Designing the Port Interface Unit for the Lutonium Asynchronous
Microcontroller

Thesis by
Eino-Ville Talvala

In Partial Fulfillment of the Requirements
for the Degree of

Bachelor of Science in Electrical Engineering

Cdlifornia Ingtitute of Technology
Pasadena, California

2003
(Submitted June 5, 2003)

Abstract

The requirements, features, and implementation of the port interface unit for the
L utonium asynchronous microcontroller are covered in detail. The Lutonium is a new
microcontroller that is pin- and software compatible with the Intel 8051 family of
microcontrollers, and it is being designed by the Caltech Asynchronous VLS| Group.
The port interface unit controls five 8-bit I/O ports, exposing them to the processor as
directly accessible registers. The port interface unit also sequences external memory bus
access phases using the same 1/0O ports. The final design alows both backward
compatibility with the 8051 series and many advanced power-saving features. It is built
around a primary state machine responsible for controlling and sequencing basic
operations. The transistor networks for the port unit are complete, and extensive
simulations have been done to verify the logical correctness of the design. The layout has
not yet beencompleted, but preliminary performance numbers have been extracted from
the transistor- level design.

Table of Contents

Introduction
8051 Overview
Asynchronous Design Style Overview
Port Interface Requirements, Features, and Top-Level Specification
4.1. PRDM Configuration and SFRs
4.2. PRDM Externdl Interface
4.3. PRDM Internal Interface
Design Tradeoffs and Decisions
Final Design
6.1. PortControl unit
6.2. DataMux unit
6.3. DMCRegs unit
6.4. PortUnitBus unit
6.5. PortUnit
7. Testing
8. Performance Characteristics
0.
1

EaB O N

Sl

Conclusion
0. References

1. Introduction

The Intel 8051 microcontroller was originally designed in 1980 and has remained
highly popular to this day. Dozens of variants of the original 8051 have been released by
various semiconductor manufacturers, with added features, speed, or both, tailored for
specific tasks. The 8051 and its many derivatives are the world’'s most popular
microcontroller family.

It isfor this reason that the Caltech Asynchronous VLS| Group is currently
designing the Lutonium microcontroller [1], an asynchronous version of the Intel 8051
microcontroller. The goals of the design are low power consumption and high speed; in
short, very high efficiency, on the order of 1000 MIPS/Watt. Funded by DARPA, the
project is a showcase for the effectiveness of the asynchronous design approach, applied
to a common, widely used microcontroller.

The 8051 is a Harvard architecture microcontroller, in its base form featuring 4 8-
bit 1/0 ports and the ability to access external instruction or data memory through the I/O
ports, among many other features. [2]

This thesis details the devel opment of the port interface unit of the Lutonium,
which interfaces the Lutonium coreto five 8-bit I/O ports The port interface alows
direct access to the ports through memory- mapped registers, and orchestrates external
memory bus accesses through the I/O ports. Due to this dua role, the port interface is
named the Port Register/Data Memory (PRDM) unit. In order to satisfy both project
goals and backwards-compatibility requirements, the PRDM is highly configurable,
supporting several power- and time-saving features as well as a default 8051-compatible
mode.

The PRDM is designed with a central state machine that contains all branching
and sequencing logic, connected to several data path units that route port data bytes
between the Lutonium core and the port pins. The state machine is implemented as a
large ROM automatically generated by the ROMantic asynchronous ROM generator
[10]. All other subunits of the PRDM are designed using the quasi-del ay-insensitive
asynchronous design style pioneered by the research group. The lowest-level logic units
are based on the pre-charge half-buffer cell, astandard cell template, which makes each
logic unit relatively straightforward to implement.

2. 8051 Overview

The 8051 microprocessor and its numerous derivatives form the world’s most
widely used microcontroller family. Every major semiconductor manufacturer has its
own versions of the 8051, with various additional peripherals, functions, and options
added to the baseline processor. Thereisavery large installed user base for this
microcontroller, and thus compatibility with the baseline specification is of great
importance.

The 8051 is an 8-bit microcontroller, with an instruction set optimized for 8-hit
control applications. The instructions are between 1 and 3 bytes long, depending on the
instruction and its addressing modes. The microcontroller is a Harvard architecture, with
separate data and instruction memories. Itsinterna data memory consists of 127 general
purpose registers, and of a varying number of special-function registers (SFRs). The

SFRs include the accumulator, the instruction pointer, the processor status word, as well
the registers used to access and configure interrupts, timers, and other peripherals.

The basic 8051 has four 8-bit 1/0 ports, PO through P3, with four corresponding
SFRs. The ports except for PO, are quasi-bidirectiona; to use a pin for input, a 1 must
be written to it. The processor uses weak pull- ups internally, so that an external source
can then pull apin low or high, making the pin function like an input. However, the
processor will source current through the pin when configured as an input. Port O is open
collector when used as an 1/O port, requiring external pull- ups if used as an output.
However, PO is truly bidirectional since it will float when used as an input. When used
for external memory access, PO uses strong internal pull-ups, and no external pull-ups are
required.

An external memory bus access can either use a 16-bit address read from the
microcontroller’s 16-bit data pointer register (DPTR, segmented into two 8-bit registers
DPH and DPL), or an 8-bit address read from the Lutonium register file.

When used for external memory bus access, Port O has the data byte and the least
significant byte of the address multiplexed onit. A dedicated Address Latch Enable
(ALE) pinisused to signal external circuitry to latch the address LSB before Port O
switches to either reading or writing the data byte. If a16-bit address is used, Port 2 is
used to output the high byte of the address. In this mode, Port 2 aso uses strong internal
pull- ups to output the address MSB. Finally, pins 6 and 7 of Port 3 are used to signa a
write or aread on the bus, respectively. In the basic 8051, Port 1 is unchanged during an
external memory bus access.

After an external memory bus access, the state of Port 2 and its SFR isrestored to
its pre-access state. Port 0, however, is overwritten with the value FF during the memory
access.

The 8051 also includes bit operations, which only affect single bitsin agiven
register. Only some of the registers of the 8051 are bit-accessible, including the port
SFRs. Internaly, the bit operations are performed by reading the whole byte from a
register, modifying the single bit as needed, and then writing the register’ s value back, all
in the same operation cycle.

Any ingtruction that is considered to be read- modify-write (this includes all bit
operations) that is modifying a port register reads the output latch of the port, instead of
the input latch. This means, for example, that if Port O is set to 80, where pin 7 is pulled
high to be used as an input, and that an external sourceisin fact writing O to pin 7, any
read-modify-write instruction will still read Port 0’'s value as 80, not as 00.

In the original 8051, the ports are also used to access external instruction memory.
However, for the Lutonium, all of the instruction memory is internal to the unit, and thus
external instruction memory access for the 8051 will not be discussed here.

For further details on the 8051 architecture, refer to Philips Semiconductor’s set
of user manuals for the 8051. [1][2][3]

3. Asynchronous Design Style Overview
Asynchronous circuitry, at the basic level, is digital circuitry that does not use a

global clock signal. Because this coordinating signal is absent, the circuitry itself must
self-synchronize its interna sequencing and processes. A key feature of this

synchronizationis the timing assumptions made by the designer of a digital circuit. The
timing assumption of a synchronous circuit is simple: The outputs of one stage of
computation must be valid at the input of the next stage when the clock cycle completes.
This means that during the clock cycle, the outputs of a stage can glitch (assume incorrect
values) as the stage’ sinputs transverse the circuit. Aslong as the computation is
completed before the end of the clock cycle, a synchronous circuit will work correctly.
For asynchronous designs, different timing assumptions must be made. While it may
seem elegant to strive to make no timing assumptions about the behavior of a circuit, and
use only so-called delay- insensitive circuits, it can be proved that one cannot construct
circuits of any complexity with such circuits [5].

The circuitry used by the Caltech Asynchronous Research Group is called quasi-
delay-insensitive (QDI), referring to the fact that only one minimal timing assumption is
made. The assumption is thet asignal on awire that forks to multiple paths reaches the
end of each fork at the same time on a transistor-switching timescale. That is, asignd
travelsdown to the end of all the forks of a wire faster than any of the logic gates
attached to these forks can respond to the changing signal. This assumption is referred to
astheisochronic fork assumption This single assumption allows arich set of circuitsto
be implemented, from which any logic circuit can be built. [8] Of course, this timing
assumption can be violated, if asignal wire branches and the two segments are of widely
varying lengths. However, since most wires are local to a process, it is easy to lay out
circuitry that doesnot violate this assumption. With minimal effort, long-distance wires
can also be arranged to preserve isochronity. Note that, in the synchronous world, this
same timing assumption is applied to the global clock signal; the condition where the
clock signal does not switch everywhere in the circuit at the same time is called clock
skew, and is amgjor problem facing chip designersin synchronous circuits.

