
SPARK: MODULAR, COMPOSABLE SHADERS

FOR GRAPHICS HARDWARE

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Timothy John Foley

June 2012

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/wz483vv5440

© 2012 by Timothy John Foley. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/wz483vv5440

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Patrick Hanrahan, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Alex Aiken

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Kurt Akeley

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

Real-time computer graphics have become a ubiquitous part of modern life. Rich

user interfaces and interactive games appear on screens ranging from mobile phones

to stereo-3D TVs. Programmable graphics pipelines have been central to delivering

these compelling experiences. Shaders—programs that describe the shape, movement,

and appearance of rendered objects—run in the stages of these pipelines, and are

used to define the “look and feel” of a production. The demand for rich, immersive

experiences motivates the use of increasingly complex shaders.

In creating these complex real-time shaders, programmers should ideally be able to

decompose code into independent, localized modules of their choosing. Current real-

time shading languages, however, enforce a fixed decomposition into per-pipeline-

stage procedures. Program concerns at other scales—including those that cross-cut

multiple pipeline stages—cannot be expressed as reusable modules.

We present a shading language, Spark, that improves support for separation of con-

cerns into modules. A Spark shader class can encapsulate a program feature that

maps to more than one pipeline stage, and can be extended and composed using

object-oriented inheritance.

We first discuss the design of this language: its origins, goals, and key design choices.

We then describe our implementation of a compiler, standard library, and runtime

system for Spark, targeting current programmable graphics hardware. Finally, we

evaluate this implementation and demonstrate that it achieves our modularity goals

without compromising performance: in our tests, shaders written in Spark achieve

performance within 2% of Microsoft’s High Level Shading Language (HLSL).

iv

Acknowledgements

A great many people have provided opportunities and guided me to find this path;

I am indebted to them all.

The impact that Pat Hanrahan has had on my academic and professional development

cannot be overstated. He has changed the way I read, the way I write, and the way I

think irrevocably and for the better. His support and guidance over these many years

has gone beyond what I could have expected.

I also wish to thank Kurt Akeley, Alex Aiken, Vladlen Koltun and Juan Alonso for

serving on my orals committee. Kurt’s insightful questions and suggestions have

greatly influenced my understanding, and subsequently the presentation in this dis-

sertation. If I have achieved clarity, then he deserves much credit.

The Spark project would not have come to fruition without the input of many aca-

demic and professional colleagues. The genesis for the Spark system can be traced

back to unpublished work done with Paul Lalonde at Neoptica. Together with Pat

and Kurt, Bill Mark, Solomon Boulos and Henry Moreton were instrumental in the

multiple rounds of presentations it took before the ideas crystalized into something

explicable. Bill has contributed important ideas and understanding to the Spark sys-

tem design, and improved my understanding of the context of prior work. Matt Pharr

helped me to plan and effect large-scale organizational changes while this dissertation

was in its early stages. Rahul Sathe generously gave his time as a user of the Spark

system. Financial support for Spark was provided by Intel Corporation, the Stanford

Pervasive Parallelism Laboratory, and the Gigascale Systems Research Center, one

v

of six research centers funded under the Focus Center Research Program (FCRP), a

Semiconductor Research Corporation entity. It is thanks to the generous support of

Aaron Lefohn and Charles Lingle at Intel that I have been able return to Stanford

and finish this dissertation.

My early education benefitted greatly from the influence of Richard Klier and Janene

Scovel, who encouraged me to pursue my interests and learn in my own way (and

looked the other way on a lot of missed assignments). As an undergraduate I ap-

preciated the opportunity to work with and learn from Kent Wilson, Bill Griswold,

and Geoff Voelker. In my career as a graduate student, Ian Buck, Jeremy Sugerman,

Jonathan Ragan-Kelley, and Kayvon Fatahalian have become role models. The op-

portunities provided by Nick Triantos, Matt Pharr, and Craig Kolb have shaped the

course of my career.

Finally, my heartfelt thanks go to my family. My parents fostered my interest in

computers from the beginning: they provided me my first experience with Logo and

HyperCard; they got me Basic and C/C++ compilers as Christmas presents; my

mother introduced me to the Internet back when Gopher was still relevant. My wife,

Erin, has been supportive of me ever since we met as teenagers, and has shown great

patience over the years it has taken me to reach this point. Thank you.

vi

To my parents, for raising me.

To my wife, for supporting me.

To my children, for loving me.

vii

Contents

Abstract iv

Acknowledgements v

1 Introduction 2

1.1 Real-Time Rendering Architectures 3

1.2 Shaders . 4

1.3 The Challenge . 5

1.4 A Motivating Example . 10

1.5 Dissertation Road Map . 13

2 Background 16

2.1 Real-Time Shading Languages . 16

2.1.1 Declarative and Procedural Shaders 17

2.1.2 RenderMan Shading Language 18

2.1.3 Real-Time Shading Language 19

2.1.4 Cg, HLSL, GLSL . 20

2.1.5 Shader Metaprogramming . 21

2.2 Interfaces to Graphics Hardware . 22

2.2.1 The Direct3D 11 Rendering Pipeline 22

2.2.2 Compute Interfaces . 26

2.3 Programming Languages . 27

2.3.1 Mixin Inheritance . 28

viii

2.3.2 Virtual Classes . 29

2.3.3 Extensible Initialization . 34

2.3.4 Type Systems . 37

2.4 Software Engineering . 39

2.4.1 Modularity . 40

2.4.2 Composability . 40

2.4.3 Aspect-Oriented Programming 41

2.5 Summary . 42

3 The Spark Language 43

3.1 Design Goals . 43

3.1.1 Differences from Cg/HLSL/GLSL 43

3.1.2 Differences from RTSL . 45

3.2 Shader Programming Abstraction . 47

3.2.1 Shader Graphs . 47

3.2.2 Pipeline Model . 49

3.2.3 Rates and Record Types . 51

3.2.4 Plumbing Operators . 52

3.3 Key Design Decisions . 53

3.3.1 A Language with Declarative and Procedural Layers 53

3.3.2 Shaders Are Classes . 55

3.3.3 Model Rates of Computation in Libraries, Not the Compiler . 57

3.3.4 Expose Rate Conversion as Plumbing Operators 58

3.3.5 Implement Record Types as Virtual Classes 60

3.3.6 Define Plumbing Operators Using Projection 61

3.3.7 Drive Rate Conversion by Outputs, Not Inputs 64

3.3.8 Move Computations When Pipeline Stages Are Disabled . . . 66

3.3.9 A Language for Configuring the Entire Pipeline 67

3.4 Example Spark Shaders . 69

3.4.1 A Minimal Complete Shader 69

3.4.2 C++ Interface . 71

ix

3.4.3 Tessellation . 73

3.4.4 Geometry Shader . 76

4 The Spark System 78

4.1 Implementation . 78

4.1.1 Architecture . 80

4.1.2 Optimization . 80

4.1.3 Code Generation . 81

4.1.4 Wrapper Generation . 87

4.1.5 Runtime Loading and Composition 88

4.1.6 Limitations . 90

4.2 System Experience . 92

4.2.1 Workloads . 92

4.2.2 Library for Lighting Surfaces 95

4.2.3 Library for Geometric Effects 100

5 Discussion 109

5.1 Rates of Computation Are Functors 109

5.1.1 Kinds . 110

5.1.2 Rate-Qualified Types . 110

5.1.3 Rates of Computation . 111

5.1.4 Lifting . 111

5.1.5 Plumbing Operators . 111

5.1.6 Projection . 112

5.1.7 Rates of Computation Are Functors 113

5.2 Record Types Are Virtual Classes . 114

5.2.1 Spark . 114

5.2.2 Scala with Virtual Class Support 116

5.2.3 Summary . 120

5.3 Spark and Aspect-Oriented Programming 121

5.4 Future Work . 122

5.4.1 Improved Support for Procedural Operations 122

x

5.4.2 Rate-Based Overloading . 124

5.4.3 Type-System Support for Coordinate Spaces 125

5.4.4 Composing Classes vs. Objects 126

5.4.5 Minimizing State Changes . 128

5.4.6 Evolving Rendering Achitectures 129

6 Conclusion 135

A Glossary 137

Bibliography 141

xi

List of Tables

4.1 Shader components used in surface-lighting application. 95

4.2 Shader components used in Figure 4.8. 101

4.3 Models used in Figure 4.8, and the shader components they use. . . . 101

4.4 Performance results comparing Spark and HLSL. 107

4.5 Comparison of lines of code in Spark and HLSL. 108

xii

List of Figures

1.1 A complex shading effect decomposed into user-defined modules in Spark. 6

1.2 The effect in Fig. 1.1, adapted to a shader-per-stage language. 6

2.1 Structure of the Direct3D 11 pipeline. 23

3.1 Spark pipeline programming abstraction. 48

4.1 Spark system block diagram. 79

4.2 BasicHLSL example. 93

4.3 DetailTessellation example. 93

4.4 PNTriangles example. 94

4.5 CubeMapGS example. 94

4.6 Spark source code for deferred lighting application. 97

4.7 HLSL source code for deferred lighting application. 99

4.8 Example models rendered with Spark shaders. 101

4.9 Spark source code for geometric effect application. 103

4.10 HLSL source code for geometric effect application. 106

xiii

List of Listings

1.1 A minimal HLSL shading effect. 11

1.2 Extended HLSL shading effect. 12

1.3 Spark shader code corresponding to the HLSL in Listing 1.2. 14

2.1 Nested classes, corresponding to Listing 1.1 31

2.2 Example of C++ constructor extension. 35

2.3 The example in Listing 2.2 rendered in idiomatic Dylan. 36

3.1 Example Spark plumbing operator. 62

3.2 Example Spark shader class. 70

3.3 Extensions of the shader class in Listing 3.2. 71

3.4 Spark compiler-generated C++ wrapper classes. 72

3.5 Rendering with a Spark shader, using compiler-generated wrapper. . . 73

3.6 Example Spark tessellation effect. 74

3.7 Example Spark Geometry Shader effect. 77

4.1 Spark shaders using mixin inheritance. 87

4.2 C++ wrapper code for Derived in Listing 4.1. 89

4.3 Runtime composition of a Spark shader class. 91

5.1 Spark shader classes to illustrate translation to virtual classes. 115

5.2 Translation of Base to Scala with support for virtual classes. 117

5.3 Translation of Derived to Scala with support for virtual classes. . . . 119

1

Chapter 1

Introduction

The reach of real-time computer graphics has never been greater. Full-featured com-

puting devices, with high-resolution displays and rich graphical capabilities, are now

ubiquitous. Many of the most popular applications for these devices are real-time

interactive games. Users can immerse themselves in 3D worlds on computers, dedi-

cated game consoles, tablets, and phones. For developers, creating the kinds of rich,

interactive graphics that users desire presents a dilemma: striking a balance between

generality and performance.

Unlike the director of a computer-generated movie—who precisely controls the place-

ment of their virtual lights, camera, and actors—the creators of a game must deal

with one highly unpredictable element: the human player. A game must be ready to

render a scene from any conceivable camera angle, and under any lighting conditions

that the simulation allows. This requires highly general solutions, so that we can

flexibly combine lights, surfaces, and materials as required.

Often in computer programming, we achieve flexibility by trading off performance. In

order to maintain the illusion of continuous motion, however, a real-time rendering

application must produce a complete rendered frame within 15 to 32 milliseconds.

Our work seeks to bring increased flexibility and generality to real-time rendering,

while preserving the high performance that developers require.

2

CHAPTER 1. INTRODUCTION 3

1.1 Real-Time Rendering Architectures

Increasingly, high performance in computer applications is achieved through paral-

lelism: by doing many things at once, the overall throughput can be increased. Im-

plementations of real-time rendering architectures in graphics hardware chiefly rely

on two kinds of parallelism:

• Data Parallelism A 3D model is composed of a multitude of vertices, and

might cover many hundreds of on-screen pixels. Each of the vertices/pixels will

require similar treatment, and by processing them together in batches, we can

amortize out certain fixed costs and overheads.

• Pipeline Parallelism When rendering a surface, we must first determine the

positions of its vertices, before we can compute colors for the pixels it covers.

By processing these pixels in parallel with the vertices of other surfaces, we can

render multiple surfaces with higher throughput than a single surface.

Most contemporary rendering architectures take the form of a pipeline with many dis-

tinct stages. This organization allows implementations to exploit significant pipeline

parallelism. The stages communicate data on streams, in the form of records : individ-

ual vertices, fragments, control points, etc. Each stage consumes records produced by

“upstream” stages, and produces new records for use by “downstream” stages. The

overall pipeline dataflow—the connectivity of stages and streams, and type of records

on each stream—is typically fixed.

Some stages perform fixed-function operations using dedicated hardware: for example,

the assembly of transformed vertices into triangles or other primitives. An application

may change some parameters of these stages—e.g., switching between triangle and

quadrilateral primitives—but cannot otherwise override their behavior. In contrast,

programmable stages are controlled by application-provided programs called shaders.

CHAPTER 1. INTRODUCTION 4

1.2 Shaders

A shader is a unit of application code that describes the appearance of rendered

objects—shape, transformation, animation, color, etc.—and that runs in the context

of a rendering system. A shader might compute transformed positions of vertices to

simulate the movement of a walking character, or the color reflected by the character’s

skin under the influence of several light sources.

The code in shaders is often executed in a data-parallel fashion: e.g., on batches of

vertex or fragment records. For this purpose, graphics hardware will typically have

many general-purpose processing cores, and utilize techniques such as SIMD (single

instruction, multiple data) execution. These cores allow an application’s shaders to

perform almost any computation, although the available input/output operations are

typically constrained to those supported by the pipeline dataflow. In this way, a

real-time rendering architecture can be seen as a framework, that is customized by

the application’s shaders.

By constraining the capabilities of shader programs in this fashion, interfaces to

rendering architectures such as OpenGL [SAF+10] and Direct3D [Bly06, Mic10a]

have traditionally been able to take advantage of data- and pipeline-parallel execution

without exposing the complexity of parallel programming to user applications. For

example, when a shader is computing the position of one vertex, it cannot “see” other

vertices, and is thus oblivious to the order in which vertices are processed.

Having established the context in which shaders execute, we turn our attention to

the challenge of authoring shaders for compelling real-time graphical effects.

CHAPTER 1. INTRODUCTION 5

1.3 The Challenge

Since, in most cases, design decisions transcend time of execution,

modules will not correspond to steps in the processing.

On the Criteria to be Used in Decomposing Systems into Modules

David Parnas

In the first generation of programmable graphics hardware, shaders typically com-

prised tens of lines of code, targeting two programmable stages in a primarily fixed-

function pipeline. Increasing hardware capabilities have seen an increase in both

the number and complexity of programmable pipeline stages. For example, the Di-

rect3D 11 architecture (hereafter D3D11) exposes a pipeline with five programmable

stages. Achieving a particular effect requires coordination of shader code running in

these stages, fixed-function hardware settings, and application code.

In light of the increasing scope and complexity of this programming task, we argue

that the time is right to re-evaluate the design criteria for real-time shading languages.

A modern shading language should support good software engineering practices, so

that diligent programmers can create maintainable code. Our work focuses on the

particular problem of separation of concerns : the factoring of logically distinct pro-

gram features into localized and independent modules.

