scene points directly
connected to it by edges in the scene surface mesh are
turned into correspondences (with their closest model
points) if the distance between scene and closest model
points is less than a threshold Dy This process is recursively
applied to each of the correspondences just added until no
more correspondences can be created. The threshold D, in
the verification stage (that sets the maximum distance by
which two points can differ and still be brought into
correspondence) is set automatically to two times the
resolution of the meshes. This threshold allows for noise but
prevents establishment of correspondences in regions where
the data sets do not overlap.

Our algorithm grows patches of correspondences
between the model and the scene from the initial
correspondences and a cascade effect occurs. If the match is
good, a large number of points will be brought into
correspondence; if the match is bad, the number of
correspondences will remain close to the number in the
original match. Therefore, a good measure of the validity of
the match is the number of correspondences after
verification. Since a large number of correspondences are
used to compute the final transformation, the alignment will
be more accurate than that computed through matching of
spin-images.

Figure 4 illustrates how initial correspondences,
established by matching spin-images, are spread over the
surfaces of two range views (taken with a OGIS structured
light range camera) of a plastic model of the head of the
goddess Venus. The correspondences are established only
in the regions where the two surface meshes overlap, thus
preventing a poor registration caused by correspondences
being established between non-overlapping regions.

4. Range Image Registration Results

An important task in interior modeling is the automatic
registration of range images. By registering and merging
range images, more complete scene descriptions are
generated. Figure 5 shows a scene composed of a PVC pipe
joint, four graphite bricks, a piece of plywood and a steel
valve placed on a mobile cart. This scene was imaged in
three different positions by moving the cart and taking a



range image with a Perceptron 5000 laser rangefinder at
each position. The position of the cart varied each time by
approximately 30 degrees of rotation about the vertical axis.
Figure 5 shows the intensity channel of the range scanner
for the three scene positions and the resulting registration.
The top view of the registered points clearly shows that a
more complete scene description than is available from one
range image 1s generated and that the registration is correct
up to the resolution of the points.

Figure 6 shows the results of aligning three views of a

Range Views

Registration

oblique points

fop points

oblique shaded

Figure 5. Registration of laser rangefinder images
of industrial objects. The range views differ by
roughly 30 degrees, so registering the views
provides a more complete description of the
scene.

stack of graphite bricks imaged with a structured light range
sensor. These views also vary by approximately 30 degrees
of rotation about the vertical axis. The top views of the
registered points in both cases clearly show that a more
complete scene description than is available from one range
image is generated and that the registration is correct up to
the resolution of the points. This result demonstrates the
effectiveness of our algorithm in registering scenes
composed of polyhedral objects.

A common result in the biomedical imaging literature is

Range Views
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left view shaded

top view points

right view shaded
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Figure 6. Registration of structured light range
images of a stack of graphite bricks. The views
differ by roughly 35 degrees. This result shows
the ability of our algorithm to register views of
polyhedral objects.



the registration of two skull data sets generated from
volumetric medical scanners [5]. Figure 7 shows the
registration of two different surface meshes of a skull
created from the same CT data set. The surface meshes were
created by adding small amounts of Gaussian noise to the
points in the original surface mesh generated from the CT
scans and then simplifying the meshes[8]. Different random
noise values were added to the original surface mesh for
each of the meshes shown, resulting in surface meshes with
different points and connectivity after simplification. A
close look at the two wireframe data sets in Figure 7 shows
that the two surface meshes are completely different while
still approximating the shape of the skull. This skull data set
is especially difficult to register because the inner and outer
surface of the cranium are extracted from the CT data,
increasing the complexity of the model and possibly
introducing ambiguities when registering the data sets.
Since the two data sets are already co-registered, any
non-identity transformation calculated for the registration
will represent the registration error. For the result shown in
Figure 7, the translation is [0.019 -0.069 —0.013]T mm and
the fixed rotation angles are [-0.06 -0.03 0.018]T degrees.
This corresponds to a translation error magnitude of 0.072

Data sets

Registration (two views)

Figure 7. Registration of two skull data sets
generated from CT. The accuracy of the
registration  (0.072mm) demonstrates the
usefuiness of our algorithm in medical
registration procedures where the transformation
between data sets is unknown or highly
uncertain.
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mm, which is less than 2% of the resolution of the surface
meshes (5.9mm) being registered and an angular error
magnitude of 0.07 degrees. The accuracy of the registration
demonstrates the usefulness of our algorithm in medical
registration procedures where the transformation between
data sets is unknown or highly uncertain.

Figure 8 demonstrates the registration of a very fine
elevation map to a coarse digital elevation map. The ability
to register a local elevation map (perhaps generated by on-
board sensors) to a coarse global elevation map is very
useful in outdoor mobile robot navigation. It can be used to
initially register a robot to a global map and also correct for
subsequent drift in global position as the robot traverses the
terrain. The model data set in Figure 8 was generated by
subsampling (10:1) a digital terrain map (real elevation data
collected from the Lockheed Martin facility in Denver,
Colorado) and the scene data set was generated from the
cropping the same digital elevation map without
subsampling the data. This result shows that our algorithm
works even when the resolutions of the meshes being
compared are substantially different.

5. Discussion

Spin-images offer a method for performing 3-D object
recognition and registration using an image-based
representation. This has allowed the application of powerful
image-based tools, like image correlation, to the problem of
matching spin-images and their associated oriented points.
The underlying assumption in our algorithm is that spin-
images from corresponding oriented points will be similar
enough to be matched. This is the same assumption that is
used in template matching and correlation based stereo, two
pervasive methodologies in computer vision. Through the
use of spin-images, we are attempting to bring the success
of image based techniques to 3-D surface registration.

The computational complexity of our algorithm is much
less than that attributed to methods of basis geometric
hashing because our algorithm does not construct
coordinates frames from multiple points. Let S be the
number of points selected from the scene, M the number of
model points and I the size of the spin-images. The time to
generate the model spin-image stack is O(M?) because a
spin-image is generated for every point on the model and
each spin-image requires the spin-mapping of every point in
the model. The size of the spin-image stack is O(MI)
because there is one spin-image for every model point. The
establishment of correspondences between the model stack
and the scene is O(SMI+SMlogM) because each scene
point spin-image must be pixelwise multiplied with all of
the model spin-images (O(SMI)), and the M similarity
measures of the correspondences must be sorted
(O(SMlogM)). Since logM is always much less than I, the



establishment of correspondences can be reduced to
O(SMI). The iterative closest point verification algorithm is
worst case O(MlogM) for each iteration of the algorithm.
This assumes that all of the model points are brought into
correspondence with scene points. For the results shown in
this paper M~1000, S~100 and I~100.

Model

shaded

shaded

Registration

Figure 8. Registration of a fine local elevation map
to a coarse global elevation map. This result
demonstrates the ability of our algorithm to match
meshes of different resolution.
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6. Conclusion

We have presented a new representation for surface
registration that is based on indexing of spin-images
generated using oriented points on the surface of an object.
The effectiveness of our new representation comes from its
ability to combine the descriptiveness of global shape
properties with the view invariance of local features.

Currently, we are developing analytical models to
describe the effects of clutter and resolution on spin-image
generation and comparison. Faster and more robust
statistical methods for comparison and storage of spin-
images are also being investigated.
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