To design a QDI logic block, one starts with a top-level description of the block
using a language called Communicating Hardware Processes (CHP). In this language,
each logic subunit is an individual process, which receives and transmits information
over channels. Each channel is a collection of wires, with the sender controlling al but
one of thewires. The last wire is an acknowledge wire, controlled by the receiver. All
channels are strictly one-way; there is no concept of atrue bidirectional busin CHP. [9]

A message is transmitted on a channel using a four-phase handshake and delay-
insensitive codes. A delay-insensitive code is away of encoding avaue on multiple
wires where the order of reception of the signals on the wire does not matter; common to
all of them is some way of signifying ‘no value' or neutrality on the channel. The main
delay-insensitive code used in the Lutonium is the one-of-N (1ofn) code. With this code,
N wires are required to represent N values A neutral 1ofn channel maintains all of its
outputs at logic low; this represents null or ‘no value'. When value N needsto be sent on
the channel, the Nth wire on the channel is pulled high; the other wires stay low. This
way, the channel does not pass through any intermediate states before stabilizing at its
correct output value. Similarly, the channel returns to neutrality simply by dropping that
single wire back low. However, the sender must have a way of knowing when the
receiver has processed the value sent to it, since the sender cannot assume anything about
the speed of propagation or processing of the receiver. For this purpose, the receiver has
an acknowledge wire. Upon receiving and processing the inputs, the receiver raises the
acknowledge wire high. This signifies to the sender that the data it sent has been

received, and the sender will then return the channel to neutral. The receiver, upon
seeing the channd return to neutral, will drop the acknowledge wire back low as soon as
it is ready to accept more inputs.

This four-phase handshake (sender valid, receiver acknowledge, sender neutral,
receiver neutral) combined with delay-insensitive codes allows two CHP processes to
transmit data between each other and synchronize their execution However, atop-leve
CHP description is usually too large to directly convert to a transistor network, and must
first be subdivided into manageable blocks. A CHP description of alogic block can be
formally decomposed into smaller blocks connected by channels. This decomposition is
continued until each sub-block is small enough to easily convert to a transistor network.

In the Lutonium design, these lowest-level blocks are implemented as pre-charge
half-buffers (PCHB). Since each CHP process receives and sends on various channels,
the process can be represented as a buffer whose output is some function of its inputs.
Therefore, the PCHB model can implement any CHP process, with QDI circuitry. Figure
1 shows the standard parts of a PCHB circuit, which contains several sections. First,
there are several completion trees, which determine the state of the inputs and outputs of
the circuit. The input validity tree determines if all the inputsto the circuit have become
valid, and the output validity tree determines if the outputs of the circuit have become
valid. The pre-charge pull-up network pulls the outputs to neutrality at the end of each
cycle. The actual computation of the output function is done in the fast pull-down logic,
gated by the acknowledge wires from the receivers of the output channels and the
acknowledge wires heading back to the senders of the input channels. The acknowledge
wire goes high when both the input and output validities are high, and drops back low
when both input and output validities return low. (Thislogic function is called the c-
element)

Anexample of a PCHB circuit isastraightforward 1-bit buffer, which simply
sends the value it receives on its input channel forward on its output channel. The input
channel, conventionally referred to as L (left) consists of 2 incoming wires forming a
1of2 channel, and an acknowledge wire from the buffer to the sender of the L channel.
The output channel R (right) isamirror image of the L channel, with two outgoing wires
forming a 1of2 channel, and an incoming acknowledge wire. The pull-down logic ssimply
implements the identity function an incoming ‘1" causes an outgoing ‘1'.

Input acknowledges

Tnput @ Output

Walidity Validity

Pre-charge

Input 4
el pullups I Cutput
el Channels
L T Cutput acknowledges

Thicue pull-down
logic function

Figure 1: PCHB Cell Block Diagram

The sequence of actions of the PCHB 1-hit buffer goes as follows: At the end of
the previous cycle of operations, the buffer’ s inputs and outputs are both neutral (both
wires of the 1of2 channel are low), and both acknowledge wires are low. The input and
output validities are both low, signifying the neutrality of the wires. Now, the sender on
the L channel sets wire 1 of the L channel high, signifying a‘1’ being sent down the
channel. Both the input vaidity tree and the pull-down logic receive this value.

In the pull-down network, the input activates transistors that pull the value of wire
1 on the output high. The output of the input validity tree changesto 1, signifying avalid
input value. As soon as the pull-down network completes its activity, the output validity
tree sees avalid output, and changes to output a 1 aswell. Because the buffer has no
further need for the input at this point, it can acknowledge the L channel. This happens
as the c-element controlling the input acknowledge switches, setting the input
acknowledge wire high. This cuts off the drive to the output wires, but a simple state-
holding circuit maintains the values on the output wires for now. At this point, the buffer
waits for both the L sender and the R recelver to react to its actions. At some point, the L
sender will return its output 10f2 channel to neutrality, which returns the input validity to
0. Also, the R receiver will raise its acknowledge wire, signaling its reception of the sent
values. This triggers the pre-charge pull-up circuitry, which returns the buffer’ s outputs
to neutrality. Thisin turn changes the output validity to 0. With both the input and
output validities low, the c-element switches to O, lowering the L channel acknowledge.
At some later point, the R receiver will lower its acknowledge wire, which allows the
buffer to output values on R again as soon asthey aresent on L.

PCHB circuits can easily be modified to contain conditional inputs and outputs
(channels that are sent and received on only at certain times, not every cycle), aswell as
state variables. With those basic templates, any logic circuit can be built from a
composition of sets of PCHB half-buffers, which are derived from the decomposition of
the CHP description of the circuit.

One of the mgjor advantages of this design style is that the outward functioning of
the formally decomposed set of sub-processes is identical to the functioning of the
original top-level process. This reduces the number of mistakes that can be made in the
design and implementation of the circuit, since each sub-process canbe converted to
PCHB circuits and tested individually, apart from the rest of the circuit.

Further, adjustments can be made to the circuit in order to improve its
performance characteristics. For the Lutonium processor, the goal is to optimize the
circuitry for Et?, where E is a measure of the energy expended by aprocessand t isa
measure of the time taken by the process to complete its calculation. To first order, the
Et? measure of a circuit is independent of the logic voltage level. In an asynchronous
circuit, the logic voltage can be varied a great deal without affecting the logical
correctness of the circuit’s functioning. However, alower voltage results in slower-
switching transistors, slowing down the processor. But a lower voltage also trandates to
less power consumption. By modifying the voltage of the circuit, a designer can trade off
speed and power requirements with each other; therefore, usng a metric such as power
consumption or speed when designing a circuit for power efficiency will not give optimal
results. Using the Et? metric, however, has been shown to be a good method of
optimization[7]. If two processors are running at the same rate, the one which is better

optimized for Et? will consume less power, and if two processors are burning the same
amount of power, the one optimized for Et? will be running faster.

To optimize aQDI circuit, one can utilize two techniques. The higher-level of
these is called dack matching. 1n short, buffers can often be added into the channels
between sub-processes that improve the cycle time of the entire process. Thistypically is
done by equalizing the amount of ‘slack’ in parallel chains of processesin acircuit.
Slack, roughly, is the number of data units that can fit into a process chain a onetime. A
single PCHB circuit has a dack of %%, two PCHB circuits form afull buffer, with the
capability of holding one piece of datainside the chain. To dack match a circuit, one
adds buffers to chains of processes until their slack is roughly equal to the slack of other
paralel chains of processes in the circuit.

4, Port Interface Requirements, Features, and Top-L evel Specification

The techniques described above form the foundation of designing an
asynchronous QDI circuit, of which the Lutonium is a complex example. Thedesign
style for the Lutonium is top-down; a high-level description is broken down into smaller
and smaller pieces, until each piece can be easily implemented as a PCHB circuit.
Therefore, atop-level description of the functionality and behavior of the Port
Register/Data Memory (PRDM) unit was required before its detailed design could begin.

In writing this description, two main requirements needed to be fulfilled. First,
the PRDM must support backward-compatible modes, so that old 8051 code can run on
the Lutonium with no or minimal modification. Second, the PRDM, as per Lutonium’s
design goals, should be low-power, high-efficiency, and clock-independent. It is clear
that these two goals are contradictory. The quasi-bidirectiona ports of the 8051 are
wasteful in power; the memory bus access sequence of the 8051 is keyed off a
synchronous external oscillator; the multiplexing of data and address on Port 0 adds to
the external circuitry required and thus to overall power consumption. To allow the
PRDM to support two conflicting basic goals, it was decided to add a great deal of
configurability to the PRDM. This significantly complicates the overall design of the
PRDM unit, but also greatly increases the unit’s functionality and usefulness.