Separation of Concerns

Figure 1.1 shows a complex rendering effect that uses every programmable stage of

the D3D11 pipeline. In a single pass through the rendering pipeline, an animated,

tessellated, and displaced model is rendered simultaneously to all six faces of a cube

map. In this visualization, the dashed boxes represent the five programmable stages

of the D3D11 pipeline. The colored boxes represent logically distinct features or

concerns in the program. Some concerns in this figure, such as tessellation, intersect

multiple stages of the rendering pipeline. These are cross-cutting concerns in the

terminology of aspect-oriented programming [KLM+97].

CHAPTER 1. INTRODUCTION 6

Texture-Mapped Diffuse Reflectance

Tessellation

Animation

Render to
Cube Map

Displacement

Vertex-Assigned Specular Reflectance

VS HS DS GS PS

Lighting

Figure 1.1: A complex shading effect decomposed into user-defined modules in Spark.
The dashed boxes show the programmable stages of the Direct3D 11 pipeline: the
Vertex, Hull, Domain, Geometry, and Pixel Shader. The colored boxes show different
concerns in the program. Some logical concerns cross-cut multiple pipeline stages.

Animation

Tessellation Tessellation Render to
CubeMap

Displacement

Texture-Mapped
Diffuse Reflectance Basis Change Interpolation Replication

Vertex-Assigned
Specular Reflectance

Basis Change Interpolation Replication

VS HS DS GS PS

Lighting

Figure 1.2: The rendering effect in Figure 1.1, adapted to the constraints of shader-
per-stage languages. The colored boxes represent subsets of the program pertaining to
different features. Some logically coherent program features must be divided, and some
orthogonal ones merged, to meet the constraints of shader-per-stage programming.

CHAPTER 1. INTRODUCTION 7

Ideally, we would desire that a shading language would allow each logical concern

to be defined as a separate, reusable module. In this way we could re-use existing

modules to create new rendering passes. For example, we might want to create a

shading effect like that in Figure 1.1, only without the displacement effect.

Modularity and reusability are increasingly important as more complex algorithms

are expressed in shader code. For example, tessellation of approximate subdivision

surfaces on the D3D11 pipeline requires a non-trivial programming effort: several

weeks for a capable graphics programmer, from our experience. A programmer should

be able to expend that effort once, and then re-use the resulting module many times.

This, then, is a key goal of our work.

Several factors make achieving this goal challenging: most importantly, we identify

challenges arising from groupwise shading code and plumbing.

Pointwise and Groupwise Code

Modern shaders comprise two kinds of code, which we will call pointwise and group-

wise. The earliest programmable rendering architectures expose vertex and fragment

processing with a simple mental model: a user-defined function is mapped over a

stream of input records, one at a time. This ensures that individual vertex and

fragment records may be processed independently (or in parallel), and so shading

algorithms are defined pointwise: that is, independent of any particular record(s).

Instead of records, pointwise shading code is defined in terms of attributes : e.g., per-

vertex or per-fragment points, vectors, colors, texture coordinates, etc. For example,

pointwise shading code might compute the product of an interpolated per-vertex color

and a per-fragment color, without making explicit reference to the particular vertices

and fragment involved.

In contrast, groupwise operations, such as primitive assembly or rasterization, ex-

plicitly apply to an aggregation of records: e.g., all of the vertices that comprise

CHAPTER 1. INTRODUCTION 8

a primitive. Where historically groupwise operations have been enshrined in fixed-

function stages, current real-time rendering pipelines such as D3D11 [Mic10a] and

OpenGL 4 [SAF+10] include user-programmable stages that can perform groupwise

operations: e.g., basis change, interpolation, and geometry synthesis.

Per-Stage Shaders

Today, the most widely used GPU shading languages are HLSL [Mic02], GLSL

[KBR03], and Cg [MGAK03]. These are shader-per-stage languages: a user con-

figures the rendering architecture with one shader procedure for each programmable

stage of the pipeline. Figure 1.2 shows a possible mapping of the effect in Figure 1.1

to a shader-per-stage language. To meet the constraints of the programming model,

cross-cutting concerns have been decomposed across multiple per-stage procedures.

More importantly, some pointwise and groupwise concerns are coupled in Figure 1.2.

This coupling is driven by the need for plumbing code.

Plumbing

Each per-vertex attribute that is subsequently used in per-fragment computations

requires code to plumb it through intermediate programmable stages. Figure 1.2

shows how this can create coupling. When tessellating a coarse mesh into a fine mesh,

we must interpolate the values of each attribute for each new vertex; this plumbing

code couples the implementation of the tessellation and texture-mapping concerns.

The amount of plumbing code required increases with the number of attributes, and

with the number of stages in the pipeline.

Plumbing code leads to coupling because the specification of what and how to plumb

belong to logically separate concerns. A concern might introduce a new attribute in

pointwise shading code (e.g., per-vertex color) that needs to be plumbed through the

pipeline, but should be specified independently from the details of, e.g., tessellation.

CHAPTER 1. INTRODUCTION 9

Conversely, a tessellation effect determines the overall scheme for plumbing—basis

change and interpolation—of attributes, but ought to be independent of the particular

attributes that require interpolation.

In the search for a solution to this problem, we turn our attention to one of the earliest

shading languages for real-time graphics hardware.

Pipeline Shaders

In contrast to shader-per-stage languages, a pipeline-shader language allows a single

shader to target a programmable pipeline in its entirety. The idea of pipeline shaders

originates in the Stanford Real-Time Shading Language (RTSL) [PMTH01]. The

RTSL system uses pipeline shaders to generate high-performance code for the earliest

generation of programmable graphics hardware. Despite some compelling results,

the pipeline-shader approach has not seen broad adoption in industry. As such, the

approach has not been updated to accommodate new rendering architectures with

additional programmable pipeline stages.

In our work, we set out to explore whether a pipeline-shader language might yield

better tools for separation of concerns on current real-time rendering architectures.

To that end, we sought to take the key ideas of RTSL, and extend them to support the

capabilities of modern pipelines: most notably dynamic control flow and user-defined

groupwise operations.

Contribution

In this dissertation, we describe a shading language, Spark, and its implementation as

a compiler and standard library targeting the D3D11 pipeline. Spark better supports

separation of concerns than current shader-per-stage languages, allowing both point-

wise and groupwise shading code to be factored into reusable modules. For example,

Spark allows us to achieve the modularization depicted in Figure 1.1.

CHAPTER 1. INTRODUCTION 10

A Spark programmer may define independent shader classes, each encapsulating a

logical concern—even those that cut across the inter-stage boundaries of a rendering

pipeline. Shader classes can be extended and composed, using techniques from object-

oriented programming.

When composing groupwise and pointwise shading code, our Spark compiler can auto-

matically synthesize plumbing code by instantiating user-defined plumbing operators,

thus avoiding coupling. In order to achieve good performance, we perform global

(that is, inter-stage) optimization on composite shaders. In our experience with the

system, we have found that Spark can achieve better separation of concerns than ex-

isting shading languages for effects like tessellation, while still achieving performance

within 2% of HLSL shaders.

1.4 A Motivating Example

To order to illustrate the kind of benefits that can come from our solution, we will

present a brief motivating example. Listing 1.1 gives a minimal shading effect in

HLSL, which performs basic diffuse lighting under a single directional light source.

This code defines per-stage shader procedures VS() and PS(), along with idiomatic

connector structures to represent the input and output records of these procedures.

Listing 1.2 shows how the HLSL code in Listing 1.1 might be extended to support an

additional feature: fetching diffuse reflectance from a texture map. The lines of code

that were added or modified to support this feature are highlighted in red. Note how

code has been changed or modified in both of the per-stage entry points, as well as in

connector structures. This highlights the deficiencies of current shading languages:

• Modularity The implementation of the texture-mapping feature is spread

throughout the code-base, rather than isolated in its own module.

• Reuse A programmer cannot use both the extended effect in Listing 1.2 and the

unmodified effect in Listing 1.1 without resorting to “copy-paste programming.”

CHAPTER 1. INTRODUCTION 11

cbuffer Uniform {

float4x4 modelView;

float4x4 modelViewProj;

float3 L_world;

};

struct AssembledVertex {

float3 P_model : Position;

float3 N_model : Normal;

};

struct CoarseVertex {

float3 N_world : Normal;

float4 P_proj : SV_Position;

};

struct Fragment {

float4 color : SV_Target;

};

CoarseVertex VS(AssembledVertex input) {

CoarseVertex output;

output.N_world = mul(input.N_model , float3x3(modelView));

output.P_proj = mul(float4(input.P_model , 1),

modelViewProj);

return output;

}

Fragment PS(CoarseVertex input) {

Fragment output;

float4 diffuse = 1;

float NdotL = dot(L_world , normalize(input.N_world));

output.color = diffuse * saturate(NdotL);

return output;

}

Listing 1.1: A minimal HLSL shading effect. Positions and normals are transformed
per-vertex, and simple diffuse lighting is computed per-fragment.

CHAPTER 1. INTRODUCTION 12

cbuffer Uniform {

float4x4 modelView;

float4x4 modelViewProj;

float3 L_world;

};

Texture2D <float4 > diffuseTexture;

SamplerState linearSampler;

struct AssembledVertex {

float3 P_model : Position;

float3 N_model : Normal;

float3 uv : TexCoord;

};

struct CoarseVertex {

float3 N_world : Normal;

float4 P_proj : SV_Position;

float3 uv : TexCoord;

};

struct Fragment {

float4 color : SV_Target;

};

CoarseVertex VS(AssembledVertex input) {

CoarseVertex output;

output.N_world = mul(input.N_model , float3x3(modelView));

output.P_proj = mul(float4(input.P_model , 1),

modelViewProj);

output.uv = input.uv;

return output;

}

Fragment PS(CoarseVertex input) {

Fragment output;

float4 diffuse = diffuseTexture.Sample(linearSampler ,

input.uv);

float NdotL = dot(L_world , normalize(input.N_world));

output.color = diffuse * saturate(NdotL);

return output;

}

Listing 1.2: Extended HLSL shading effect. The code that has been added or modified
to support texture mapping is highlighted in red.

CHAPTER 1. INTRODUCTION 13

• Plumbing The programmer must write code in VS() to plumb texture coordi-

nates through the vertex-processing stage, even though no per-vertex processing

of texture coordinates is required.

Listing 1.3 shows Spark code implementing an effect equivalent to the HLSL in

Listing 1.2. We do not expect that readers will fully understand the code at this

point, but instead call attention to the ways in which it addresses the problems in

the HLSL equivalent:

• Modularity The implementation of the texture-mapping feature is localized

in a single shader class declaration.

• Reuse Both the original Diffuse effect and the extended Texturing effect are

available for use. Copy-paste programming is not required.

• Plumbing No additional code is required to plumb the texture coordinate uv

through the pipeline.

We will revisit this example in future chapters, as we explain the features of the Spark

language and system.

1.5 Dissertation Road Map

In the remainder of this dissertation we discuss the Spark system in greater detail:

Chapter 2 provides background material that will facilitate understanding of our

design. Our work draws not only on the history and state of the art in real-time

shader languages, but also on several topics in the broader field of programming

languages. We leverage ideas from several prior works to build a suite of language-

design tools.

Chapter 3 discusses the design of the Spark language. We begin by documenting the

design goals we sought to achieve, introduce the fundamental pipeline-programming

CHAPTER 1. INTRODUCTION 14

shader class Diffuse extends D3D11DrawPass

{

input @Uniform float4x4 modelView;

input @Uniform float4x4 modelViewProj;

input @Uniform float3 L_world;

input @Uniform VertexStream[float3] P_stream;

input @Uniform VertexStream[float3] N_stream;

@AssembledVertex float3 P_model = P_stream(IA_VertexID);

@AssembledVertex float3 N_model = N_stream(IA_VertexID);

@CoarseVertex float3 N_model =

mul(N_model , float3x3(modelView), N_model);

override RS_Position =

mul(float4(P_model , 1.0f), modelViewProj);

virtual @Fragment float4 diffuse = float4 (1.0f);

@Fragment float NdotL = dot(L_world , normalize(N_world));

@Fragment float4 C = diffuse * saturate(NdotL);

output @Pixel float4 target = C;

}

shader class Texturing extends Diffuse

{

input @Uniform Texture2D[float4] diffuseTexture;

input @Uniform SamplerState linearSampler;

input @Uniform VertexStream[float2] uvStream;

@AssembledVertex float2 uv = uvStream(IA_VertexID);

override diffuse = Sample(diffuseTexture ,

linearSampler ,

uv);

}

Listing 1.3: Spark shader code corresponding to the HLSL in Listing 1.2.

CHAPTER 1. INTRODUCTION 15

abstraction that underlies our work, and then discuss several key design decisions that

we made, explaining why we made the choices we did. This chapter ends with a set

of brief example programs in Spark, demonstrating the key features of the language.

Chapter 4 discusses our implementation of the Spark compiler and runtime system.

We present results from two suites of shaders, focused on illumination and geometry,

respectively. Our results compare Spark and HLSL both on their ability to achieve

separation of concerns, and on performance.

Finally, Chapter 5 discusses forward-looking directions for our research. This in-

cludes connections between the Spark language and more formal work on Program-

ming Language Theory (PLT), possible directions for improving the usability of the

Spark language and system, and opportunities to evolve rendering architectures to

better support our approach to shader programming.

Chapter 2

Background

In order to illuminate our design, we believe it is important to both situate Spark

in the particular history of shading langauges, and in the broader context of pro-

gramming languages in general. As such, this chapter covers a broad range of topics:

shading languages, interfaces to graphics hardware, programming languages, and soft-

ware engineering. As much as possible, we make note of how this background material

informs our discussion in future chapters.

2.1 Real-Time Shading Languages

In this section, we present a brief history of real-time shading languages, with a focus

on those works that mostly directly inform or illuminate our own design.

Shading langauges are examples of domain-specific languages (DSLs). While many

DSLs are primarily concerned with accessibility or ease of use, shading languages are

an important example of a performance-oriented DSL.

In general, shading languages support parallel execution, although parallelism is im-

plicit rather than explicit. Typically multiple “instances” of a shader program are

16

CHAPTER 2. BACKGROUND 17

run in parallel over multiple vertices, fragments, or shading samples. Instances are

unable to communicate with one another, so the use of parallel execution is entirely

transparent to programmers.

2.1.1 Declarative and Procedural Shaders

Modern shading languages derive from the early work on Cook’s shade trees [Coo84]

and Perlin’s image synthesizer [Per85]. It is telling, then, to note that these two

works differ on a crucial language design decision: Cook’s language is declarative,

while Perlin’s is procedural.

Shade trees represent a shader in terms of its dataflow graph. Surface, light, atmo-

sphere, and displacement shaders may be specified as separate, modular graphs. The

rendering system then composes these modules by “grafting” one shade tree onto

another. This notion of grafting motivates our support for composition of shaders in

Spark (see Section 3.3.2).

In the shade tree system, shader graphs are authored using a declarative “little lan-

guage.” The language looks superficially similar to C, but lacks features such as

control flow and mutable variables. These restrictions ensure that any program in

the language can be represented as an equivalent dataflow graph, but in turn limit

the kinds of programs that can be expressed.