4.1. PRDM Configuration and SFRs

To begin with, each I/O port was assigned 4 SFRs as opposed to the origina
single SFRs. These SFRs are labeled Pn or Pnc, Pnd, Pno, and Pni, where n is the port
number. The Pn (or Pnc) register is the compatibility register, with default functionality
identical to the 8051’ s single port SFR. It is also the only bit-accessible register for each
port. The Pnd register contains the output data byte for the port, while the Pno register
contains the output latch enables for each port, with O being enabled. For example, if the
POd SFR contains 3A, and POo contains FO, then pins 4, 5, 6, and 7 of Port O are
configured as inputs, and pins 0,1,2,3 are outputs, with value A output on them. Finally,
the Pni register contains the input latch data byte. Having al four registers for each port
isrequired in order to support both fully bidirectional ports as well as the backward-
compatible quas-bidirectiona ports.

In quasi-bidirectioral mode (or compatibility mode) which isthe default mode,
writes to the compatibility register are redirected to the output enable register, and the
data registers hold their default value of 00. External resistors are required in this mode
to act as weak pull- ups for the port pins. For example, in compatibility mode, writing 3F
to POc results in 3F being written to POo. The bits written with a‘0’ become outputs,
outputting the value in the POd register for that bit. In this case, the value output will
awaysbe ‘0. For the bitsin the POo register that are written with ‘1’, the matching pins
become floating inputs, and the external pull- ups pull the pins high. Therefore, the vaue
3F is correctly written to the port, duplicating the behavior of the original 8051, including
the current sourcing of inputs.

In fully bidirectional mode, writing Pnc results in awrite to Pnd. In this mode,
the programmer must access the Pno register directly to specify the input/output status of
each port pin. In both modes, reading Pnc reads the Pni register, except in the case of the
read-modify-write instruction, in which case the register that will be written isread. So,
for example, in fully bidirectional mode, a read-modify-write instruction on POc reads the
POd register, and then rewrites the value of POd, while a regular instruction reading the
POc register will redirect the read to the POi register.

The Pnc registers are also the only bit-addressable ones, due to the structure of the
8051 hit-addressable memory space. However, the redirection described above allows bit
operations to be done either on the output data or the output enable byte.

The PRDM also supports demultiplexing the data and address bytes sent on PO
during an external memory bus access. When demultiplexed, the address byte is written
out on P1 instead, the data is still written to PO, and the ALE pin becomes unnecessary.
This alows both for faster memory accesses, as well as reduced external hardware, since
no external latch is needed to hold the address byte after PO switches to reading/writing
the data byte.

Also added to the PRDM is afast read mode, where the read cycle is compressed
significantly, allowing faster sequential reads off the memory bus, assuming external
hardware can keep up with the faster access cycle.

The programmer can also select whether the values of P1 and P2 are restored to
their pre- memory bus access state after the read or write concludes. The default state
corresponds to the 8051: P1 and P2 are restored after the memory bus access completes.
Choosing sustain mode, where P1 and P2 are permanently overwritten, reduces the
number of times the port pins change during a memory bus access, saving power, and
shortens the access cycle somewhat.

Finally, the PRDM can base its sequencing on two different timing sources. An
oscillator signal, or an internal delay line. The oscillator signal can come either from an
internal or an external oscillator; the external oscillator is atypical quartz crystal chip
used to drive standard synchronous designs, and allows the most backwards compatibility
with existing 8051 systems. When using the internal delay line, the programmer can
further specify the period of the delay line.

All of the above is controlled through a dedicated SFR, the DMC (Data Memory
Control) register; its fields are shown in Figure 2 below.

Pins 0 through 2 (delay period) control the number of oscillator ticks or delay line
cycles that the PRDM waits for during a standard delay in its sequencing.

10

Pin 3 (Delay control) controls whether the PRDM uses the interna delay line
(DL=1) or an oscillator (DL=0)
Pin 4 (SUstain) controls whether the values of P1 and P2 are restored (SU=0) after a
memory bus accesses, or whether they are |eft as they are at the end of the access
(SU=1)
Pin 5 (Fast Read) controls whether the fast read mode is enabled. In fast read mode
(FR=1), some delays are eliminated in the external memory access sequence.
Pin 6 (DemultipleX) controls whether the data and address are multiplexed on Port O
(DX=0) during an external memory access, or whether the address is output on Port 1
(DX=1) and the ALE signa is unused.
Pin 7 (High Enable) controls whether the PRDM operates in quasi-bidirectional
backwards compatibility mode (HE=0), or in fully bidirectional high efficiency mode
(HE=1)

7 & 5 4 3 2.0

DMC(FEH) | HE | DX [FR | 510 | DL | delay

reset value 0 0 o & 0 Qoo
Figure2: DMC register fields

The PRDM also supports a fifth port, P4, which is mostly an internal port. Itis
used to control some of the internal peripherals of the Lutonium, such as the selection of
internal or external oscillator to drive both the PRDM’ s sequencing and the timer
peripherals. However, this port aso contains the ALE pin, the sole externa port of P4 in
the default Lutonium package.

- Pins 0 through 4 (OSD3...0) on Port 4 control the internal oscillator period.
Pin 4 (OSE) switches between the external and internal oscillators
Pin 5 (X2D) enables or disables the inverter driving the XTAL2 pin of the processor.
Pin 6 (GP) is a general-purpose pin that could be made available asan 10 pinon a
larger chip package.
Pin 7 (ALE) isthe pin used to signal external latching circuitry to latch the address
off the multiplexed Port O during an externa memory bus access cycle.

See figure 3 for the fields of Port 4, and figure 4 for the entire SFR memory map
of the Lutonium.

P47 P46 P45 P44 P43 P42 T41 T40
| ALE | G [X2D | OSE | 0SD3..0 |

Figure 3: Port 4 fields

4.2. PRDM External Interface

The external memory access sequence for the Lutonium is atypical sequence,
possibly modified by the FR and DX flags, both of which speed up the overall access
sequence. Turning on demultiplexing removes the entire ALE sequence, and turning on
fast read removes afew stages of delay from the sequence. Figure 5 shows the various
patterns of the Lutonium’s external memory access cycle.

11

hl addrassalla

Fg | DMC FI
F0 B F7
E8 EF
Eg | ACC E7
Dg DF
DJ | PSW D7
C8 5 SLr | CF
Co g 14i o I4d cT7
B8 IP BF
Bi) P3 I"3i 3o I"3id B7
AR IE AT
AQ P2 12 "2 2 AT
98 | FOON | SBEUF | RL) HL1 HH}) | RH1 ar
o) Pl I o I"d 97
& TCONTMOD| TI4H | TL1 | THO | TH1 8
&) PO 5P | DPL | DPH | ') I'o I'id | PCON| &7

legend: TCON 80051 regisier implemented in Tntoninm
JEON BOCS1 regisier not implemented in Lnkoninm

SLr Lutoninm-specific register
Figure4: Lutonium special function register memory map
Sd-1
2d 3 4

5

|
(4]
R o

ALE _/—\

)
|
i
i
i

D7.0/AD?.0 (F9)

i
™~

Sai s

e

D?..é

{if DX=1) A7.0 (Fl)

N
-

"
restore original values
{only if 8U=0)

AlS.8 (F2) ~§—<AE5..8

@
i
|
:
:

e S e .

WE/ BE (F3)
phase: gme L0 L1 MO M1 M2 1 RO
Qmit syne Omit L0 and L1 Omit MO and M2 Access ends here
when DL=1. when D¥=1. for Fast Read. when 8U and DL=0.

Figure5: External memory bus access sequence

The Lutonium is being built for a 40-pin package, with the pin out and
functionality matching the standard 8051 pin out as much as possible. Figure 6 shows
both the Lutonium pin out, and atypical 8051 pin out. The main differences are the
replacement of the serial input/output on P3.1 and P3.2 with two programming pins,
which can be used to program the Lutonium’s internal instruction memory on boot. Also,
the PSEN and EA pins, both used to access external instruction memory, are replaced
with pins that can be used to finely control the logic supply and well voltages allowing
for power versus speed optimization.