In Perlin’s image synthesizer, shaders are procedures : sequences of imperative state-

ments. A shader procedure may perform almost arbitrary operations, including loop-

ing and conditional control flow, to compute its result. Support for modularity,

however, is limited to procedural abstraction: simpler procedures may be used to

define more complex ones. In particular, the image synthesizer does not support the

modular specification and composition of surface and light shaders. Ultimately, the

entire shading process for a pixel must be described by a single procedure.

CHAPTER 2. BACKGROUND 18

This is a classic tradeoff: a procedural representation gives more power to the user

(it can express any computation), but as a consequence a shader is effectively a black

box to the rendering system. In contrast, a declarative, graph-based representation

exposes more structure to the implementation, and is thus more amenable to analysis

and transformation (e.g., Cook’s grafting operation).

2.1.2 RenderMan Shading Language

Hanrahan and Lawson [HL90] describe the RenderMan Shading Language (RSL)

as incorporating features of both Cook’s and Perlin’s work. RSL is a procedural

language, but still separates the definition of surfaces and lights. In place of shade-tree

style grafting, the interface between shaders is provided by specialized control-flow

constructs (e.g., illuminance loops and illuminate statements).

RSL introduces two ideas that are relevant to our design. First is the idea of treating

a shader program as an object-oriented class, from which shader objects are instanti-

ated at run-time. Representing shaders as classes allows the application and rendering

system to reason about and control the lifetime of shader instances, and in particu-

lar when (and how often) expensive operations like specialization and optimization

are performed.

Second is the introduction of rates of computation in the form of the uniform and

varying qualifiers. RSL allows a single shader to include computations at two differ-

ent rates: per-batch and per-sample. For example, a vector representing the direction

of a distant light source might be declared uniform, since the direction remains con-

stant for every shading sample, while the diffuse reflectance of a surface might vary

continuously and be declared varying. The expectation of the user is that compu-

tations involving only uniform values occur at a lower rate—that is, less often—and

may thus be less costly.

CHAPTER 2. BACKGROUND 19

2.1.3 Real-Time Shading Language

The Stanford Real-Time Shading Language (RTSL) [PMTH01] extends the concept

of uniform and varying computation to a richer set of rate qualifiers, including vertex

and fragment. These qualifiers allow a single pipeline shader to target both the vertex

and fragment processors on early programmable GPUs, as well as a host CPU. Our

Spark language further extends the notion of rates of computation, by making the

set of rate qualifiers extensible (see Section 3.3.3).

RTSL is syntactically quite similar to RSL, and superficially looks like a procedural

language. The language is, however, declarative: similarly to shade trees, sufficient

restrictions are placed on RTSL shaders, such that they can be represented as DAGs.

Like shade trees, RTSL allows graphs representing surface and light shaders to be

defined separately and composed by the rendering system.

In order to generate code for a programmable graphics pipeline, the RTSL system

takes the composed shader graphs and partitions them into sub-graphs according to

computation rates. These sub-graphs are then used to generate (procedural) code

for particular programmable pipeline stages. For example, all of the computations

in the graph with the vertex rate are collected to generate an executable shader

procedure for the vertex-processing pipeline stage. Edges that extend into or out of

this per-vertex sub-graph correspond to the inputs and outputs of this procedure.

This compilation strategy relies on an abstract pipeline programming model in which

the rates in the RTSL language correspond to the programmable stages of the ren-

dering pipeline. The approach to compilation in RTSL guides our implementation in

Spark (see Section 4.1.3), but we rely on a more refined pipeline programming model

described in Section 3.2.

The DAG representation in RTSL cannot express data-dependent control flow. This

restriction is a good match for early programmable GPUs, which do not support

data-dependent control flow in vertex or fragment processors. Similarly, an RTSL

shader can express only pointwise shading operations (see Section 1.3), as the only

groupwise operations on early GPUs are performed by fixed-function hardware.

CHAPTER 2. BACKGROUND 20

One important decision in RTSL is that results computed at a low rate of computation

can be implicitly converted to any higher rate, even if this might involve plumbing

values through the pipeline. For example, a per-vertex color may be used in per-

fragment computations; the RTSL compiler automatically exploits the rasterizer to

perform interpolation and plumb the data through. This design choice motivates our

own decision to support automatic plumbing in Spark (see Section 3.1.1).

The SMASH API [McC00] supports rate-qualified sub-shaders, with a DAG-based

representation similar to RTSL. Renaissance [AR05] combines ideas from RTSL with

a purely functional programming language in the style of Haskell. Data-dependent

control flow is supported through higher-order functions like sum . Like RTSL, neither

SMASH nor Renaissance supports the creation of user-defined groupwise operations.

2.1.4 Cg, HLSL, GLSL

Cg, HLSL, and GLSL share a common history and many design goals; we focus on

the design of Cg as given by Mark et al. [MGAK03]. Cg consciously eschews any

domain-specific factorization of shading into surface and light shaders, in favor of a

general-purpose C-like procedural language. This decision means that Cg can express

almost any algorithm, and is constrained only by hardware capabilities rather than

any particular domain model.

For our discussion, the most important decision made in Cg was the choice of a shader-

per-stage approach, rather than RTSL-like pipeline shaders. Several motivations are

given for this decision. For example, with appropriate factoring of shader code—e.g.,

by putting all geometric computations in vertex shaders and all material and lighting

computations in fragment shaders—an application might reuse a single vertex shader

across a variety of materials.

Mark et al. further observe a problematic interaction between data-dependent control

flow and RTSL’s rate qualifiers. For example, it is unclear what semantics, if any,

could be ascribed to a pipeline shader that modifies a per-vertex variable inside a

CHAPTER 2. BACKGROUND 21

per-fragment loop (or vice versa). Mark et al. comment that auxiliary language rules

could be used to ban such problematic cases, but the resulting programming model

might be “unreasonably confusing.” Resolving this apparent incompatibility between

rate qualifiers and control flow was one of the most important, albeit simple, design

decisions we made for Spark (see Section 3.3.1).

As the pipelines exposed by rendering architectures have grown in complexity, the

shader-per-stage approach has been adapted to support new programmable pipeline

stages, along with programmable groupwise operations. The use of explicit connector

structures to represent records (see Section 1.4) allows these languages to directly

express a per-stage procedure that, e.g., consumes an array of vertex records.

2.1.5 Shader Metaprogramming

Programmers often layer more flexible abstractions on shader-per-stage languages

by metaprogramming. One common approach among game developers is to write

an über-shader—a shader implementing the sum of all desired features—which may

be pre-processed to strip out unused features and generate specialized shaders on

demand. Other systems work by “stiching” together shaders from a library of code

fragments. Effect systems [NVI10, Mic10b, LS02] allow a set of per-stage shaders to be

encapsulated and parameterized as a single unit, but do not address program concerns

at other scales. Shader metaprogramming frameworks [MQP02, LO04, KW09] apply

host-language abstractions to shaders, and are examples of embedded domain-specific

languages (EDSLs).

Pixel Bender 3D [Ado11] separates shader code into transformation and material

concerns. A material shader uses separate procedural entry points to target vertex-

and fragment-processing stages. The system does not target other programmable

stages, nor allow shaders to be decomposed into arbitrary user-defined concerns.

The Vertigo system [Ell04] provides an EDSL in Haskell for authoring vertex shaders

as pure functions. Vertigo leverages the inherent composability of pure functions to

allow concise definitions of parametric surfaces (e.g., surfaces of revolution).

CHAPTER 2. BACKGROUND 22

The GPipe system [Bex] allows shader programs to abstract over streams of vertices

and fragments. In GPipe the type constructor Fragment acts as a functor and oper-

ations on, e.g., a Fragment Float are automatically lifted to happen per-fragment.

We will see in Section 5.1.4 that a GPipe Fragment Float is quite similar to a Spark

@Fragment float.

2.2 Interfaces to Graphics Hardware

Historically, the only function of graphics hardware was to support rendering archi-

tectures like Direct3D or OpenGL. Modern graphics hardware platforms, however,

support both rendering and “compute” interfaces. In this section we discuss contem-

porary interfaces of both types.

2.2.1 The Direct3D 11 Rendering Pipeline

Figure 2.1 depicts the nominal structure of the D3D11 rendering pipeline Each pipeline

stage is represented as a box, and user-programmable stages are shown in gray. We

say this structure is “nominal” because in practice there are additional fixed-function

stages not named in the D3D11 architecture.

We will briefly discuss the names and responsibilities of the pipeline stages, for the

benefit of readers who may be unfamiliar with D3D11. Several stages produce vertex

records of one type or another; to aid in disambiguation, we depict and name the

type(s) or records produced at each stage on the right-hand side of Figure 2.1. We

will continue to use this terminology (which is not standard to D3D11) throughout

the dissertation.

The Input Assembler (IA) gathers attributes (such as positions, normals, or colors)

from buffers in memory to create assembled vertices. The Vertex Shader (VS) maps

an application-provided shader procedure over the assembled vertices to produce a

stream of coarse vertices, representing a base mesh. Traditionally, shader code in

D3D11 is authored as per-stage procedures in the HLSL language.

CHAPTER 2. BACKGROUND 23

IA

OM

PS

RS

GS

DS

TS

HS

VS

Output Merger

Pixel Shader

Rasterizer

Geometry Shader

Domain Shader

Tessellator

Hull Shader

Vertex Shader

Input Assembler

Render Targets

assembled vertices

coarse vertices

patches
control points

fine vertices

raster vertices

rasterized fragments

shaded fragments

pixels

u

v domain locations

Figure 2.1: Nominal structure of the Direct3D 11 rendering pipeline. Programmable
stages are shown in gray. In practice, fixed-function primitive-assembly stages precede
the HS and GS, but these are not included in the nominal pipeline.

CHAPTER 2. BACKGROUND 24

The coarse vertices produced by the VS are assembled into primitives by an unnamed

fixed-function stage before being processed by the Hull Shader (HS). The HS can

perform a basis transformation: e.g., it may convert each face of an input subdivision-

surface mesh into control points for a bicubic Bézier patch. The HS stage makes use of

two shader procedures: one to compute control point records, and another to compute

the attributes for each patch, including per-patch-edge tessellation rates.

The control point and patch data flow past a fixed-function Tessellator (TS) stage,

which augments them with a set of domain locations for new vertices in the tessel-

lation parameter domain. For example, for a quadrilateral domain, these would be

parametric (u,v) values.

The Domain Shader (DS) is responsible for interpolating the attributes of a patch

and its control points at a parametric location—for example, by performing bicubic

interpolation of positions, and bilinear interpolation of colors—to produce fine ver-

tices. Along with the groupwise operation of interpolation, a DS may also perform

pointwise operations for each fine vertex, such as displacement mapping.

Fine vertices are assembled into primitives by another unnamed stage, and these

primitives are then processed by the Geometry Shader (GS). The GS applies a user-

defined procedure to each primitive, and that procedure may perform almost arbitrary

computation to generate a stream of raster vertices that describe zero or more output

primitives. For example, a GS procedure may duplicate each input primitive up to six

times and project each copy into a different face of a cube-map render target. These

primitives are clipped, set up, and rasterized into fragments by the fixed-function

Rasterizer (RS).

The Pixel Shader (PS) maps a function over the rasterized fragments to produce

shaded fragments. Shaded fragments are composited onto render-target pixels by a

fixed-function Output Merger (OM).

Since it may be a source of confusion for readers, we will make a brief digression:

The terminology used by the Direct3D system does not distinguish the concepts of

CHAPTER 2. BACKGROUND 25

fragments and pixels, and refers to both as “pixels.” In our experience, however,

this distinction is important, albeit subtle. The Spark system, and this dissertation,

endeavor to use the more precise terminology. This leads to the potentially confusing

situation that the D3D11 Pixel Shader stage in fact processes fragments.

Within this pipeline we can categorize the stages according to their communication

patterns. For example, the VS and PS stages each perform a functional map of a

shader procedure over their input stream, one record at a time, to produce output

records. This one-to-one communication pattern means that user-defined shader code

running in these stages can only implement pointwise operations.

In contrast, the remaining programmable stages each apply their shader procedures

to an aggregated group of inputs. For example, the HS procedure that computes

control-point records has access to all of the coarse vertices in the neighborhood

of a base-mesh face, so that it can, e.g., transform attributes into a Bézier basis.

Similarly, a shader procedure for the DS has access to all of the Bézier control points

for a patch to perform many-to-one interpolation. Thus the HS and DS stages expose

many-to-one communication patterns, and shader code for these stages may perform

groupwise operations.

The fixed-function rasterizer and programmable GS stages implement even more gen-

eral many-to-many communication. A shader procedure for the GS stage receives as

input a group of fine vertices (representing an assembled primitive) and can emit zero

or more raster vertices to an output stream. As such, the GS can perform almost

arbitrary amplification, decimation, or synthesis of geometry.

Note, however, that stages such as the HS, DS, and GS need not exclusively perform

groupwise operations. For example, displacement mapping of fine vertices is often

performed in the DS, and when rendering to a cube map, projection of raster vertices

into clip space is performed in the GS.

The stages of the D3D11 pipeline have diverse capabilities, roles, and communication

patterns. This diversity presents a challenge, since we would ideally like for our

CHAPTER 2. BACKGROUND 26

programming model to have as few unique concepts as possible, while still supporting

the full generality of present and future pipelines. In Section 3.2.2 we discuss how

our abstract pipeline model captures both the general and special cases (e.g., both

the GS and VS stages).

2.2.2 Compute Interfaces

In recent years, much effort has gone into using graphics hardware for computations

other than rendering. These “GPGPU” or “compute” approaches were initially im-

plemented by abstracting over the behavior of rendering architectures like OpenGL.

The shading system of Peercy et al. [POAU00] lays some groundwork by abstract-

ing the fixed-function OpenGL pipeline (with some extensions) as a kind of CISC

SIMD processor; each rendering pass serves as a single instruction. Purcell et al.

[PBMH02, Pur04] abstract an early programmable graphics pipeline as a stream

processor. Toolkits such as Brook for GPUs [BFH+04, Buc05], Sh [MQP02], and

Glift [LKS+06, Lef06] provide assistance for writing programs that use this stream-

programming abstraction.

In contrast, more recent systems for computation on graphics hardware, such as

CUDA [NVI07], OpenCL [Khr], and D3D11 Compute Shaders, do not provide a

layered abstraction over a rendering architecture, and do not conform to a strict

stream-programming abstraction. In particular, they expose capabilities of graphics

hardware that are not accessible through rendering interfaces of the same era: shared

on-chip scratchpad memory, barrier synchronization, and general read-modify-write

operations to shared global memory.

The challenges in designing a general-purpose parallel programming language for

graphics hardware are, understandably, different from those of designing a language

for shaders which target a rendering architecture like D3D11. As such, our work

is intended to complement these “compute” languages; we concentrate only on the

problem of real-time rendering.

CHAPTER 2. BACKGROUND 27

One issue, however, stands in the way of achieving this idealized decoupling of render-

ing and “compute.” The D3D11 rendering pipeline allows per-fragment computations

in the Pixel Shader stage to perform the same kind of global-memory read-modify-

write operations as Compute Shaders. The capability is referred to as Unordered Ac-

cess Views (UAVs). The OpenGL pipeline supports an extension that brings UAV-like

functionality to all programmable pipeline stages [BBL+10].

The addition of UAVs to a rendering architecture compromises some desirable prop-

erties: in particular, implementation details like the use of parallelism are no longer

transparent to users of the architecture. In exchange, however, rendering passes are

able to build more complex data structures than flat frame-buffers. As a result,

current real-time rendering research often makes use of these capabilities.

We have not fully explored the impact of adding UAV support to our Spark language

and system, but we discuss challenges, possible solutions, and directions for future

work in Section 5.4.1.

2.3 Programming Languages

Having discussed the history of shading languages in particular, we now turn our

attention to a variety of more general topics in programming languages.

Our work on Spark draws inspiration from a large number of existing languages. In

particular, many of our language features are derived from the gbeta [Ern99], Dylan

[Sha96], C# [HWG03], and Scala [OAC+04] languages. In this section, we present

relevant background and terminology from work on these and other languages, that

can help to illuminate our design decisions in Section 3.3.

CHAPTER 2. BACKGROUND 28

For consistency, we use a common set of typographic conventions when formatting

code across different languages:

Keywords: class, if

Types: float, Color

Comments: // like this

Key/Value Arguments: f(someParam: value)

2.3.1 Mixin Inheritance

The Spark language uses object-oriented inheritance to support the extension of

shaders, and multiple inheritance to support the composition of two or more shaders

(we will discuss this in Section 3.3.2). In this section we provide background on the

particular “mixin” approach to multiple inheritance that we use.

We assume that readers are already familiar with the idea of inheritance, as it appears

in object-oriented languages like C++ or Java. When a language supports multiple

inheritance, it means that a single class may inherit from more than one direct base

class. Many programmers may be familiar with the design of multiple inheritance

and its implementation in C++ [Str89], but there are many alternative approaches

that can be taken [Kro85, PW90, IB82].

One family of techniques relies on the concept of linearization [DH87], perhaps best

known from Common LISP [DG87, KR91]. Typically, a linearization is a sequence of

all the direct and indirect base classes of a class, such that the order of classes in the

linearization respects the partial order defined by the inheritance graph. Some sys-

tems use another concept in place of classes—e.g., “flavors” [Moo86], “mixins” [BC90,

Ern02], or “traits” [SDNB02]—but the mechanism of linearization is largely the same.

CHAPTER 2. BACKGROUND 29

For a given class, the linearization of its bases forms a total order on the relevant part

of the class hierarchy (for which the inheritance graph defines a partial order). This

total order can then be used to determine which definitions of a virtual member

override which others, or to resolve the target for a reference using super in a Java-

like language. This means that when a class inherits two implementations of a given

virtual function, which implementation will actually be called is determined by

the linearization algorithm. It is thus important that a linearization algorithm do

“sensible” things, so that a programmer can typically rely on the default behavior,

but also exert control when required. The C3 linearization algorithm [BCH+96] tries

to respect the declared order of base classes as much as possible (i.e., whenever it does

not conflict with the partial order from the inheritance graph), and is the linearization

algorithm used by Python [vR], Perl 6 [Tan], and Scala [OAC+04].

Multiple inheritance in general, and linearization-based approaches in particular, are

not without problems. In dynamic languages, “name clashes” can result when a class

inherits two distinct members with the same name; static languages like C++ and

C# include mechanisms to cope with these issues. It has been noted [Sny87] that

linearization-based multiple inheritance can work against modularity: changing the

order of base classes listed for a class C (seemingly an implementation detail), can

affect the linearization (and hence the behavior) of classes derived from C.

2.3.2 Virtual Classes

Briefly revisiting the motivating example from Section 1.4, we had an initial shader

for diffuse lighting that used a structure to represent coarse vertex records, as follows:

CHAPTER 2. BACKGROUND 30

// Diffuse Shader:

// ...

struct CoarseVertex

{

float3 N_world : Normal;

float4 P_proj : SV_Position;

};

Extending the shader to support texture mapping required that we make a copy of

this structure declaration and modify it:

// Diffuse + Texture Mapping Shader:

// ...

struct CoarseVertex

{

float3 N_world : Normal;

float4 P_proj : SV_Position;

float3 uv : TexCoord;

};

A given shader might have many such “connector” structures, corresponding to types

of records, and extensions to a shader will frequently require changes to several of the

structures. In order to extend a shader without resort to copy-paste programming,

we require a way to extend an entire “family” of connector structures. Fortunately,

many solutions to this problem have been explored in the context of object-oriented

languages.

Listing 2.1 sketches the shader from Section 1.4, Listing 1.1, in an object-oriented

fashion, using nested classes. We will refer back to this listing throughout this section.

In a typical object-oriented language (e.g., Java), the interface in Listing 2.1 would

allow us to instantiate the Diffuse shader and process vertices:

CHAPTER 2. BACKGROUND 31

class Diffuse

{

class AssembledVertex

{

float3 P_model;

float3 N_model;

}

class CoarseVertex

{

float3 N_world;

float4 P_proj;

}

// ...

CoarseVertex VS(AssembledVertex input) { /* ... */ }

Fragment PS(CoarseVertex input) { /* ... */ }

}

Listing 2.1: Nested classes, corresponding to the diffuse shader and connector struc-
tures in Listing 1.1.

Diffuse aShader = new Diffuse ();

Diffuse.AssembledVertex av = ...;

Diffuse.CoarseVertex cv = aShader.VS(av);

The interface does not, however, stop clients from attempting certain invalid opera-

tions: e.g., trying to process a vertex output by one shader instance with the fragment

shader of another instance:

Diffuse otherShader = new Diffuse ();

// Runtime Error:

// Input vertex came from a

// different shader instance

Diffuse.Fragment result = otherShader.PS(cv);

// ^^

CHAPTER 2. BACKGROUND 32

Ernst [Ern01] introduces the notion of family polymorphism, which allows a pro-

gram to express that several objects belong to a given family, and that mixing ob-

jects between families is not permitted. The basic idea is that different instances of

the Diffuse class should have different types of CoarseVertex. So rather than

a single type Diffuse.CoarseVertex, in our example we would have two types:

aShader.CoarseVertex and otherShader.CoarseVertex. This distinction allows

us to catch the earlier error statically:

Diffuse aShader = new Diffuse ();

aShader.AssembledVertex av = ...;

aShader.CoarseVertex cv = aShader.VS(av);

Diffuse otherShader = new Diffuse ();

// Compile -Time Error:

// Expected otherShader.CoarseVertex ,

// found aShader.CoarseVertex

otherShader.Fragment result = otherShader.PS(cv);

// ^^

At this point, one might note that the way that “nested” classes are referenced in

typical object-oriented languages like Java and C# (e.g., Diffuse.CoarseVertex),

is different from how other members of Diffuse, such as methods, are referenced

using a particular object (e.g., aShader.VS()). It is as if nested classes are implicitly

static in these languages. Family polymorphism removes this discrepancy, so that

nested classes are referenced in the same fashion as any other member.

If nested classes are like any other member (fields, methods, etc.), it next becomes

natural to ask whether a member class may be virtual. The idea of a virtual class

may be difficult to grasp at first, but is easy to define by analogy to virtual methods:

A virtual method X is a function-valued member of a class C. A class

that extends C can provide a definition for X that overrides the definition

from C. References to X are late-bound, and depend on the run-time type

of the object used.

CHAPTER 2. BACKGROUND 33

A virtual class X is a class-valued member of a class C. A class that

extends C can provide a definition for X that further extends the defini-

tion from C. References to X are late-bound, and depend on the run-time

type of the object used.

In a language with virtual classes, we can not only define families of classes, but also

extend them, e.g.:

class Texturing extends Diffuse

{

extend class CoarseVertex

{

float2 uv;

}

// ...

}

In this example, Texturing extends the definition of CoarseVertex in Diffuse so

that coarse vertices also have texture coordinates. In this way, virtual classes allow a

programmer to extend a family—perhaps even an entire library—of related classes,

while maintaining the established relationships between those classes. For example,

the VS() in Diffuse was declared to return a CoarseVertex; the VS() method inher-

ited by Texturing will itself return an instance of the extended CoarseVertex class.

This same pattern has also been referred to as higher-order hierarchies [Ern03] and

nested inheritance [NCM04].

The genesis of virtual classes can be traced back to Simula [DMN68], in which in-

stances of classes are conceptually identified with activation records of functions. The

Beta and gbeta languages follow this inspiration, using a single construct called a pat-

tern to unify both classes and methods. Support for virtual methods (i.e., virtual

patterns) led naturally to support for virtual classes in Beta [LMMP89].

Subsequent work has demonstrated that it is possible to incorporate virtual classes

into a sound type system [EOC06], and has investigated efficient implementations

CHAPTER 2. BACKGROUND 34

[BNE09]. The Scala language provides for the more restricted case of virtual types,

which have also been proven sound [OCRZ03], even when combined with parametric

polymorphism [MPO08a, MPO08b].

Virtual classes may initially seem esoteric, but the example developed in this section

hints at how they underly our approach to modular and extensible shaders in Spark.

We will discuss in Section 3.3.5, how we take inspiration from virtual classes in our

language design. In Section 5.2 we attempt to make this connection more explicit by

demonstrating a mapping from the core Spark language to Scala with an extension

that adds virtual-class support.

2.3.3 Extensible Initialization

Along with inheritance, a defining feature of many popular object-oriented languages

is the use of constructors to perform instance initialization. While constructors have

an intuitive mental model, they also have numerous problems:

• During the execution of a constructor, the this object is not fully initialized.

It may be passed to operations that rely on certain invariants that have not yet

been established. Doing so is a semantic error that the compiler cannot detect.

• Creating an object (e.g., with a new expression) requires naming the class to

be constructed statically, at compile time. Code cannot late-bind or parame-

terize over the class of objects to be created without using, e.g., the Factory

pattern [GHJV95].

• Some languages do not allow a derived class to inherit base-class constructors,

and even when this is possible (e.g., in C++11 [CPl11]), declaring an extended

constructor requires the reiteration of the original constructor signature.

To make the issues with constructors and inheritance concrete, consider the C++

code in Listing 2.2. This example is derived from the code in Section 1.4, in which

we define and then extend a connector structures for coarse vertices. Here we see a

CHAPTER 2. BACKGROUND 35

class CoarseVertex {

public:

CoarseVertex(float3 P, float3 N)

: P_(P), N_(N)

{}

private:

float3 P_;

float3 N_;

};

class ExtCoarseVertex {

public:

ExtCoarseVertex(float3 P, float3 N, float2 uv)

: Vertex(P, N), uv_(uv)

{}

private:

float2 uv_;

};

// Construct a CoarseVertex:

CoarseVertex cv(pos , nrm);

// Construct an ExtCoarseVertex:

ExtCoarseVertex ecv(pos , nrm , tex);

Listing 2.2: Example of C++ constructor extension.

base class CoarseVertex that requires both a position and normal for initialization,

and a derived class ExtCoarseVertex that requires one additional parameter: a tex-

ture coordinate. Note that ExtCoarseVertex must reiterate (that is, re-declare) the

same constructor parameters as CoarseVertex. This work is redundant, and must

often be done for each of CoarseVertex’s derived classes (that is, the amount of

work scales both with the number of parameters, and the number of derived classes).

This code is also fragile: any change to the signature of CoarseVertex’s constructor

requires changes to each of the derived classes (and not just call sites at which a

CoarseVertex is constructed). This problem is compounded by features like multiple

inheritance or virtual classes: a derived class may inherit initialization parameters

from many sources.

CHAPTER 2. BACKGROUND 36

define class <coarse -vertex > (<object >)

slot P :: <float3 >,

required -init -keyword: P:;

slot N :: <float3 >,

required -init -keyword: N:;

end class;

define class <ext -coarse -vertex > (<coarse -vertex >)

slot uv :: <float2 >,

required -init -keyword: uv:;

end class;

// Construct a <coarse -vertex >:

let cv = make(<coarse -vertex >,

P: pos , N: nrm);

// Construct an <ext -coarse -vertex >:

let ecv = make(<ext -coarse -vertex >,

P: pos , N: nrm , uv: tex);

Listing 2.3: The example in Listing 2.2 rendered in idiomatic Dylan.

Alternatives to constructors exist which do not share some of these drawbacks. For

example, the Common LISP Object System [DG87] and the Dylan language [Sha96]

allow a class to define a number of initialization keywords, which can be used to

provide values to data members (“slots”) when an object is initialized. Listing 2.3

shows the same example as in Listing 2.2, rendered in an idiomatic Dylan style.

We define a required initialization keyword for each slot introduced, and at the point

where we construct an instance (the calls to make()), we provide a keyword argument

for each of the inherited initialization keywords. Note that in this approach, the

class <ext-coarse-vertex> is not required to re-iterate any information pertaining

to the initialization behavior of <coarse-vertex>. The language implementation

synthesizes the correct constructor signature for a derived class, even in the case of

multiple inheritance. This is possible because the use of keyword argument passing

removes the need to arrive at a fixed ordering for the constructor parameters (which

might be inherited from several sources).

CHAPTER 2. BACKGROUND 37

The gbeta language [Ern99] permits flexible initialization without the use of con-

structors, by allowing each class member to declare an initializer that might depend

on any other class member. Because the type of one storage location might depend

on the value in another location (as a result of virtual classes; see Section 2.3.2), it

is important that the members be initialized in an order that respects their depen-

dencies, without allowing any code to “see” a partially-initialized object (since this

could render typing judgements invalid). In simple cases an ordering can be found at

compile time, but in the general case the implementation falls back on lazy evaluation

[Nie07]. We use this same basic approach in the Spark system.

2.3.4 Type Systems

In this section, we present a brief introduction to terminology and notation for type

theory. We will use this notion when discussing the Spark type system in Section 5.1.

Readers who are interested in a more detailed introduction to type theory are directed

to Pierce’s excellent introduction [Pie02]. Notation for type systems are not entirely

standardized; whenever possible, we try to follow Pierce’s conventions.

Types

We may classify terms in a programming language according to the types of values

they may produce at run-time. We write typing judgements in the following fashion:

1 : int

float3(0, 1, 2) : float3

1.0f : float

where : indicates that the expression on the left has the type on the right.

The responsibility of a type-checker is to determine the type of every expression.

When no type can be assigned to an expression, a type error has been found. We

may declare that a given expression has no type as follows:

1 + true : ⊥

CHAPTER 2. BACKGROUND 38

In addition to basic types like int or float, a formal type system will usually need

a type to represent functions:

cross : float3→ float3→ float3

Here we say that the function cross takes two float3 parameters, and returns a

float3. The type D → R represents a function from domain D to range R. The →
operator is right-associative, so that A→ B→ C is equivalent to A→ (B→ C).

The function cross above is given in a curried fashion: the two-parameter function

has been turned into a function of one parameter, that returns another function that

takes the remaining parameter.

Kinds

Many programming languages have some form of “generic” or “templated” types.

For example, the C++ type std::vector<T> represents a sequence of values of type

T. Such generic types present challenges for a type checker. We must be able to rule

out nonsensical types like int<std::vector>, as well as ensure that generic types

are applied to appropriate arguments before use (e.g., it makes no sense to have a

variable of type std::vector in C++).

In response to these challenges, type theorists introduce the notion of kinds. Kinds can

be seen as the “types of types”: kinds classify types just as types classify expressions.

Two kinds are common to many type systems:

K ::=

| ∗ // kind of proper types

| K1 ⇒ K2 // arrow kind constructor

The kind ∗ is traditionally read “type” and is the kind of all proper types. Proper

types are those that classify values, such as int and std::vector<float>. Other

types like std::vector, which cannot classify any value, are non-proper types.