12

the PRDM into pin voltages. Figure 7 shows the peripheral interface asit relates to the

A0/ PLO
Al/PL1
A2/PL2
A3/ PL3
A4/PLA
A5/PLS
A6/ PLE
AT/ PLT

RESET
PROGO/ P3.0
PROGI1/ P3.1

INTO / P3.2
INTL f P3.3
TO / P3.4
T1 / P3.5
WR f P3.6
RD/ P3.7
XTAL2
XTALL
GND

L1 401
L]z 39[]
Cla ss[]
Cla 37
Lls 36[1
L6 35[|
L7 341
Cls 331
[]e E‘ 32[]
1o § 31[]
Ou & a0
(12 = 29[]
|3 []
LY 27[]
Cas 261
[T 251
a7 24| 1
Cs [
s n[]
[120 21

o
[x)
<]

P0.0 7/ ADO

o)
=
-

/AD1
P0.2 /AD2
P03 /AD3
P04 fAD4
P0.5 /ADS
P0.6 /AD6
P0.7 /AD7
Vwell
ALE/ P4.7
Vlogic
P27 7 AlS
P2.6 7 Al4
P2.5 1 Al3
P24/ Al2
P23/ All
P22/ Al0
P21/ A9

P2.0/ A8

szm.oE
T2EX/P1.1 E
p12[3]
P13[4]
P14[5]
P15[8]
P16[7]
P1.7[3]
RsT[2]
RxDIP3.0[1]
Tx0/P3.1 1]
WTOP3.2[12)
NTTP3.3[13
ToiP3.4[14
T1/P3.5[1
WRIP3.6[1g)
ROIP3.7[17]
xTAL2 18}

XTAL1 [}
Vss @

DUAL
IN-LINE
PACKAGE

E Vee

39] Po.0/ADO
38] Po.1/4D1
7] Po.2/4D2
36 Po.2/4D3
35 Po.4/aDa
34 Po.siADS
23] Po.6iaDs
[32] Po.7iAD7
EI ERNee
[3q] ALE

29 PSER
28] P2.7:015
27] P2.6ia14
|26] P2.51013
28] P2.4im12
2] P2.3a11
23] P2.21a10
22 P2.1m0

27] P2.0me

Figure 6: Lutonium and standard 8051 pin outs

The PRDM is not the last stage between the port pins and the core of the
Lutonium; each port has its own simple port driver unit that converts the data sent to it by

PRDM:

O AE.0 5D

Detap.C

|t
b=

Delap D

Dalay Dowe

ALE FdT

TALC

)

TALW

FortRegs. 87

FLi.0

P

et
(=t

FALW

FortEegs RO

AL

AL

DAL

Fort Rags RRT

FRLC

|t
et

LR

Fort Reg= RR27

anaoaonaonnANnOANOANOAONAAnOnNnnaAnNnnn o

F3

FRLC

=
=

FRILW

Fort Regs RE7

FRLCM

Figure 7: PRDM peripheral interface

13

Each port driver unit contains alatch storing the output data, the output enable
mask, and the synchronization circuitry to sample the state of the pins when needed. The
Delay unit is responsible for handling the delays required in the external memory access
sequence. It is controlled by PRDM, and can run off either an internal delay line, or an
oscillator signal. Using the internal delay line removes any need for an externa oscillator
chip, especialy if the Lutonium timer peripherals aren’t in use.

4.3. PRDM Internal Interface

Below in Figure 8 isthe internal block diagram of the Lutonium, with parts
relevant to the PRDM highlighted. In this diagram, the PRDM is split into its two logical
components: the DMem unit, which handles externa memory bus accesses, and the
PortRegs unit, which handles direct port accesses.

The PRDM receives its control from the decode unit, which is responsible for
converting the instruction opcodes to internal control signals. There are atotal of 40
unique control signal combinations that the decode unit could send to the PRDM, and the
PRDM'’ s internal configuration determines the response of the unit to the decoded
instruction.

‘ Decode ‘
Y.DRB
i T PirUnit. YL, PrUnit YH ||l
ecode. IG, ecode.
011,12 JJ] ZPCL, ZPCH |||l
ccode. L [PirUnit.BUBIt Y.DRB
PirUnitI(2) PirUnit. FBBit]
IMem.Addr Uni y.i
IMem | Dem-Addy PtrUnit i DMem.DPtr DM. L YT,
. . : DMem A em
AIMem PirUnitA AWD DMem.Y
A IMern A \ A AIMem
IMem. JG | i Mem.A
IRUPT PirUnit.DPtr Exchange.l
© | DPirl@) DMerm.DPtr R
Rl]ptAl‘b DRB.DPL.DPH = Exch Exchange.Y
- DPtr Exchange A Xxchange=—p & e
DPtr DWLDWH | A.Exchange
DRB.A
Y.DRB A
||| || RuptReg.I BitUnit.I Y
[PirUnit. BUBE| . . i i
DRB.I Ll |[|RuptArb.Sleep BitUnit.C BitUnit glgigiz
.. e ..
— DRB Decode.JOK PSW.BUC
|_||IMem.JOK RuptReg
DRB.RuptReg
ADWB FBlock |_.| FBlock.Y
Z.FBlock (R
| DRB.B
PSW. Parit
Sp yl o
IVl ARotate
DWEL L] L PSWI T PSW.RotC Rotate
L DWB.1, L] RegFile.SP DRB.PSW E1T 11 Rotate.C
RegFile ALUI(1)
\\ DRB.Regile |) RegFile.RiSel \QLLUA ALUY
RegFile. DWB cghile AALU
DWB \ ALU.CAC ALU
PSW.DWB pSW [PSW.ALUO,
ALUCALUAC z
PortRegs.I YRTIEA
DRB.PortRegs ChA0E
PortRegs.DWB IPortRegy ovternal ports]‘Al']l\}ill)tl;t[z;;
PSW.MDOv .
MultDiv
MuliDiv. DWB MuitDiv. DWB
DRB.B
DWB.Z DWB.Z

Figure 8: Lutonium block diagram

14

There are seveninstruction channels (abstracted as PortRegs.| and DMem.l in
Figure 8) that the decode uses to send the PRDM a command. The primary instruction
channel contains the type of command the PRDM needs to execute, such as a port read,
port read- modify-write, or a data memory access. The six other channels are conditional;
two carry information about the source of a port register read (port number and register,
such as P0o), two carry information about the destination of a port register write, and the
last two inform the PRDM whether a bus access is aread or awrite, and whether to use a
16-hit or an 8-bit address.

For a port register read or write, the PRDM receives and sends its data through the
direct read bus (DRB) and the direct write bus (DWB) which route the data to and from
other execution units and the Lutonium data registers. For a data memory access, the
PRDM has dedicated channels connecting it to the accumulator (A) register, aswell as
the DPtr register, which is used as the source of a 16-bit address. The PRDM also
connects to the Y bus, which is used as the indirect source of an 8-bit address coming
from the register file. For more details on the overall Lutonium decomposition see [1]
and [11].

5. Design Tradeoffsand Decisions

The PRDM unit's complexity approaches that of a small microprocessor. It has
two main tasks: First, mediate access to five I/O ports through 20 SFRs, four per port.
Second, perform external memory bus reads and writes through the five I/O ports. The
configurability exposed through the DMC register requires the PRDM to have a great
deal of control logic implementing the various configuration options.

In starting the design of the PRDM, two main paths of approach presented
themselves. First, each subunit of the PRDM could have a great deal of controlling logic
built into itself, with only a small combined control unit to sequence the actions. This
would result in afaster design, and perhaps a smaller one as well.

Second, all control and decision making could be placed into one central state
machine, making all the other subunits significantly simpler to implement. With this
approach, much less complex sequencing circuitry needs to be designed and tested, so the
overall design timeisless. However, this approach is likely less efficient than the first
method, and slower, since all sequencing activity is controlled by a large state machine,
with alarge cycle time.

In the end, the second approach was chosen as the design approach, for several
reasons. First, while the first approach would likely be faster, the speed of the PRDM is
not very critical, especialy during an external memory bus access, where the access
sequence aready contains large delays. Most types of accesses to the port registers can
be done in one state machine cycle, so the cycle time of the state machine doesn’'t slow
the port register access down. Second, new tools available to the research group made
the implementation of a large state machine easy, allowing all the complex decision
making involved in the PRDM to be placed in the state machine. This greatly simplifies
the design task for the rest of the circuitry, making it far easier to design and debug. It
also speeds up the layout, since more of the decision- making circuitry is placed in the
state machine ROM, which can be automatically generated.

15

6. Final Design

The PRDM went through two design iterations before the final design was
completed. The final design has significant improvements over the original, especialy in
the main state machine.