CHAPTER 2. BACKGROUND 39

Much like typing derivations above, we write kinding derivations as:

int :: ∗
std::vector<float> :: ∗

where :: is read as “has kind.”

The⇒ constructor is used to represent the kinds of so-called “generic” or “templated”

types. For example, the (non-proper) C++ type std::vector can be kinded:

std::vector :: ∗ ⇒ ∗

that is, std::vector is a type-level function that maps one data type (the type of

elements T) to another (the type of vectors of T). As another example, the → type

constructor for functions can be kinded:

→:: ∗ ⇒ ∗ ⇒ ∗

since it maps two types—the domain type D and range type R—to the appropriate

function type D→ R.

The notation we have introduced, while limited, is sufficient to discuss the basic

type-system features of commonly-used functional and object-oriented languages.

2.4 Software Engineering

Having discussed many specific programming language concepts and features, we now

turn our attention to a broader topic: what does it mean for a programming model to

support “modularity” and “composability”? If we are to evaluate the success or failure

of the Spark system along such axes, we must find suitable definitions for these terms.

CHAPTER 2. BACKGROUND 40

2.4.1 Modularity

We take as our starting point Parnas’s discussion of modularity [Par72]. In contrast-

ing different decompositions of a system, Parnas provides a concise definition for a

“modularization” (emphasis ours):

The system is divided into a number of modules with well-defined in-

terfaces; each one is small enough and simple enough to be thoroughly

understood and well programmed.

Simply being decomposed into modules with interfaces, however, is not sufficient for

what we typically call modularity. We also wish to be able to change the implemen-

tation of one module (but not its interface) without impacting the implementation

of other modules, or the correctness of the assembled program. Parnas proposes

that a modularization should be driven by “information hiding” [Par71]. Here again

we quote [Par72]:

Every module in the [...] decomposition is characterized by its knowledge

of a design decision which it hides from all others. Its interface or

definition was chosen to reveal as little as possible about its inner workings.

This idea is similar to the notion of separation of concerns [Dij82]. These sources

form the basis for our definition of “modularity”: the physical decomposition of a

program (into modules) reflects its logical decomposition (into concerns).

2.4.2 Composability

Good modularity allows one to change the implementation of a module without im-

pacting others. If we further wish to support multiple, interchangeable implementa-

tions, then we are discussing composability of software components [McI68, Cox90].

Components are not unlike modules in that they encapsulate a related set of services

behind an interface. They differ, however, in that multiple components implementing

a given interface my co-exist in a single application.

CHAPTER 2. BACKGROUND 41

Component interfaces are typically decomposed into those services that a component

provides and those it requires. An important principle of software components is

substitutability : the interface required by a component may be satisfied by any other

component that provides that interface.

The Scala language is notable for identifying both modules and components with the

objects of object-oriented programming. In Scala, the composition of modules and the

composition of components are both described using (mixin) inheritance of classes.

2.4.3 Aspect-Oriented Programming

Sometimes, when code is decomposed so as to separate one set of concerns, the code

for other concerns “cuts across” the modularization. A commonly-cited example of

a cross-cutting concern is logging; a large application will have logging code spread

across many modules. This observation motivates the approach known as aspect-

oriented programming (AOP) [KLM+97, KHH+01]. We will discuss in Section 5.3

how the Spark programming language may be viewed as an AOP language.

An aspect is a unit of modularity (usually separate from more traditional units like

classes) that is used to encapsulate a cross-cutting concern. In many formulations of

AOP, an aspect intercedes in the execution of an “ordinary” program by means of

pointcuts and advice. Pointcuts describe dynamic contexts in the executing program:

e.g., around calls to functions with the prefix Log_. Advice then specifies how to

modify the program behavior when particular pointcuts occur at runtime. Typically

a final executable program is derived by weaving the code for aspects into the code

for other modules (e.g., by modifying Java bytecode as it is loaded). This idea of

intercepting and modifying the behavior of an existing program is similar in spirit

to a metaobject protocol [KR91] in a dynamic language, but AOP is compatible

with static languages.

CHAPTER 2. BACKGROUND 42

2.5 Summary

In this chapter we have provided a brief history of real-time shading languages and

rendering pipelines; described several features from existing languages that might not

be familiar to readers; and introduced suitable notation and terminology for talking

about type-theory and software-engineering concepts in future chapters. With these

preliminary matters out of the way, we now turn our attention to presenting the

design of the Spark language.

Chapter 3

The Spark Language

In this chapter, we discuss the design of the Spark shading language. We begin with

an overview of our design goals, before discussing the abstraction that underlies our

design. We then discuss some of the key design decisions we had to make in realizing

our design, and conclude with a few small, illustrative examples of Spark code.

3.1 Design Goals

At a high level, our goal for the Spark language was to achieve a synthesis of the best

aspects of RTSL—composition of complex effects from modular pipeline shaders—

with those of more recent shading languages like Cg—flexibility, generality, and sup-

port for modern graphics pipelines. In this section, we illuminate our design goals by

discussing how they differ from those of languages like Cg and RTSL, respectively.

3.1.1 Differences from Cg/HLSL/GLSL

Our goals are largely similar to those of Cg, HLSL, and GLSL, differing primarily in

the introduction of three new goals:

43

CHAPTER 3. THE SPARK LANGUAGE 44

Modularity

Programmers should be able to define orthogonal program features as separate mod-

ules. Changes to one module should not require modification of unrelated modules.

What constitutes an “orthogonal feature” should be driven by the needs of the user

(i.e., separation of concerns) and not those of the implementation.

In particular, logical concerns like tessellation, that would otherwise cross-cut the

pipeline structure, should be expressible as a single module.

Composability

It should be possible to combine or extend thoughtfully designed modules to create

new shaders, without resort to copy-paste programming. In particular, a developer

should be able to define a library of shader components for different effects and

combine them in a wide variety of rendering passes.

To demonstrate both modularity and composability, we determined that a Spark user

should be able to write a complex D3D11 tessellation effect as a reusable module.

Automatic Plumbing

Attributes defined in pointwise shading code should be plumbed automatically as

required. For example, a module that defines a per-vertex color and uses it in per-

fragment computations should not require code to, e.g., interpolate that color across

a higher-order surface being tessellated.

The need for automatic plumbing is really a consequence of the preceding two goals,

if we are to support the separate definition and subsequent composition of concerns

that involve pointwise and groupwise shading code. In particular, in order to define a

tessellation effect as a reusable module, we need to be able to tessellate models with

any number of per-vertex attributes (colors, texture coordinates, etc.).

CHAPTER 3. THE SPARK LANGUAGE 45

3.1.2 Differences from RTSL

While our work builds on the pipeline-shader approach of RTSL, we do not share

some of the goals that motivated that system. As such, we felt the need to enumerate

some additional design goals that serve to clarify our mission to “modernize” the

pipeline-shader approach and make it a suitable alternative to Cg, HLSL, and GLSL:

Support Modern Graphics Pipelines

The shading language should be able to expose the capabilities of modern rendering

pipelines such as D3D11, including control flow and programmable groupwise op-

erations. Furthermore, the same language should be usable with future extensions

to the pipeline.

This latter point is quite important: it would not be enough to simply devise specific

language constructs to support e.g., tessellation. We require more general mechanisms

that could apply equally well to future pipelines and stages.

As discussed in Section 2.2.2, we do not concern ourselves with the “compute” in-

terface in D3D11, as this is separate from the rendering pipeline. In particular, the

compute interface does not expose a multi-stage pipeline, and so the issues that mo-

tivate our work would not seem to be a concern.

The current Spark system does not fully achieve this goal, as it omits one major

feature of the D3D11 rendering pipeline: support for arbitrary read-modify-write

operations to memory though “unordered access views” (UAVs). We discuss possible

directions for future work to address this limitation in Section 5.4.1.

Domain-Motivated, Not Domain-Specific

Specialization to the domain of real-time shading is acceptable; as stated above,

we are not trying to build a general-purpose programming language for graphics

CHAPTER 3. THE SPARK LANGUAGE 46

hardware. The Spark language need not support arbitrary dataflow programming (as,

e.g., Imagine’s StreamC and KernelC [KDR+02]), since the topology of a rendering

pipeline is typically fixed.

We recognize, however, that one of the key innovations in Cg is the lack of a par-

ticular domain model for things like surface/light interaction. In a similar fashion,

our solution should not constrain user applications except as the pipeline requires.

Programmers should be free to define their own application-specific interfaces for

illumination, and other aspects of the graphics domain.

Performance

Shaders are effectively the inner-most loops of a renderer. Benefits to abstraction or

modularity must be weighed against costs to performance. Our goal was to achieve

performance similar to hand-tuned shaders in existing high-level languages.

Phase Separation

Flexibility in the shading language and runtime should not result in unexpected pauses

for run-time compilation. There should be a clear phase separation between code

generation and execution, and run-time parameter changes should not trigger recom-

pilation or other expensive operations.

This goal stems from complaints that real-time graphics programmers frequently level

at shading-language runtimes. While a system that optimizes or specializes shaders

“on the fly” should achieve good amortized performance, the worst-case performance

on particular frames can vary widely (e.g., when an object using a new combination of

effects is first rendered). For many domains, including games, predictable worst-case

frame rates are more important than better average-case performance.

CHAPTER 3. THE SPARK LANGUAGE 47

3.2 Shader Programming Abstraction

This section introduces an abstraction for shader programming that underlies our

work. This abstraction defines an interface between the declarative code in a shader

graph, and procedural code comprising the rest of a rendering system.

Figure 3.1 illustrates this interface. A declarative shader graph is used to express

pointwise shading code, while the stages of the pipeline execute procedural code that

may perform groupwise operations. The interface between the shader graph and the

pipeline is provided by a family of data types we call record types, which expose rates

of computation to the pipeline, in addition to plumbing operators, which are invoked

by the shader graph to plumb values between pipeline stages.

Spark is a shading language for programming a graphics pipeline; it is not a system

for constructing new pipelines (as, e.g., GRAMPS [SFB+09]). While systems exist for

more general dataflow programming (c.f., Imagine [KDR+02]), most rendering inter-

faces expose a fixed, or minimally configurable, pipeline topology. A fixed topology

allows for the pipeline implementation to include highly optimized scheduling logic

that is independent of particular applications. We assume in our work that shaders

are authored against a fixed pipeline model, that might be defined as part of a standard

library. The pipeline model defines the stages, record types, and rates of computation

for a particular pipeline (e.g., D3D11). It is the role of the shading language, then,

to expose the capabilities and constraints of the pipeline model to the user.

3.2.1 Shader Graphs

In our abstraction, shader graphs—DAGs representing shading computations—are

used to express pointwise shading code. The right of Figure 3.1 depicts a shader graph.

Each node in the graph represents either an input to the shader or a value it computes.

CHAPTER 3. THE SPARK LANGUAGE 48

construct

instances

PS

GS

for(...)

Emit(new RasterVertex(proj: ...));

DS

HS

RasterVertex

float3 RS_Position;

input float4x4 proj;
RS_Position

color

colorMap

proj

P_disp

disp

dispMap

buffer

P_baseuv

IA_VertexID

Shader Graph

VS

Patch ControlPoint

Record TypesPipeline

define

plumbing operators

invoke

plumbing operators

define fields

define constructor

Fragment

output float4 color;

CoarseVertex

input uint IA_VertexID;

float2 uv;

float3 P_base;

FineVertex

float3 disp;

float4 P_disp;

Figure 3.1: Shader graphs are mapped to the rendering pipeline with the use of
record types. Nodes in the shader graph are colored according to their rate of com-
putation: each node corresponds to a field in the associated record type. Per-stage
kernels and shader procedures running in the rendering pipeline construct, manipu-
late and communicate records.

CHAPTER 3. THE SPARK LANGUAGE 49

As in RTSL, every node is colored according to its rate of computation. For exam-

ple, values that are computed for every fragment are given the per-fragment rate.

Black nodes in this graph correspond to values with uniform rate: that is, uniform

shader parameters. Shader-graph nodes represent attributes: e.g., a per-fragment

color attribute.

The graph in Figure 3.1 represents the following computations:

• Per coarse vertex, position and texture-coordinate data are fetched from a

buffer, using a system-provided vertex ID.

• Per fine vertex, a vector displacement map is sampled and used to compute a

displaced position.

• Per raster vertex, the position is projected into clip space.

• Per fragment, a color map is sampled.

Some attributes (shader-graph nodes) are pre-defined for a particular rendering sys-

tem. For example, D3D11 defines a per-coarse-vertex sequence number: this appears

in our graph as the IA_VertexID input. System-defined attributes may also represent

shader outputs used by the rendering system: for example, RS_Position represents

the projected position consumed by the rasterizer.

3.2.2 Pipeline Model

The left of Figure 3.1 depicts the programmable stages of the D3D11 rendering

pipeline. The stages are connected by streams that carry data in the form of records.

Different stages and streams will make use of different types of records. In the case

of the D3D11 pipeline, the record types correspond to the terms introduced in Sec-

tion 2.2.1: coarse vertices, fragments, etc. For example, the stream connecting the

DS and GS carries FineVertex records. Our abstraction does not assume that stages

have only one input or output stream, nor does it assume the pipeline is cycle-free.

CHAPTER 3. THE SPARK LANGUAGE 50

Each stage in the pipeline runs a system-defined kernel that defines its behavior (our

use of this terminology is inspired by KernelC [KDR+02]). In general, a kernel can

pop records from input streams, execute system- or user-defined operations, and push

records onto output streams. A fixed-function stage can be understood as having a

hard-coded kernel, perhaps parameterized on data, but not on code.

In contrast, the kernel for a programmable stage applies a per-stage shader procedure

to compute results. For example, the kernel for the D3D11 GS stage pops fine vertex

records (representing a primitive) from its input stream, and passes both these records

and a handle to its output stream to a user-defined shader procedure. This shader

procedure may then construct zero or more RasterVertex records and push them on

the output stream.

Other stages follow a similar pattern. The kernels for the VS and PS stages always

pop a single input record and apply a per-stage procedure to compute one output

record, implementing their one-to-one communication pattern. The kernels for the

HS and DS stages pop an aggregate of input records (e.g., all of the coarse vertices

in the neighborhood of a base-mesh primitive) and then apply per-stage procedures

one or more times to construct a number of independent output records.

In a shader-per-stage language like Cg, these per-stage procedures are authored di-

rectly by the user. Our abstraction supports this degree of flexibility, and indeed we

make use of it for the GS stage, but for the other programmable stages in D3D11

it is not required. For example, the only thing that a VS-stage procedure can do

is construct a coarse vertex given an assembled vertex, so the rendering system can

provide a single “one size fits all” VS procedure, e.g.:

CoarseVertex VS(uint IA_VertexID , AssembledVertex av)

{

return CoarseVertex(IA_VertexID , av);

}

In this case, the VS procedure delegates all of the shading work to the constructor

for CoarseVertex records.

CHAPTER 3. THE SPARK LANGUAGE 51

3.2.3 Rates and Record Types

A key property of our abstraction is that record types are in one-to-one correspon-

dence with rates of computation. That is, for every record type there is a corre-

sponding rate of computation, and vice versa. For example we have both a type

CoarseVertex, as well as per-coarse-vertex computations in our shader graph.

A record type may be thought of like a C++ struct type: it has some number of

fields, as well as a constructor. Continuing the identification of rates of computation

and record types, for every node in the shader graph with a given rate, there is a

field in the corresponding record type. For example, our shader graph in Figure 3.1

defines a per-raster-vertex position RS_Position, and the RasterVertex record type

has a corresponding RS_Position field.

The constructor for a record type is similarly defined by the shader-graph nodes. For

example, the per-coarse-vertex computations in the shader graph define the body of

the CoarseVertex constructor. Input nodes in the graph (e.g., IA_VertexID) corre-

spond to constructor parameters—that is, values which must be provided whenever

a CoarseVertex record is created.

This identification of rates and record types provides the required interface between

per-stage procedures in the pipeline and code in the shader graph. When the system-

defined VS procedure above invokes the CoarseVertex constructor, it has the effect of

performing all the per-coarse-vertex computation in the shader graph, and collecting

the resulting values in a record.

This model also applies to a stage with a user-defined procedure, such as the GS.

A user-defined GS procedure may be authored to perform a particular groupwise

operation—e.g., duplicating primitives for rendering to a cube map—by constructing

and pushing new RasterVertex records. This code only has to know about the input

attributes of the shader graph: these define the signature of the RasterVertex con-

structor. Additional pointwise computations (i.e., additional non-input nodes) may be

independently added to the shader graph without conflict (e.g., RS_Position). The

CHAPTER 3. THE SPARK LANGUAGE 52

operations in the shader graph, in turn, remain oblivious to how many RasterVertex

records the GS procedure might construct, or in what order it might emit them. Our

abstraction thus allows groupwise code in a shader procedure to be decoupled from

pointwise code in a shader graph.

Our approach here is a refinement of how rates are modeled in RTSL. The RTSL

system maps shader graphs to programmable pipeline stages by identifying rates of

computation with stages of the pipeline. For example, RTSL computations with

the vertex rate map to instructions compiled for the vertex-processing stage of the

pipeline. While this is an intuitive approach for a pipeline with programmable VS

and PS stages, it does not map as easily to the needs of a current pipeline like D3D11.

For example, we want to be able to express per-raster-vertex computations, but no

pipeline stage executes at per-raster-vertex rate.

3.2.4 Plumbing Operators

When an attribute with per-coarse-vertex rate (e.g., P_base) is used as an input to

a per-fine-vertex computation (P_disp), the attribute must be plumbed from one

rate to the other. We can recognize plumbing in the shader graph in Figure 3.1

wherever an edge connects nodes with different colors. We refer to the operations

that perform plumbing—that is, that create cross-rate edges—as plumbing operators.

Each cross-rate edge in the graph (e.g., from P_base to P_disp) was created by

invoking a plumbing operator. In practice, plumbing an attribute like P_base yields

a new attribute with the same data type (e.g., float3) but a different rate; for clarity

we omit the nodes that result from plumbing in Figure 3.1.

A shader graph specifies where plumbing must be performed, but does not define

how plumbing operators perform this work. Some plumbing operators are defined as

part of the pipeline model: for example, to expose interpolation from raster vertices

to fragments by a fixed-function rasterizer. Additional plumbing operators might be

defined by the shader programmer, as part of a shading effect like tessellation. These

user-defined operations may then be invoked, perhaps implicitly, in the shader graph.

CHAPTER 3. THE SPARK LANGUAGE 53

Plumbing might involve interpolation or more general resampling; as such the im-

plementation of a plumbing operator will typically involve groupwise code, requiring

access to explicit records. For example, an operator for plumbing attributes from

coarse to fine vertices might operate on an aggregation of CoarseVertex records

representing the neighborhood of an input primitive.

Different plumbing operators may apply to different types of attributes. For example,

in Figure 3.1, positions might be plumbed from coarse to fine vertices using bicubic

Bézier interpolation. Texture coordinates or colors, in turn, might be subjected to

only bilinear interpolation.

In the process of plumbing an attribute from one rate to another, it might be resam-

pled to intermediate rates. For example, to interpolate vertex positions from coarse to

fine vertices, they might first be converted to per-control-point positions in a Bézier

basis, and then interpolated. In this way, plumbing might introduce additional at-

tributes (shader-graph nodes) not depicted in Figure 3.1.

3.3 Key Design Decisions

In this section, we review some of the most important design decisions we had to

make in realizing the Spark language. In each case, we try to explain why we made

the choices we did, and highlight alternative approaches we considered.

3.3.1 A Language with Declarative and Procedural Layers

We believe that programmers should be able to define and compose modules that

might intersect multiple stages of the rendering pipeline. RTSL demonstrates that

this is possible using declarative shader graphs. However, as discussed earlier, RTSL’s

shader graphs cannot express shaders with control flow, nor can they define the various

kinds of groupwise shading operations we wanted to support.

CHAPTER 3. THE SPARK LANGUAGE 54

We decided to tackle this problem by building a shading language with two layers.

In the upper layer, the user defines declarative shader graphs. That is, instead of

writing a shader as a procedure composed of statements, the user declares a set of

shader-graph nodes. Each node is either a shader input, or defines its value as an

expression of other nodes.

In the lower layer, the user defines procedural subroutines. Within a subroutine, the

programmer can make use of local variables, control flow and other features of proce-

dural shading languages. A subroutine can then be called in the definition of a new

shader-graph node. The new node may encapsulate a complex computation, but will

be assigned a single rate of computation. In this way we avoid the problematic inter-

actions between control flow and rate qualifiers that were discussed in Section 2.1.4.

An alternative would have been to introduce looping and conditional constructs to the

declarative language in the form of higher-order functions or recursion, as is done in

Renaissance [AR05]. We were concerned, however, that a purely functional approach

would alienate programmers who are more familiar with C-like procedural languages.

Furthermore, while our original motivation for including procedural subroutines was

the ability to express control flow, we soon discovered additional uses. One simple

use was that we could express plumbing operators as a special kind of subroutine

(although we do not allow control flow in plumbing operators). Another use was in

expressing the per-stage procedure required by the GS.

As discussed in Section 3.2, our abstraction includes per-stage shader procedures

running in the rendering pipeline; while system-defined procedures are sufficient for

many stages, the GS stage needs a user-defined procedure. We model this in Spark

as a procedural subroutine that the user must define, which may push zero or more

raster vertex records onto an output stream.

A purely functional language could instead model the GS as yielding a variable-length

list, but implementing this efficiently might be a challenge. Alternatively, the side-

effects (emitting raster vertices) could be explicitly ordered with, e.g., monads [Wad90].

CHAPTER 3. THE SPARK LANGUAGE 55

3.3.2 Shaders Are Classes

Shade trees and RTSL give shader graphs the appearance of procedures, even though

the underlying shader-graph representation is quite different. Users might be sur-

prised to find out that they cannot use data-dependent control flow in the body of

a shader. We wanted to avoid this confusion in Spark, particularly because we also

support subroutines in which control flow is allowed.

RSL shows that it can be valuable for an application to treat shaders as classes

rather than procedures. For Spark, we treat shaders as classes both semantically and

syntactically. This choice of representation brings benefits along multiple axes.

First, classes are a declarative rather than procedural construct: they describe what

something is. Users are familiar with the idea that a class in C++ or Java directly

contains declarations (of types, fields, methods, etc.), but does not directly contain

statements (e.g., a class cannot directly contain a for loop, although a method in the

class may). Similarly, a Spark shader class contains declarations of types, subroutines,

and, most importantly, attributes (nodes in the shader graph). This decision aims to

reduce the learning curve for the language, and make confusion between procedural

and declarative code less likely.

Second, classes bring a rich set of mechanisms for modularity and composition from

the discipline of object-oriented programming (OOP). Our formulation of OOP is

heavily influenced by the Scala language [OAC+04]. Notable capabilities include:

• A shader class can extend another shader class, inheriting its declarations (at-

tributes, etc.), and adding new nodes of its own—without changing the behavior

of the original class.

• Multiple shader classes can be composed by using multiple mixin inheritance,

implemented through linearization (we employ the C3 linearization algorithm;

see Section 2.3.1).

• By declaring some shader-graph nodes virtual, a shader can allow parts of its

behavior to be customized.

CHAPTER 3. THE SPARK LANGUAGE 56

• Shader classes with abstract members can represent interfaces that a module

either requires or provides.

Every Spark shader class inherits (directly or indirectly) from a base class that defines

the particular pipeline being targeted (e.g., D3D11DrawPass for D3D11). From this

base class, the shader class inherits pipeline-specific types, subroutines, and shader-

graph nodes, which define the services that the pipeline provides and requires. Shaders

targeting different pipelines will inherit different capabilities and responsibilities.

The representation of shaders as classes in Spark also benefits our run-time interface.

For each Spark shader class, our compiler generates a C++ “wrapper” class. The

interface of this class is generated statically, but the implementation might be gener-

ated at run-time. The wrapper is used to construct shader instances and set values

for parameters. The wrapper also exposes a Submit() method that handles binding

of shaders, resources and state. This is similar in spirit to existing effect systems, but

generating wrapper code allows for a low-overhead, type-safe interface to shaders.

The object-oriented representation also helps us achieve a clear phase separation. In

the Spark run-time interface, creating a shader instance is a heavy-weight operation:

it may generate GPU code or allocate other resources. Once a shader instance has

been created, however, setting its parameters and using it for rendering are lightweight

operations that should not trigger recompilation.

Users may, of course, want to specialize shader code to particular parameter val-

ues. The RTSL system models this by having both constant (compile-time) and

primitive group (i.e., uniform) rates. Spark follows this same approach and has

both @Constant and @Uniform rates. The intention with this design is that users

may specify values for constant parameters at the time a shader instance is created,

although our current implementation lacks this feature.

Our use of an object-oriented abstraction seems to be a kind of design sweet spot,

providing elegant solutions for a number of requirements, but it is by no means the

only option. For example, rather than use OOP features in the shading language to

CHAPTER 3. THE SPARK LANGUAGE 57

represent composition, we might instead use explicit operators at run-time (as with

Cook’s grafting operator, or the Sh shader algebra). One weakness that results from

using linearization-based inheritance for composition is that a given module (shader

class) in Spark can only compose one “copy” of any other module; that is, we can

only express is-a and not has-a relationships between modules. In Section 5.4.4 we

sketch a possible future direction for addressing this limitation.

3.3.3 Model Rates of Computation in Libraries,

Not the Compiler

Existing shading languages with rates of computation represent them with a fixed set

of keywords (e.g., varying in RSL or fragment in RTSL). However, modeling each

rate as a language keyword wouldn’t mesh well with our goals for Spark: different

rendering pipelines will support different rates, and the introduction of a new pipeline

stage should not require changing the language syntax.

We decided that Spark should have an extensible set of rate-qualifier names, rather

than a fixed set of keywords. In particular, system libraries that expose different

pipelines should be able to expose different rates. To distinguish them from other

names in the language, we require that the names of rate qualifiers start with an @

sign. Where RTSL has fragment, then, an equivalent Spark shader uses @Fragment.

The intention is that @ can be read as “per-,” so that a @Fragment Color is a “per-

fragment color.”

As discussed in Section 3.2.3 every rate of computation in our abstraction is associated

with a corresponding record type. In Spark, the record type corresponding to a rate

qualifier has the same name without the @ prefix. So, for example, the record type

associated with the @ControlPoint rate is ControlPoint.

CHAPTER 3. THE SPARK LANGUAGE 58

3.3.4 Expose Rate Conversion as Plumbing Operators

Simply allowing for an extensible set of rate-qualifier names is not sufficient. One of

our key design goals is to allow automatic plumbing. For example, values with the

@CoarseVertex rate qualifier should be usable in @FineVertex computations.

The Spark compiler performs plumbing by automatically inserting calls to plumbing

operators. This design was inspired by languages that support user-defined implicit

conversions. Both C++ and Scala allow users (and libraries) to define auxiliary

functions that perform type conversion. Calls to these functions can be inserted by

the type-checker as needed, according to well-defined rules.

In the case of Spark, plumbing operators take the form of subroutines with explicitly

rate-qualified inputs and outputs, e.g.:

implicit @FineVertex float coarseToFine(

@CoarseVertex float attr);

Here we have an operator that can convert a per-coarse-vertex float into a per-fine-

vertex float. Invoking a plumbing operator—whether implicitly or explicitly—causes

an attribute (a node in the shader graph) to be plumbed from one rate to another.

When the compiler encounters a mismatch on rate qualifiers, it may insert calls to

implicit plumbing operators to coerce a value from one rate to another.

In many cases, plumbing operators are defined as part of a rendering pipeline. For

example, the D3D11 pipeline exposes plumbing operators which may be used to

convert from @RasterVertex to @Fragment values. Because plumbing operators are

named subroutines, the library can expose multiple methods of interpolation, e.g.:

implicit @Fragment float perspectiveInterpolate(

@RasterVertex float attr);

@Fragment float centroidInterpolate(

@RasterVertex float attr);

CHAPTER 3. THE SPARK LANGUAGE 59

In this example, shader-graph code can opt in to centroid interpolation for a given

value by calling the appropriate operator explicitly, or rely on implicit plumbing,

which performs perspective-correct linear interpolation.

The signature of the plumbing operators above may be surprising. How can a func-

tion like perspectiveInterpolate() possibly take a single input when interpolation

requires at least three values (for the three raster vertices that make up a triangle)?

These signatures, however, are correct from the point of view of pointwise shading

code: perspectiveInterpolate() takes a per-raster-vertex attribute and converts

it to a per-fragment attribute. More fundamentally, this function does not operate on

particular concrete values (e.g., 2.0f), but on attributes : nodes of the shader graph

or, equivalently, fields of a record type. We can intuitively think of the parameter

attr as representing the name of a graph node.

When defining a module that includes groupwise operations (e.g., a tessellation

scheme) a programmer may also define plumbing operators that can interpolate per-

coarse-vertex values to fine vertices. A user-defined plumbing operator may apply

only to values of a specific type (e.g., Points or Normals), or can be “templated” to

apply to any attribute. A tessellation scheme can thus define special-case interpo-

lation for points, vectors, and normals, while also defining a templated operator to

handle attributes of other types.

One important consideration when allowing libraries to define their own rates of

computation is portability. For example, if a Direct3D 9 pipeline interface uses a

@Vertex rate where D3D11 uses @CoarseVertex, then a single shader cannot trivially

port between the two. Allowing shaders to port between different rendering pipelines

will require conscientious library design.

Stage-Specific Operations

In order to support plumbing operators, we designed the Spark language to support

functions with explicitly rate-qualified inputs and outputs. Once this support was in

CHAPTER 3. THE SPARK LANGUAGE 60

place, it became clear that the same basic mechanism could also be used to define

functions that are specific to a particular rate. For example, the screen-space deriva-

tive functions like ddx() should only be available to code running at per-fragment

rate in the D3D11 pipeline:

@Fragment float ddx(@Fragment float value);

These “single-rate” functions can be used in the system-provided libraries to expose

operations that should only be available to a certain rate, or set of rates. Users may

also define their own single-rate functions; for example, a subroutine that needs to

make use of the ddx() function must be marked as specific to the @Fragment rate.

3.3.5 Implement Record Types as Virtual Classes

As described in Section 3.2.3, our shader-programming abstraction relies on identify-

ing rates of computation with record types. Thus, a declaration like:

@Fragment float nDotL = dot(N, L);

is viewed both as defining an attribute nDotL with @Fragment rate, but also as defining

a float-type field nDotL in the Fragment record type.