As shown by the Lutonium block diagram in Figure 8, the PRDM was originally
designed as two logically separate units, the Port Register unit representing the port SFRs
and the Data Memory unit representing the external memory space. As a consequence,
the first PRDM design contained two state machines. One for controlling port register
accesses, and one for controlling external memory bus accesses. However, while this
split ssimplified the individual state machine, this design resulted in the duplication of
numerous channels, and the design of alarge switchbox that routed control between the
two state machines. In this design, it took several state machine cyclesto read or write a
port register, which is expected to be the most common use of the PRDM. The state
machines were designed as Moore state machines, with the outputs being associated with
the state.

The final design merges these two state machines together, and optimizesthe
instruction channels between the PRDM and the decode unit. These two optimizations
allow the removal of alarge, complex switchbox process, and allow most port register
accesses to be done in two or less state machine cycles. Figure 9 shows the PRDM state
machine diagram. The state machine is a Mealy machine; the outputs of the state
machine are associated with the transitions between states, not the states themselves.
This approach is more flexible and better matches the message-passing abstraction of the
QDI design style.

The PRDM contains 5 unique sub-processes, the block diagram can be seenin
Figure 10. The Decode unit seen in the diagram is not actualy present in the PRDM; it is
arepresentation of the part of the Lutonium Decode unit which sends out control signals
on seven different channelsto the PRDM. The Kind channel is the primary control
channel, while the other 6 channels are conditional depending on the type of instruction.
See Table 1 for the meanings of al the instruction channels.

Most of the control signals are received by the PortControl, the controlling state
machine. It sends out commands to the rest of the subunits, and sequences nearly all the
PRDM activity. The PortControl also receives the delay done message from the
periphera interface delay unit, allowing it to wait for long periods of time between state
machine cycles.

The DataMux unit is the PRDM’ s connection to the processor’s data paths. It
receives and properly routes data to be written to registers, and the addresses and data to
be used for external memory accesses. It sends out values read from registers or from an
external memory access.

The DMCRegs unit contains the DMC SFR byte. It has several dedicated
channels to the PortControl unit, to which it sends configuration information as needed.
The DM CRegs a so sends commands to the Delay peripheral unit, setting the delay type
and length.

16

Y

Kind="DMC/None"=>"Kind","teadDMC","teadDMC”

Kind="None/DMC"—>"Kind","witeDMC","wiite DMC

Kind="DMC/DMC">"ReadDMC, Read DM

Kind="None/Bort ™" MZ,HE, ReadtE:

ot
|

M= HESD IMZ="d' =

T
M HES Mz

indWiitePot [WiidMask] 12

ind WiitePort”, WiitgData'], 12

b= Kind Discard’

ResdDMC,HE", ReadDMC

Kind="DMC/Pott’ " MZHE
Kind="PottNone"—>"MY"
Kind="Por/DMC"—>"MY"

Dir_Read_PReg

‘Write_ DMC

MY MY=" s Kind

cadPort’,"ReadData’ Y

T
Y=o —>"Kind", ReadPorf,"ReadOut’, 1Y

bi¥=ar > Kind","ReadPolf" "Readbask”, Ty

MY="CT MY=" = "ReadPott'

cadbate’ 1y

Y=o ReadPout’ ReadOut'|

MY='d o> ReadPout’ ReadMask|

oy

MY M-

Di_Read_PReg_

—>MZHE" ReadHE” "ReadPoit’,ReadData”, I

Kind="Por/Port’ MY’

Y=o M HE", ReadHE", ReadPort” "ReadOut” Y

Y45 M HE", ReadHE", ReadPort” "ReadMask” Y

Dir_Read_PReg_
Wiite_PReg

Y= MZHE", ReadHE", ReadPot”,"ReadData’ Y

Kind="DMers">" DL AddC","ReadDL

Kind="PorRMW' MY HE

Dir_PRegRMW

Y=, HE=1 I MY="0"—>" MEHE' ReadHE", ReadPout’, Read Ot I

£, ResdHE", ReadPolt

ReadMask”, IY'

C="RA"—>"BR HE","ReadER ReadHE" WiiteEE™ 0, WiiteMask

C=We'>"HE DX, ReadHE Read DX Wiited

ER=0-5"Delay HE", ReadHE,Delsy”

RdFastDelay

RdDropRead

HE-5 Doty Doy 3 Duphabik i

HE=1->"Delay","Delay"3, DiopRdData’

CheckRW il

'
'
'
!
il
'
'
'
'
'
'
'
'
'
'
'
'
: RdReadln
'
'
|

T=5BR SU,DL", ReadFR ReadSU ReadDL", Readd”), RdData

Read Sequence

FR=0,SU=1,0L=0->"Delay", DelayFast” 3, Restore’

FR=

PortRestorel

Restore’

PortRestore2

TKind'

HE=1,DX=150, WriteData’

WrWriteOut

“WrEnPortOData

Delay”"Wiitel" 0, Witebask’

T->"Delay

To>"Delay SU

T->"Delay,SU,OL", Delay Re

WiDropWiteData

biSUReadDL

HE=1,D%=0->"Delay”,"Delay” 0, WiiteData’

L Delay ReadSU,ReadDL",3, DiopWiblask

DiopWiDat

SUS0Y (SUSLDL=1)->Delay” Delay” 3, Restore

HE=0—>"Delay", Delay” 0, Wiitebas

SUS1,DL=0->"Delay”, Delayt

Fust" 3, Restoe

| WiRaiscFlags

Write Sequence

AddrReadDPTR H) AddrReadY
§_|>- 1
770 !
a 3 1
[T = 1 1
y]
iz a !
AL ,
LR ERE !
ERERERE 1
i |el el |of I
£ | | |& 1
HEEE
HHE !
LR |
ER NS 1
HEHHH !
e I
ERERERER G W |
80303 s 8]0
S84 [E AHEE
EAERERE Sl [&]g 1
R AR
£ E (£ TlE|E]E 0
EREREREL £ | [[& 1
A EAE
LAEAEAEd vluls e
A PR
10313 glala]3
2 (2 (2 [7 ﬁﬁz‘z&'
1 o
LA A EA N
slEfE|E !
R =0, HE=0->0, Wibask’ !
T
AddReadDPTRY imosestoo;vioas 1
1
1
1
Address Write Sequence :

1 HE=0,SU=0—>"C", LW TerpMask

=

| HE=0,SU=1—>"C", LW bk

=

CondDelay

DB HE SU", ReadHE ReadSU

'DBA" > Delay HE,SU', Delay] ReadHE ReadSU

(C—"Y "> HE,SUDX', ReadHE ReadSU,ReadDX

DL=0,AddC

ey HESUDX", Delay] ReadHE ReadSU ReadDX

y
4

i3
[
oo
L
1)1
a2
(e
T |z
ol Ik
ilE
HE

EnPortODataOut.

RaiseALEData

DXo0,HE=1—>"Read¥ " 0, WiDat

ALEDelay2

~_

17

RaiseALEMask

DX=0,HE> Read Y0, Wiblask”

T SetALEMask”

T->"Delay”, Delay’

The PortUnitBus routes commands and data to and from the five individual
PortUnits. When the PRDM is used for accessing the port SFRs as registers, the
PortUnitBus receives the source and destination port numbers directly from the decode
unit. During an externa memory bus access, the PortControl tells the PortUnitBus which
port to route commands and data to.

The five PortUnit processes are al identical. Each interfaces with the matching
semi-QDI PortModule process in the peripheral interface. A PortUnit contains two 8-bit
registers for storing the output data byte and the ouput enable byte. The PortUnit isthe
most complex of the data path subunits, because of the variety of commands it must

process.
PROMI
= PortRegs, DWE
LormtBegs DRE -
D Meza, D P>
L DMl ot Datablux Tler ¥
PRDMIEind — DMem. b
v A DMem
=
PROMILC]
PRDMLAddAC PortUnitBus,0 ut [—cra it 1C LAl
= PortControl PortlnitBus.ln (\PortUnitf0 W) popt{Init]0] |—ZEAW
PROMILMY Loptl ndtf0 } R FPROMERN]
PROMIIE Loptl natfl) EBRLC
} Portl ndtf1]V s ELW
Decode Por?UmltBRs.C = mﬂ‘ PortUnit[1] PROMEN]
FortinitBusll | 3 [PortlUmitiiic PIIC
£ T oy [BT
i .
PROMLIY EEEEX! | B [Port¥mtizic PI3LC
PROMIJE o & WPMUMB] PIIW
w U ndt[3IR]PRDM.R!H
Portl ndt 4]0 PHILC
Portl matJ4 1 W PortUnit[4] FiiLW
PgﬂU ntldlR FPROMREHA]
DMCRezsl
DA Regs Qut
DM Regs In Dday.C -
EortContrel HE Deay. D .
FortContrel 0L DMCRE,gS
FortContrel DX
FortContrel FR
FortC ontrel ST
Dalay. Dome
Figure 10: PRDM block diagram
Channel | Contents When sent Values
Kind Primary instruction channel Always 10 different commands
C Direction of external memory For externa memory ‘Read’ or ‘Write'
bus access accesses
AddrC Source of external memory bus | For external memory ‘DPtr’ (for 16-bit addresses)
access address accesses ‘Y’ (for 8-bit addresses)
MY Source register for aport register | For port register reads. | ‘c’,'d,’o’,’i’
read
Mz Destination register for a port For port register writes. | ‘c’,'d’,’'0’, i’
register write
JY Source port for a port register For port registerreads. | 0, 1,2, 3,4
read.
JZ Destination port for a port For port register writes. | 0, 1, 2, 3, 4
register write

Table 1: PRDM instruction subchannels

18

As an example, consider a basic write to Port 0's output data register. First,
PortControl receives the command to write a port through the Kind channel. The
PortControl needs to then determine which port, and which register of that port, isto be
accessed. To determine the register, PortControl requests the value of the HE flag from
the DMCRegs unit, and reads in the value of the MZ instruction channel. The HE flag is
needed in case the value is‘c’, since that port redirectsto either ‘o’ or ‘d’ depending on
the state of the HE flag as described in section 4.1. In this case, the value of the MZ
channd is‘d’, so the HE flag is not needed. However, only reading HE when MZ is‘cC’
would require an extra state, and the energy consumption of the additional state machine
cycle far outstripsthe savings obtained by sending HE only when needed.

PortControl then sends the appropriate commands to the DataMux and
PortUnitBus. In this case, DataMux receives a command to read a data byte from the
Lutonium Direct Write Bus (DWB) and to forward it to the PortUnitBus. The
PortUnitBus receives the ‘ write data register’ command on its control channel. It also
receives a command to read the destination port number from the JZ instruction channel.
The PortUnitBus reads the JZ channel, and forwards the command to the appropriate port
register unit. It then waits for the data byte from the DataMux process and forwards it to
the PortUnit as well.

The PortUnit receives the instruction and the data byte. It storesthe data bytein a
local register (where it will be read from in case of a port O data register read later), and
then sends the data byte along with a ‘ data write’ instruction to the Port O’ s driver
module, which concludes PRDM'’ s handling of the instruction. PortControl, meanwhile,
has reset to itsinitial state, and is ready to receive a new instruction. Note that due to the
pipelining inherent in the design, PortControl can already start processing the next
instruction while DataMux, PortUnitBus, and PortUnitO are finishing the previous
instruction.

6.1. PortControl unit

Figure 11 shows the block diagram of the PortControl, the main PRDM state
machine. The inputs to the PortControl are all conditional, and most are not used on any
given transition of the state machine. The inputs are the various command channels
coming from the Lutonium decode process, as well as several of the bits of the DMC
register. The outputs of the PortControl are the commands to the other PRDM subunits
which compose the PRDM data path The outputs are conditional aswell, since often
severa subunits are not required to do anything on a given cycle.

The state machine is constructed around a large ROM, which is built using the
ROMantic asynchronous ROM generator [10] which can generate transistor networks and
layout from a ROM table, and the Rubeg state machine generator, which converts a high-
level description of a state machine to a ROM table understandable by Romantic. Both
of these tools were developed for the Lutonium by the research group. Both the inputs
and outputs of the generated ROM are unconditional; that is, all the inputs and outputs
transmit data oneach cycle.

A full buffer, the StateBuffer, receives the new state from the ROM and sends it
in to the ROM as input on the next state machine cycle. The buffer can also block
sending the state until it receives a message from the peripheral Delay unit signifying the

19

completion of adelay period. Through this mechanism, the state machine halts as
required for the external memory bus accesses.

While all the ROM’s inputs are unconditional, PortControl’s inputs are
conditional. Therefore, each state machine input has afilter that forwards an actual input
for the state machine to the ROM when necessary, and at other times sends a fake value
to the ROM.

The input filters are controlled by InputCopy, a small ROM that trandates a single
command from the main ROM to individual ‘Read Input’ or ‘ Generate Fake Vaue
commands. An important constraint in the design of the main ROM s that it must tell
InputCopy which inputs will need to be received on a given state machine cycle during
the previous cycle. The ROM must also inform the StateBuffer of an incoming delay on
the cycle before aswell. This input prediction constraint is one reason why a Mealy state
machine is superior to a Moore in terms of the number of transitions required to complete
atask. InaMoore machine, all transitions out of a state correspond to the same set of
outputs, and therefore must all have the same set of inputs to be read next cycle. If
different destination states require different inputs, a Moore machine requires additional
states to be added simply for the purpose of preparing the input filters. InaMealy
machine, where each transition can have its own unique outputs, this problem is
eliminated. Inthe PRDM, switching to a Mealy machine structure reduced the final
number of state machine states from 63 to 29, and the section dealing specifically with
port register access (originaly its own state machine) reduced in size from 14 statesto 7
states, and the number of state machine cycles required to read or write a single register
went from 6 to 2 cycles. The number of cycles required to sequence the most-backward
compatible external memory bus read went from 23 cycles to 14 cycles, asignificant
improvement. See Table 2 for details on the cycle count of various PRDM operations.

The final subunits of the PortControl are the output filters. Since the ROM’s
outputs are unconditional, even command channels leading to PRDM units that do not
need to do anything on a given cycle are sent acommand. The output filters remove
these spurious commands, and only let the actual commands through to the PRDM data
path units.

FRDMINind — RO MMt DMEFRe S DM Fegst
Mmm:i'.i‘iﬁ' EindFiltey m},{};g ¢ DMCFiltex =
3 HEFilter =
FurtC et DL] FOMDL
[EMEE Dot | DA
TortC oot DX , = DLFlw: [mmx o] of DM ile: | =
Tt I | DAE et FRFile: FOMEE
FortContred [— - [Fomsy Fotfibre [T | FetlieiBue
= ——
FROMINT _ = [II7Eiler |y RO
FRMLE | O ME
Wb 1.IZ Filter — e =] Forth I ter © _ SimtlimdBaee W
_E X
EEDMIABIT Lo 4 GACF il t o ROMAET P
MMCumntﬁgg Stz e Bpifer. Hart

D T | State Buffr |-:|7

Kind Tt L

HEF e C

DLFWerC

DFFAtrC

FRIN b 2

R @

IR = R —

W E

e

SITCINbe ©

Dateydiiant

Figure 11: PortControl block diagr—am

20

PRDM Operation

State machine transitions

DMC read or write

DMC read-modify-write

Port register read or write

DMC read, port register write

Port register read, DMC write

WININ[IN |-

Port register read-modify-write

3

Default 16-bit external memory read

15 (subtract onefor 8-bit address)

Default 16-bit external memory write

14 (subtract onefor 8-bit address)

‘Best’ 16-bit read (HE, DX, SU, FR)

11 (subtract onefor 8-bit address)

‘Best’ 16-bit write (HE, DX, SU)

11 (subtract onefor 8-bit address)

Table 2: State machinetransistionsfor various PRDM oper ations
6.1. DataMux unit

The DataMux unit contains several split and merge processes that route 8-bit data
to and from the rest of the PRDM and the rest of the Lutonium.

The DWBSplit process receives bytes from the Lutonium’ s direct write bus, and
routes them to the DM CRegs or PortUnitBus subunits. The DRBMerge process,
analogously, receives bytes from the DM CRegs or the PortUnitBus and sends them to the
Lutonium’s direct read bus.

The PortUnitBusMerge process receives bytes from DWBSplit and Addr
processes in the DataMux, as well as directly from the Lutonium’s accumulator, and
routes them to the PortUnitBus subunit. In reverse, the PortUnitBusSplit process receives
bytes from the PortUnitBus, and sends them to the DRBMerge process, and the
accumulator execution unit.

The Addr unit receives addresses to be used for external memory bus accesses. It
can either receive a 16-bit address straight from the Lutonium’s Data Pointer (DPtr)
register, or it can receive an 8-bit address from the main register file indirectly through
the Lutonium’s Y operand bus. In the case of receiving a 16-bit address, the Addr unit
splitsit into two separate bytes that are sequentially sent to the PortUnitBusMerge, and
from there to the PortUnitBus.