We have already described how a derived shader class inherits all the attributes

(shader-graph nodes) of its base class(es). If a @Fragment attribute in the base class

corresponds to a field of its Fragment record type, then this means that the derived

class’s Fragment type must also have these fields. Any additional @Fragment at-

tributes defined in the derived class serve to extend the derived definition of Fragment.

In order to provide a robust conceptual grounding for this behavior, we chose to

model the semantics of Spark’s record types as a restricted form of virtual classes, as

introduced in Section 2.3.2.

CHAPTER 3. THE SPARK LANGUAGE 61

As discussed in Section 3.2.3, the computations with, e.g., the @RasterVertex rate

define the operations to be performed when constructing a RasterVertex value.

We take inspiration from the flexible approaches to initialization described in Sec-

tion 2.3.3, and synthesize initialization code for record types automatically from

the corresponding shader-graph nodes. Attributes with the input qualifier corre-

spond to constructor parameters for the corresponding record type. A given class

might inherit multiple such attributes, with no clear ordering implied; Spark uses a

key:value syntax for passing arguments when constructing records to avoid needing

to define an order.

3.3.6 Define Plumbing Operators Using Projection

We will illustrate how Spark can be used to implement plumbing operators with a

brief example. Suppose the user wishes to define an operator to plumb values from

control points to fine vertices, using linear barycentric interpolation over triangles:

implicit @FineVertex float baryInterpolate(

@ControlPoint float attr);

To support such a definition, the system library for the D3D11 pipeline exposes two

built-in attributes (shader-graph nodes):

@FineVertex Array[ControlPoint , ...] DS_InputControlPoints;

@FineVertex float3 DS_DomainLocation;

The first of these declarations states that for every fine vertex (i.e., per-fine-vertex)

there is an array of control points (comprising an input patch). The array size

depends on the number of control points given by the user: in this case, three. The

second declaration states that every fine vertex knows its barycentric location in the

tessellation domain.

CHAPTER 3. THE SPARK LANGUAGE 62

implicit @FineVertex float baryInterpolate(

@ControlPoint float attr)

{

// project ’attr ’ out of each control point

@FineVertex float a0 = attr @ DS_InputControlPoints (0);

@FineVertex float a1 = attr @ DS_InputControlPoints (1);

@FineVertex float a2 = attr @ DS_InputControlPoints (2);

// barycentric linear interpolation

return a0 * DS_DomainLocation.x

+ a1 * DS_DomainLocation.y

+ a2 * DS_DomainLocation.z;

}

Listing 3.1: Example Spark plumbing operator. The per-control-point attribute attr

is projected out of three particular control points and then interpolated.

Listing 3.1 shows how a user-defined plumbing operator takes advantage of these

system-defined attributes to perform interpolation across several control points. We

fetch each control point from the array—each of these values is a ControlPoint

record. We then project out the value of a particular field by using @ as an infix

operator. Note that this is projection in the sense of the relational algebra [Cod70],

rather than geometry.

Projection relies fundamentally on the interface between shader graphs and record

types defined in Section 3.2.3. In particular, if attr represents a per-control-point at-

tribute (that is, a shader-graph node with per-control-point rate), then it corresponds

to a field in the ControlPoint record type. If, as in Section 3.3.3, we think of attr

as holding the name of a particular field, then the projection attr @ cp fetches the

field with that name for a particular control point.

When performing projection, the @ character may be read as “at,” so that, e.g.,

color @ vertex yields the value of a per-vertex color at a particular vertex. The

use of @ to both indicate rates of computation and to perform projection is meant to

be similar in spirit to C, where * is used both when declaring pointer variables and

when dereferencing them.

CHAPTER 3. THE SPARK LANGUAGE 63

If record types can be thought of like struct types, then it might seem that we

should instead use more conventional syntax like cp.attr. The scoping rules for

our projection operation, however, do not match those for C’s “dot operator.” In

particular, attr in Listing 3.1 is a function parameter in local scope. Each time

baryInterpolate() is invoked, this parameter may refer to a different field of the

ControlPoint type. As such, we use distinct syntax to reflect the distinct semantics.

Alternative Approaches

Our approach to exposing plumbing in Spark relies deeply on our choice to expose

record types explicitly, and identify record types with rates of computation. However,

at the earliest stages of our design process, we did not have a notion of record types

and instead sought to expose plumbing entirely in terms of rates.

For example, rather than expose the many-to-one relationship between control points

and fine vertices as an array of explicit ControlPoint records:

@FineVertex Array[ControlPoint , ...] DS_InputControlPoints;

we could instead expose a multi-parameter plumbing operator:

@FineVertex T CP2FV[type T](@ControlPoint T attr ,

@ControlPoint int idx);

With this CP2FV() operator available, a user can define a baryInerpolate() operator

equivalent to the one in Listing 3.1, without the need for projection. For example,

we could fetch the value of an attribute for the three control points by writing:

@FineVertex float a0 = CP2FV(attr , 0);

@FineVertex float a1 = CP2FV(attr , 1);

@FineVertex float a2 = CP2FV(attr , 2);

CHAPTER 3. THE SPARK LANGUAGE 64

Another alternative would be to have a plumbing operator that returns an array:

@FineVertex Array[T,3] CP2FV[type T](@ControlPoint T attr);

in which case the code inside the plumbing operator becomes:

@FineVertex float a0 = CP2FV(attr)(0);

@FineVertex float a1 = CP2FV(attr)(1);

@FineVertex float a2 = CP2FV(attr)(2);

As discussed above, we initially employed approaches like this, which allow users to

define their own plumbing operators without exposing record types or projection as

language concepts. We ultimately abandoned these alternatives in favor of exposing

record types and projection directly. Several factors motivated our choice:

• We needed the notion of record types anyway, at the very least to be able to

expose the GS stage.

• Each of these alternative plumbing operators is potentially confusing: the first

because it obscures the use of an array; the second because applying the operator

changes the type (and not just the rate) of the operand.

• In order to implement operators like these in our system library, we would end

up using the mechanisms of record types and projection anyway. Exposing the

mechanisms directly allows users to define their own rates, if desired.

3.3.7 Drive Rate Conversion by Outputs, Not Inputs

An important design choice is where the compiler should insert implicit conversions.

For example, given a snippet of code like:

@CoarseVertex float3 N = ...;

@CoarseVertex float3 L = ...;

@Fragment float nDotL = dot(N, L);

is the dot product computed per-coarse-vertex or per-fragment?

CHAPTER 3. THE SPARK LANGUAGE 65

RTSL derives the rate of an operation from the rates of its inputs: the dot product

is computed per-vertex. This rule has an appealing simplicity, and a similar flavor to

the rules for type promotion in C.

We initially applied this approach in Spark, but found that it had unintuitive con-

sequences. In cases where a programmer wants to compute the above dot product

per-fragment, they need to insert an explicit conversion (cast). Such cases arise of-

ten, however, and we found that with these rules even simple shaders required several

explicit casts to achieve the desired behavior. Of greater concern, when we forgot

to insert a cast, we would get no diagnostic messages—errors or warnings—from the

compiler. Instead, a shader would silently compute some results at less than the

desired rate, leading to visual artifacts.

Why didn’t the RTSL designers encounter this problem? We suspect that the answer

has to do with the limited capabilities of GPU fragment processors at the time. Shader

authors targeting early programmable GPUs would tend to compute intermediate

results per-vertex whenever possible. In this case, language rules which err on the

side of efficiency rather than quality were likely a good match.

For Spark, though, we found that users expected the dot product above to be com-

puted per-fragment. We eventually concluded that the rate at which a computation

is performed must be driven by its output rather than its inputs. This decision was

made with reluctance, since it too has unexpected consequences. Most notably, mov-

ing a sub-expression from one place to another can change the rate at which it is

evaluated. This choice also means every user-declared node in the shader graph must

have a rate qualifier specified, whereas RTSL allows many qualifiers to be inferred.

We have still found, though, that this new rule more closely matches programmer

intuition, and eliminates many explicit casts that would otherwise be needed.

CHAPTER 3. THE SPARK LANGUAGE 66

3.3.8 Move Computations When Pipeline

Stages Are Disabled

The D3D11 pipeline allows the HS, DS, and GS stages to be disabled by binding a

“null” kernel. In Spark, a shader class must opt in to use of these pipeline stages

by inheriting from system-defined mixin shader classes D3D11Tessellation and/or

D3D11GeometryShader. If a class does not inherit from these, directly or indirectly,

the corresponding stages are disabled.

If the user disables, e.g., the GS, what should happen to @RasterVertex computations

in their shader graph? In our interface to the D3D11 pipeline we take advantage

of the fact that record types and pipeline stages are decoupled. When the GS is

disabled, our D3D11 back-end moves the construction of RasterVertex records to

the DS stage instead. If the tessellation (HS and DS) stages are also disabled, then all

computation on the different flavors of vertices will be executed in the VS stage. This

design has similar properties to the shader framework of Kuck and Wesche [KW09],

where operations defined in the “Post Geometry” stage are executed in the VS if no

GS effect is active.

Moving computations in this manner has the drawback that the mapping from the

shader-graph abstraction to the rendering pipeline becomes more complicated. This

complexity may make it difficult for a shader writer to decide what rate to give to

particular computations. An important benefit, however, is that it is possible to write

pointwise shading operations that can be used both with and without tessellation or

GS effects. For example, a displacement effect that operates at @FineVertex rate

will work with both tessellated and untessellated models.

CHAPTER 3. THE SPARK LANGUAGE 67

3.3.9 A Language for Configuring the Entire Pipeline

A concrete Spark shader class (that is, one with no remaining abstract mem-

bers) defines a complete configuration of the rendering pipeline—including both pro-

grammable and fixed-function stages. This is in contrast to most prior work.

When rendering with a shader-per-stage language, the configuration of the pipeline is

driven both by the particular shaders that are bound, as well as by fixed-function state

configured through a C or C++ API. The Cg and D3D “effect” systems allow per-

stage shaders to be bundled together with state for most of the fixed-function stages,

although the configuration of vertex assembly (the IA pipeline stage in D3D11) and

binding of render targets are left to C/C++ code.

Our primary motivation for putting all configuration into the Spark language was to

be able to statically check and ensure the validity of a pipeline configuration. We can

ensure, for example, that the IA pipeline stage outputs all of the vertex attributes

required by the VS stage, because we generate the configuration of both stages from

the same program.

One challenge we faced in achieving this goal was that some fixed-function stages are

“almost” programmable. Specifically:

• The IA stage configuration specifies zero or more vertex attributes, each with a

name and type. Each attribute may be fetched from one of several user-defined

vertex streams. The index used for the fetch is either the system-provided

per-vertex ID, or the system-provided per-instance ID (optionally divided by a

user-defined constant).

• The OM stage configuration specifies zero or more blending setups, each cor-

responding to a pair of a PS-stage output and a bound render target. For

each target, and for both the color and alpha channels of that target, the user

may specify a computation—e.g., sum, difference, minimum, or maximum—

as well as two multiplicative factors, one each for the source fragment and

destination pixel.

CHAPTER 3. THE SPARK LANGUAGE 68

In each of these cases, the fixed-function stage produces/consumes records with at-

tributes that must match—in number, name, and type—those consumed/produced

by an adjacent programmable pipeline stage.

In order to simplify the configuration and validation of the IA and OM stages, we

allow them to be configured in a Spark program as if the stages are programmable.

For example, the following code implements a standard premultiplied alpha blend:

@Fragment float4 color = ...;

output @Pixel float4 target =

(target @ OM_Dest) * color.w + color;

Here OM_Dest refers to the destination pixel for the blend operation (somewhat con-

fusingly, of type @Pixel Pixel), so that target @ OM_Dest refers to the value stored

in the render target target for that pixel. We scale that value by the last component

(the alpha value) of our per-fragment color, and then add it to the color, to achieve

the final value to be written back to the render target.

One down-side to our approach is that our compiler implementation must be able to

map high-level Spark code for blending or vertex-assembly operations to the low-level

configuration structures required by the rendering pipeline. We currently achieve this

by a simple pattern-matching approach, but have found that it is difficult to provide

good diagnostic messages to users when pattern-matching fails; simply telling a user

that their blending logic is “too complex” is undesirable.

One additional benefit of providing a uniform interface to the rendering pipeline is

that all input shader parameters in Spark take the form of input attributes declared

in a shader class (e.g., input @Uniform in the case of D3D11) and all output pa-

rameters are output attributes (output @Pixel in D3D11). This highly uniform

representation is in contrast to, e.g., HLSL where different syntax is used depend-

ing on the type of parameter: a uniform matrix, texture resource, and render target

would each be declared differently.

CHAPTER 3. THE SPARK LANGUAGE 69

3.4 Example Spark Shaders

In this section we present several complete Spark shaders, targeting key features of

the D3D11 pipeline. With each example, we will try to highlight relevant features of

the Spark language.

3.4.1 A Minimal Complete Shader

In order to impart the flavor of the Spark language, we present a brief code example

in Listings 3.2 and 3.3. The Base shader class fetches and transforms vertices, while

Displace and Shade extend Base with displacement mapping and simple texture

mapping, respectively. This decomposition separates the concerns of displacement

and texturing: each can be defined and used independently. The shader class Example

composes the two concerns, and yields a shader graph similar to that in Figure 3.1.

Each shader class is declared with the shader class keywords. The Base class

extends D3D11DrawPass, a shader class defined as part of our Spark system library,

and implemented with support from the compiler. Inheriting from this class means

that Base can make use of types, operations, and rates of computation defined by the

D3D11 interface. This includes a number of types (e.g., float4x4) and operations

(e.g., mul) that are familiar to users of HLSL. In addition, Base inherits a number

of rates of computation, such as @CoarseVertex and @FineVertex. These types,

operations, and rates are defined by the D3D11DrawPass class, rather than by the

Spark language syntax.

Note that the VertexStream type is “templated” on a user-defined struct type.

Spark uses square brackets [] rather than angle brackets <> to enclose type param-

eters. As a consequence indexing operations, such as fetching from vertexStream,

use ordinary function-call syntax.

CHAPTER 3. THE SPARK LANGUAGE 70

shader class Base extends D3D11DrawPass

{

input @Uniform float4x4 modelViewProjection;

input @Uniform uint vertexCount;

input @Uniform SamplerState linearSampler;

// Stream of vertices in memory

struct PNuv { float3 P; float3 N; float2 uv; }

input @Uniform VertexStream[PNuv] vertexStream;

// Bind number and type of primitives to draw

override IA_DrawSpan = TriangleList(vertexCount);

// Per -coarse -vertex - fetch from buffer

@CoarseVertex PNuv assembled =

vertexStream(IA_VertexID);

@CoarseVertex float3 P_base = assembled.P;

@CoarseVertex float2 uv = assembled.uv;

// Declare model -space position to be virtual

virtual @FineVertex float3 P_model = P_base;

// Bind clip -space position for rasterizer

override RS_Position = mul(float4(P_model , 1.0f),

modelViewProjection);

}

Listing 3.2: Example Spark shader class, for projection of vertex positions.

The classes in Listings 3.2 and 3.3 define a number of attributes (shader-graph nodes).