DWE Spiit.C EL D vl
=
FortRegs.DWE DWESnlit == Fort¥ aitBas.in
ZortRege DWE . . S EL S
S Tt Bidlerge DWE - PortUniBudvlerge

| DR ENRrge FUE
gfort Reys DRE CEBMerge PomUatBusSplit St O

|, DREMergec PUE SEk(|

l=1

DG Regs G ut
D
DC Rags. 5
4. D hlem Rege In ==
=4
Dllze. DR FUr Edbergeddrd oy
(=
[Por Bdeferg e Il o
Do
Addr | addrc] e

DY ; &

Figure 12: DataMux block diagram

21

Each process receives its commands through the CmdCopy process, which sends
commands only to those subunits that require them, based on the command sent by the
PortControl state machine. Figure 12 contains the block diagram of the DataMux unit.

6.2. DMCRegs unit

The DM CRegs unit stores the 8-bit DMC SFR, which is used to configure the
PRDM. The PortControl unit accesses severa bits of the DMC through dedicated
channels, so it was decided to implement the DM CRegs unit as 5 one-bit registers and
one 3-bit register (for the delay period). The block diagram for DMCRegs can be seen in
Figure 13

The DMCSplit process takes in a byte sent from the DataMux and splitsit into 6
values that are sent to the six storage registers. Conversely, the DMCMerge process
receives the value of all six registers and composes them together into the complete 1-
byte DMC vaue which is then sent to the DataM ux.

HEReg, DXReg, FRReg, and SUReg are all 1-bit registers that can receive anew
value from the DM CSplit process, and can send their current value to the DMCMerge
process as well as directly to the PortControl state machine.

DL Reg, in addition to what the other registers can do, can also sends its value to
the periphera delay unit, to which the value of DLReg acts as a control selecting between
the internal delay line and an oscillator signal.

DelayReg contains the 3-bit value specifying the period (in either delay line
counts or oscillator ticks) of a standard external access delay. It also contains asmall
ROM used to decode the 3-bit value into a full byte delay count for both normal and fast
read modes. This delay count is then sent to the DelayMerge process.

The DelayMerge process sends adelay count to the peripheral Delay unit in
conjunction with the DLReg’'s control message. Depending on its control message, the
DelayMerge can either send the decoded delay count sent to it from the DelayReg, or it
can send a 1-tick delay generated by the Delay1Source process. Thisonetick delay is
used to synchronize the beginning of the memory access to coincide with the tick of an
oscillator signal.

The DMCCmdBus receives control messages from the PortControl state machine,
and forwards them to the appropriate units.

22

HEReg.C
g DXReg.C —EF:-’ HEReg PortControl H
=2 FRReg.C
DMCRegsC | | E SUReg.C
U
& DLReg.C
2 DetayRegC - PortControl.D)
A Deicylerge.C DXReg
DMCSpiit HE
< | D.DX
2 | D.FR =
Mﬂ} S D.su == FRReg PortControl F
= | D.OL
A ["D.Deay
g DC Mer e HE — PortCorirol, SU
o D..0x SUReg
2 DR
DMCRegs.Che | &
D..DL L
E ‘ﬂD.,,Dean ‘| = PotControl
DLReg
Delgy O
—
= — ™ DelayR
ﬂm DelayMerge | Dl Merge. D clay [eg
= —
Delay 1Source

Figure 13: DM CRegs block diagram
6.3. PortUnitBus unit

In the PRDM design, only one port register can be accessed per state machine
cycle. Whilethislimitation reduces the speed of the PRDM somewhat, it only affects
external memory accesses; for port register accesses, only one port can be read or written
at atimein any case. And external memory accesses already contain long wait periods,
so asmall amount of additional delay is likely not very significant. The primary reason
not to implement a full crossbar design, where each port could smultaneously receive
data, is the added complexity in the PRDM data paths, and the additional control required
to coordinate all the ports at once. See Figure 14 for the unit’s block diagram.

The PortUnitBus is the connection between the rest of the PRDM and the five
individual port units. It sends and receives byte data from the DataMux, routing it to the
proper port unit depending on control from either PortControl or the Lutonium decode
unit.

The SelectN process is a merge process which selects one of three inputs to
determine the port being accessed for the current cycle. For reads or writes to the port
registers, the machine code instruction contains the source or destination port, transmitted
from the Lutonium Decode unit to the PortUnitBus on channels JY and JZ, respectively.
For external memory bus accesses, the source or destination port is determined by the
PortControl state machine. The N channel from the PortControl unit either contains the
number of the port to access, or an instruction to read JY or JZ for the port number.

23

FPortlinitBus N A

PROMLIY SelectM CopyN.N Copy N CopyC

EROMIJTE
—_—

&
FortllndtBus, C
Fortll nit Bues, O ut

Read

Fortll mi{Buys. I Write

Confrol

fay.C

07
-y
PortUnt{4] C

by

PortUnitfi] R
PortUnitf1]R
PortUnit{Z]R
PortUnitf3]R
Porttnitf4] R
PortUnitfo] W
PortUnit{11.W
PortUnitfZ] W
PortUnitfa] W
PortUnitf&] W

PortUnafE].C

Portlinafl.C
FPoariln;

FPortlin;

VVVYY VYVYY
Figure 14: PortUnitBus Block Diagram

The CopyN process sends the number of the port being accessed to the Control process,
and possibly the Read or Write processes, depending on the direction of access being
performed. Some commands to the port units do not cause data transfer to or from the
port unit, in which case only the Control process receives the port number.

The CopyC process receives the instruction to be relayed to the port unit. It sends
the instruction to the Control process, and informs the CopyN process whether the
instruction is aread or awrite, or neither.

The Read process is a byte split process, taking a byte sent from the DataM ux and
relaying it to one of the five individual port units based on the port number selected by
SelectN. The Write process is the reverse, receiving a data byte from the selected port
and forwarding it to the DataMux unit.

The Control unit sends onwards the command the port unit needs to execute, as
determined by the PortControl state machine.

6.5. PortUnit

There are five individua port unitsin the PRDM, each attached through three
channels to the actual port drivers of the matching 10 port. The port units are identical,
except that the mask (output enable) register of Port 4 defaults to all output (00) and all
other ports default to al input (FF). Figure 15 has the block diagram of the PortUnit.

The WriteSplit register receives data from the PortUnitBus, and forwards it to the
port driver unit. It may also forward the data byte to either the DataReg or the MaskReg
unit for storage. When port registers are being accessed directly by the instructions,
DataReg and MaskReg are always updated, corresponding to the Pnd and Pno SFRs,

24

respectively. However, during an external memory bus access, several ports values are
temporarily modified (for example, to raise the read or write flag in Port 3), in which case
DataReg and MaskReg are |eft at their old values. When the value of the register needs
to be restored to the original value, DataReg and MaskReg can both feed the original data
back to the WriteSplit unit, which then forwards it to the port driver. The WriteSplit unit
also receives data bytes from the BitFlipper process, which it forwards to the port driver.

The ReadMerge process reads the value of the DataReg, MaskReg, or the value
on the port input pins (viathe port driver unit) and sends the data onward to the
PortUnitBus.

DataReg and MaskReg are both 8-bit registers that receive new values from
WriteSplit. Both have three outputs; either to WriteSplit in order to restore the port
values to their origina state at the end of an external memory access, to ReadMerge, or to
the BitFlipper unit.

The BitFlipper unit receives a data byte from either DataReg or MaskReg, and
modifies the data byte by raising or lowering asingle bit. The BitFlipper is used to
activate the read and write flags on P3 of the Lutonium, as well as to raise the ALE pin
on P4 of the Lutonium. It reads the MaskReg when the PRDM is running in quas-
bidirectional mode (as the output value is stored in MaskReg in that case), and it reads
the DataReg when the PRDM isin full bidirectional mode.

The CCopy unit receives commands from the PortControl via the PortUnitBus
unit, and distributes them to the rest of the PortUnit processes. It also generates the
proper commands to the port driver unit in the peripheral interface.

SplitSequencer and COutSequencer alow the PortControl to fully restore the
value of aport in asingle state machine cycle. Restoring a port to its origina value
requires the write of both the old mask and the old data bytes to the port driver, asimple
sequencing action handled by these two units.

FoptllTmitiniC
y
s =1
Clopy Blchpper_ﬂ_
T =2
*“ .
5
tg = DataReg IlaskReg
& b
t £ .) il
Partlinitin] W = Efn}W
T WriteSplit S
Powtbm't.:'n,ﬂﬁ
= ReadMlerge | Q|
=T
L EROMER]
L COurSequencer ey

25

Figure 15: PortUnit block diagram

SplitSequencer sends two commands to the WriteSplit process, one which reads
the DataReg and sends it to the port driver, and one which reads the MaskReg and sends
it to the port driver. COutSequencer smply sends the port driver a data read and a mask
read command in sequence. For all other commands, the two sequencer processes act as
simple buffers.

7. Testing

The main test system for the Lutonium is an extensive software simulation suite
developed for the project. The system allows sections of the Lutonium to be smulated at
various levels of abstraction, starting from top-level descriptions down to actual transistor
networks. The simulator runs machine code either compiled from C code or assembly;
al of the PRDM test code was written in assembly. Using basic test code and the
smulator system, the PRDM was first broken down into its smallest subunits, and then
each subunit was converted to a production rule set. This gradual conversion allowed
each unit to be tested against a known-working system, speeding up debugging
significantly. After the unit was fully converted to a transistor-level design, more
rigorous test code was written to fully exercise the design. Three main pieces of test code
were utilized in the testing. The first tested every transition in the PRDM state machine
diagram, verifying that the outputs of the PRDM were correct. The second tested all the
data paths inside the PRDM, writing every possible value through each channel. Finally,
the third piece of test code tested every applicable instruction available in the Lutonium
with the PRDM, to make sure the instruction decode functioned properly for PRDM
instructions. The PRDM design currently passes all the test programs.

Once layout has been completed, automated tools can be used to verify that the
circuit as laid out matches the circuit as designed. Therefore, as long as the origina
design isfully tested, the laid out circuit will be logically correct.

8. Perfor mance Char acteristics

While the layout of the PRDM is not yet complete, some estimates of its
performance can be extrapolated from the completed transistor net lists and the state
machine diagram for the PRDM.

The PortControl state machine contains 29 states. A read or awrite of the DMC
register takes exactly one state machine transition. A read or awrite of a port SFR takes
2 trangitions of the state machine. An instruction that both reads and writes an SFR in the
PRDM takes between 1 and 3 state transitions to process.

External memory bus accesses take between 9 and 16 transitions to compl ete,
depending on the configuration of the PRDM and the direction of the access. The mogst-
backward compatible read takes 15 transitions for a 16-bit address, and 14 state
trangitions for an 8-bit address. Correspondingly, the most-backward compatible write
takes 14 transitions for a 16-bit address, and 13 for an 8-bit address.

Turning on fully bidirectional ports, and demultiplexed address and data resultsin
smaller transition counts, trandating to a smaller energy expenditure. Both reads and

26

writes then take 11 state transitions for a 16-bit address, and 10 for an 8-bit address.
Most of the savings in transition counts comes from the removal of the ALE toggle
sequence when data and address are separated onto different ports.

Based on transistor-level smulations, a single state machine state transition cycle
takes 30 transistor firings (afiring is a transistor changing from on to off or vice versa).
While this is slower than the Lutonium core, which has been designed with a cycle time
of 22 trangitions, this is an acceptable speed, since the PRDM is expected to be a
infrequently used execution unit, and an 8051 external memory access isin any case a
slow process involving deliberate wait stages.

The entire PRDM contains roughly 40,000 transistors, not including transistors
required for stabilizing values on dynamic logic wires (staticizer units). See Table 3 for
sub- unit transistor counts.

Simulated energy consumption estimates show that the PRDM consumes roughly
160 pJ for a port register write, 140 pJ for a port register read, and 80 pJ for aDMC SFR
read or write.

Subunit NMOS| PMOS | Tota
PortControl 4769 2068 6837
DataM ux 1737 1392 3129
DMCRegs 2166 1618 3874
PortUnitBus 1342 1182 2524
PortUnit 2657 2101 4758
Overdl 23299 | 16765 | 40064
Table 3: PRDM transistor counts
Type of access Energy usage | Energy/state machine cycle
Port register write 160 pJ 80 pJ/ transition
Port register read 140 pJ 70 pJ/ transition
DMC register write 80 pJ 80 pJ/ transition
DMC register read 80 pJ 80 pJ/ transition
Port register read-modify-write (bit op) | 250 pJ 83 pJ/ transition
Port register read, then write 240 pJ 80 pJ/ transition
DMC register read, port register write 175 pJ 88 pJ/ transition
Port register read, DM C register write 220 pJ 73 pJ/ transition
DMC register read- modify-write 170 pJ 85 pJ/ transition
16-bit default memory bus write 1200 pJ 85 pJ/ transition
16-bit ‘best’ memory bus write 970 pJ 88 pJ/ transition
8-bit default memory bus write 1110 pJ 85 pJ/ transition
8-bit ‘best’” memory bus write 880 pJ 88 pJ/ transition
16-bit default memory bus read 1295 pJ 86 pJ/ transition
16-bit ‘best’” memory bus read 940 pJ 85 pJ/ transition
8-bit default memory bus read 1200 pJ 86 pJ/ transition
8-bit ‘best’ memory bus read 840 pJ 84 pj / transition

Table4: PRDM energy consumption

27

For external memory bus accesses, the default backward-compatible access cycle
takes 1200 pJ for a write to the external memory bus. The most energy-efficient mode
(8-bit memory, true bidirectional ports, demultiplexed address and data, fast read, sustain
on) results in awrite cycle consuming 880 pJ. Therefore, a 26% energy savings can be
obtained by switching the PRDM to energy-efficient mode, even ignoring the savings
from the reduction in external circuitry, lack of an external oscillator, and the removal of
the energy-hungry quasi-bidirectional ports. Energy consumption per state machine
cycle isroughly constant between all types of accesses, which suggests that the state
machine itsalf is consuming most of the power in the PRDM. See Table 4 for the
complete list of energy consumption numbers for the PRDM.

The above numbers do not include any other sections of the Lutonium besides the
PRDM (specifically, instruction decode and processor bus energy consumption is not
included). Also, the energy consumer by the actual port driversis also neglected,
because it depends on output loading conditions.

The Lutonium’s godl is for an average instruction to consume roughly 500 pJ of
energy. Clearly, external bus accesses consume significantly more than this, even when
the instruction decode and processor buses aren’t factored in. This was expected due to
the complexity of a memory access cycle and the configurability of the PRDM. The
relative infrequency of such memory accesses, however, should minimize the impact of
the high energy consumption.

9. Conclusion

The PRDM design is fully functional and tested extensively through software
simulators at various levels of abstraction The final transistor networks of the PRDM
are complete, and successfully pass all test programs. The speed and energy
consumption of the PRDM are within expected values, and are acceptable given the goals
of the Lutonium project. The unit is ready for layout along with the rest of the Lutonium
microcontroller, and by al indicatiors it will function correctly when fabricated.

28

10. References

[1] The Lutonium: A Sub-Nanojoule Asynchronous 8051 Microcontroller. Alain J.
Martin, Mika Nystrom, Karl Papadantonakis, Paul 1. Penzes, Piyush Prakash, Catherine
G. Wong, Jonathan Chang, Kevin S. Ko, Benjamin Lee, Elaine Ou, James Pugh, Eino-
Ville Talvala, James T. Tong, Ahmet Tura. 9th |EEE International Symposium on
Asynchronous Systems & Circuits 2003.

[2] 80C51 family programmer’s guide and instruction set. Philips Semiconductors,
September 1997.

[3] 80C51 family hardware description. Philips Semiconductors, December 1997.
[4] 80C51 family architecture. Philips Semiconductors, March 1995.

[5] The Limitationsto Delay-Insensitivity in Asynchronous Circuits. Alain J. Martin.
Sixth MIT Conference on Advanced Researchin VLS, ed. W.J. Dally, 263-278, MIT
Press, 1990.

[6] Pipelined Asynchronous Circuits. Andrew Matthew Lines, Master’ s Thesis,
California Institute of Technology, 1995

[7] ET2: A Metric For Time and Energy Efficiency of Computation. Alain J. Martin,
Mika Nystrém, and Paul Penzes. Power-Aware Computing, R.Melhem and R.Grayhill
ed., Kluwer Academic Publishers, 2001.

[8] Quasi-Delay I nsensitive Circuitsare Turing-Complete. Rgjit Manohar and Alain J.
Martin. Invited paper, Async96 Second International Symposium on Advanced Research
in Asynchronous Circuits and Systems, March 1996.

[9] Synthesis of Asynchronous VLS| Circuits. Alain J. Martin. Technical Reports,
Computer Science Department, California Institute of Technology, 1991.

[10] ROMantic: Generation and Optimization of Quasi Delay-I nsensitive Read-Only
Memories. Mika Nystrom, Elaine Ou, Alain J. Martin. Internal Documentation,
Asynchronous VLS Group, Department of Computer Science, California Institute of
Technology, November 2002

[11] 80C51 Decomposition. Karl Papadantonakis. Internal Documentation,

Asynchronous VLS Group, Department of Computer Science, California Institute of
Technology, April 2003

29