The input @Uniform attributes represent input shader parameters, while the output

@Pixel attribute in Shade represents a shader output that should be captured in a

render target. A shader class can override the definition of an inherited abstract

or virtual attribute, whether the attribute is user- or system-defined (e.g., P_model

and RS_Position, respectively).

CHAPTER 3. THE SPARK LANGUAGE 71

mixin shader class Displace extends Base

{

input @Uniform Texture2D[float3] displacementMap;

// Per -fine -vertex - displace

@FineVertex float3 disp =

SampleLevel(displacementMap , linearSampler ,

uv, 0.0f);

override P_model = P_base + disp;

}

mixin shader class Shade extends Base

{

input @Uniform Texture2D[float4] colorMap;

// Per -fragment - sample color

@Fragment float4 color = Sample(colorMap ,

linearSampler , uv);

// Per -pixel - write to target

output @Pixel float4 target = color;

}

shader class Example extends Displace , Shade {}

Listing 3.3: Extensions of the shader class in Listing 3.2. The Example class cor-
responds approximately to the shader graph in Figure 3.1.

3.4.2 C++ Interface

Listing 3.4 shows examples of C++ wrapper classes generated by the Spark compiler.

The Spark shader classes Base and Example from Listings 3.2 and 3.3 are reflected as

equivalent C++ wrapper classes. Note that we elide the Displace and Shade shader

classes here; we will discuss the translation of mixin shader classes in Section 4.1.4.

Listing 3.5 shows how the C++ class Example can be used for rendering in an ap-

plication. When creating an instance of the class, we specify a particular rendering

device. Creating the instance might entail compilation of GPU code or allocation

of other resources for the device. It is a heavyweight operation, and thus should be

avoided at runtime.

CHAPTER 3. THE SPARK LANGUAGE 72

class Base :

public spark :: d3d11:: DrawPass

{

public:

// @Uniform inputs

void SetModelViewProjection(spark:: float4x4 value);

void SetVertexCount(UINT value);

void SetLinearSampler(ID3D11SamplerState* value);

void SetVertexStream(spark:: VertexStream value);

// ...

};

class Example :

public Base

{

public:

// @Uniform inputs

void SetDisplacementMap(ID3D11ShaderResourceView* value);

void SetColorMap(ID3D11ShaderResourceView* value);

// @Pixel outputs

void SetTarget(ID3D11RenderTargetView* value);

// Submit

void Submit(ID3D11Device* device ,

ID3D11DeviceContext* context);

// ...

};

Listing 3.4: Spark compiler-generated C++ wrapper classes. These classes corre-
spond to the Spark shader classes Base and Example in Listings 3.2 and 3.3, respec-
tively.

CHAPTER 3. THE SPARK LANGUAGE 73

// At startup:

ID3D11Device* d3dDevice = ...;

spark :: IContext* context = ...;

Example* instance =

context ->CreateShaderInstance <Example >(d3dDevice);

// At runtime:

ID3D11DeviceContext* d3dContext = ...;

// Set @Uniform inputs:

instance ->SetModelViewProjection(mvp);

instance ->SetVertexCount(3);

instance ->SetVertexStream(vertexBuffer);

instance ->SetLinearSampler(samplerState);

instance ->SetDisplacementMap(dispTex);

instance ->SetColorMap(colorTex);

// Set @Pixel outputs:

instance ->SetTarget(renderTarget);

instance ->SetDepthStencilView(depthStencil);

// Submit:

instance ->Submit(d3dDevice , d3dContext);

Listing 3.5: Rendering with a Spark shader, using compiler-generated C++ wrapper.

Once the shader instance is created, its input @Uniform and output @Pixel param-

eters may be bound. This is done using the compiler-generated accessor functions in

the C++ wrapper class.

To render with the shader instance, we submit it to a D3D11 rendering context

(either immediate or deferred). No other parameters or state-setting operations are

required; a concrete shader class specifies (or inherits) a complete configuration for

the rendering pipeline.

3.4.3 Tessellation

Listing 3.6 shows a shader class Tessellate that implements a simple tessellation

effect as a mixin shader class. This shader class depends only on a system-provided

shader class, and so can easily be reused in a variety of contexts. In particular,

CHAPTER 3. THE SPARK LANGUAGE 74

mixin shader class Tessellate extends D3D11TriTessellation

{

// Take triangle 0-ring as input ,

// produce triangle patch as output

override HS_InputCoarseVertexCount = 3;

override HS_OutputControlPointCount = 3;

// Uniform tessellation rate

input @Uniform float tessFactor;

override HS_EdgeFactor = tessFactor;

override HS_InsideFactor = tessFactor;

// Parameters for fixed -function tessellator

override TS_Partitioning = IntegerPartitioning;

override TS_OutputTopology = TriangleCWTopology;

// Plumbing operators

@ControlPoint T CoarseToControlPoint[type T](

@CoarseVertex T value)

{

return value @ HS_InputCoarseVertices(HS_ControlPointID);

}

override implicit @FineVertex T CoarseToFine[

type T, implicit Linear[T]](

@CoarseVertex T value)

{

@ControlPoint T cpValue = CoarseToControlPoint(value);

@FineVertex T v0 = cpValue @ DS_InputControlPoints (0);

@FineVertex T v1 = cpValue @ DS_InputControlPoints (1);

@FineVertex T v2 = cpValue @ DS_InputControlPoints (2);

return v0 * DS_DomainLocation.x

+ v1 * DS_DomainLocation.y

+ v2 * DS_DomainLocation.z;

}

}

Listing 3.6: Example Spark tessellation effect, implementing linear barycentric inter-
polation over triangular patches. The Tessellate shader class can be freely combined
with effects such as Displace in Listing 3.3 without explicit dependencies.

CHAPTER 3. THE SPARK LANGUAGE 75

we note that Tessellate can be combined with Displace from Listing 3.3 without

either shader class having explicit knowledge of the other. Because the displacement

computation in Displace is performed at @FineVertex rate, it will automatically

apply to post-tessellation vertices when tessellation is enabled, and to untessellated

vertices otherwise (see Section 3.3.8).

Looking at the Tessellate shader in Listing 3.6 in more detail, we see that it inherits

from the D3D11TriTessellation shader class, indicating that tessellation should be

performed on a triangular (u, v, w) domain. Even when using a triangular domain,

the tessellation stages in the D3D11 pipeline can operate on patches with any number

of control points (HS_OutputControlPointCount), computed from a neighborhood

of coarse-mesh vertices of any size (HS_InputCoarseVertexCount). By specifying

concrete values for these inherited attributes, we control the amount of data that the

HS stage consumes and produces on each invocation. In this case, we only care about

a 0-ring neighborhood of each input triangle (three vertices), and will produce output

patches with three control points (one for each vertex).

Next, we introduce a shader parameter to define a uniform tessellation rate, and bind

this to both the edge and interior tessellation factors required by D3D11. We also

bind values to the attributes that control the fixed-function tessellation (TS) pipeline

stage: namely, the partitioning scheme and desired output primitive topology.

Finally, we define two plumbing operators, to help with plumbing data from coarse

(pre-tessellation) to fine (post-tessellation) vertices. The CoarseToControlPoint()

operator is an explicit operator to plumb data from the per-coarse-vertex to the

per-control-point rate. Since in this example coarse vertices and control points are

in one-to-one correspondence, the operator is trivial. The CoarseToFine() opera-

tor overrides an abstract operator introduced by the D3D11TriTessellation base

class; every concrete shader that performs tessellation must define this operator. The

CoarseToFine() operator proceeds in three steps:

• First, the desired attribute value is plumbed from coarse vertices to control

points, using the previously-defined CoarseToControlPoint().

CHAPTER 3. THE SPARK LANGUAGE 76

• Second, the per-control-point attribute cpValue is used to project (see Sec-

tions 3.3.6 and 5.1.6) the value of this attribute out of the three patch control

points provided to the DS.

• Third, the system-provided barycentric coordinates DS_DomainLocation are

used to compute a linear combination of the per-control-point values.

Both of these plumbing operators are parameterized on a type T. The CoarseToFine()

operator additionally includes a constraint that the type T supports the Linear con-

cept. In this case, the use of Linear simply means that the plumbing operator only

applies to types T which support addition, and multiplication by scalars. A more

detailed discussion of constraints and concepts is beyond the scope of this disserta-

tion, but interested readers should note that they are related to the proposed C++

concept feature [SGG+05], and implicit parameters in Scala [OMO10].

3.4.4 Geometry Shader

Listing 3.7 shows a shader class PointSprites that uses the Geometry Shader pipeline

stage to implement the core of a “point sprite” rendering effect. In point sprite

rendering, the application submits point primitives, which are then expanded into

quadrilateral “billboards.” Depending on the use-case, these billboards might be

oriented to face the camera and aligned with the screen-space X and Y axes (e.g., to

render particles), or have other constraints placed on their orientation (e.g., to render

a level-of-detail “imposter” for a tree model).

Rather than implement a particular use-case for point sprites, the PointSprites class

instead implements the core behavior shared by most effects. It defines a Geometry

Shader procedure that takes in one fine vertex, and produces four raster vertices.

To allow per-fine-vertex attributes to be plumbed to raster vertices, it defines the

FineToRaster() plumbing operator. The implementation of this operator is trivial,

as every raster vertex in a generated quad receives a copy of the fine vertex that

defined the input point. In addition, each raster vertex in the quad receives a unique

(u, v) parameter that identifies one corner of the quad. A particular concrete point-

sprite effect would then mix in the PointSprites class and use the uv parameter to

compute its projected position, sample texture data, etc.

CHAPTER 3. THE SPARK LANGUAGE 77

mixin shader class PointSprites extends D3D11GeometryShader

{

// take points as input , output quads (2-triangle strip)

override GS_InputVertexCount = 1;

override GS_MaxOutputVertexCount = 4;

// Geometry Shader procedure

override @GeometryOutput void GeometryShader ()

{

@GeometryOutput FineVertex f = GS_InputVertices (0);

Append(GS_OutputStream ,

RasterVertex(fv: f, uv: float2 (0,0)));

Append(GS_OutputStream ,

RasterVertex(fv: f, uv: float2 (0,1)));

Append(GS_OutputStream ,

RasterVertex(fv: f, uv: float2 (1,1)));

Append(GS_OutputStream ,

RasterVertex(fv: f, uv: float2 (1,0)));

}

// Plumbing

input @RasterVertex FineVertex fv;

override @RasterVertex T FineToRaster[type T](

@FineVertex T value)

{

return value @ fv;

}

// Point -sprite parameter (per -raster -vertex)

input @RasterVertex float2 uv;

}

Listing 3.7: Example Spark Geometry Shader effect, implementing the core of a
“point sprite” rendering effect. The PointSprites shader uses the GS stage to ex-
pand points into quads, and provides a parameter uv that can be used to transform or
shade the generated quads.

Chapter 4

The Spark System

Having completed our discussion of the design of the Spark language, we now turn our

attention to the system we have created for compiling, composing, and running Spark

programs. In this chapter, we describe our implementation of the Spark compiler,

library, and runtime, and discuss our experience using Spark to implement several

shading workloads.

4.1 Implementation

In this section we describe our implementation: both the overall architecture, and

important implementation details. Our compiler and runtime for the Spark language

are implemented in a combination of C# and C++ code. In particular, the core of the

compiler is implemented in C# so that we can take advantage of garbage collection,

reflection, and other niceties of modern VM-based languages. Applications interface

with Spark through a pure C++ API, and need not be aware of the use of C#.

78

CHAPTER 4. THE SPARK SYSTEM 79

front end

.spark

.spark

LLVM
IR

shader
bytecode

pipeline-specific
back end

optimizer

.h / .cpp

application shader classes

Spark
compiler

pipeline
library
interface

pipeline module (D3D11)

C++ HLSL LLVM

.cpp

application

application
code

compile-time

run-time

Figure 4.1: System block diagram. Application shaders are type-checked against
a pipeline-specific library interface. Global optimizations are applied to each shader
class. Executable CPU and GPU code are generated by a pipeline-specific back end.

CHAPTER 4. THE SPARK SYSTEM 80

4.1.1 Architecture

Figure 4.1 shows the structure of the Spark system. In order to compile a shader,

the core Spark compiler coordinates with a pipeline module for a particular rendering

architecture. The pipeline module defines the interface to a given rendering pipeline

(e.g., D3D11) as a system library of Spark code, comprising one or more shader classes.

These shader classes declare the types, functions, rates of computation, and plumbing

operators for the pipeline. Some functions and operators are implemented in ordinary

Spark code, but in other cases implementations are left out of this library and are

instead provided by the pipeline-specific back end. We have so far implemented a

pipeline module for the D3D11 rendering pipeline.

The user-defined shader classes for an application are parsed and type-checked to-

gether with the interface provided by the pipeline module. The type-checking step is

responsible for assigning rates to all intermediate computations (see Section 3.3.7),

and ensuring that any conversions between rates are supported by appropriate plumb-

ing operators. Because all of the built-in rates of computation and plumbing operators

for a pipeline are provided by the system library in the pipeline module, the type-

checking logic in the Spark compiler is not tied to a particular rendering architecture,

and can be re-used for new or extended pipelines.

4.1.2 Optimization

Once the shader code has been type-checked, the Spark compiler performs global

optimizations on each shader class. The most important of these optimizations is

dead-code elimination (DCE) over the shader graph.

It is important to note that by performing DCE on the shader graph we can eliminate

code more aggressively than if we performed DCE only on per-stage shaders. For

example, a shader might fetch and transform tangent vectors per-coarse-vertex. A

shader-per-stage compiler cannot tell if tangent vectors output by a VS procedure will

be used by downstream computations or not. In contrast, the Spark compiler can

CHAPTER 4. THE SPARK SYSTEM 81

easily see if any value computed in the shader graph has no uses, and eliminate it (we

must be careful, of course, not to remove any operations that might have side-effects;

see Section 5.4.1).

A rendering system based on per-stage shaders could, of course, perform inter-stage

DCE at run-time, once the set of per-stage shaders is known. This optimization would

come at the cost of a clear phase separation (see Section 3.1.2), and could result in

unpredictable pauses when switching shaders at run-time.

We do not perform most simple expression optimizations (constant folding, algebraic

simplifications, etc.) because our current back ends use source-to-source translation;

we can rely on the more complete optimizers in the down-stream compilers to improve

code quality. We do, however, perform simple common subexpression elimination

(CSE), by using value numbering when building the shader graph. This optimiza-

tion is motivated by a very specific problem: when our type-checker inserts implicit

plumbing code, it may end up plumbing the same value at more than one place in

the shader graph. Without our CSE optimization, we could end up communicating

redundant data between pipeline stages, consuming both bandwidth, and storage in

inter-stage streams.

In order to make our DCE and CSE optimizations more effective, we “flatten” the

inheritance hierarchy before optimization. For each shader class, we perform a deep

copy of the code it inherits, and then optimize this copy. The result of this approach

is that use of inheritance and virtual members does not negatively impact the per-

formance of generated code. It may, however, lead to increased compile times and

memory usage.

4.1.3 Code Generation

Once a shader class has been optimized, it is passed to a back end in the pipeline

module for code generation. The primary concern of our D3D11 pipeline module is

to translate the optimized Spark shader graph into per-stage shader code in HLSL,

which is then compiled to D3D11 shader bytecode.

CHAPTER 4. THE SPARK SYSTEM 82

At a high level, our code generation approach is similar to that of RTSL, but differs

in how we map from shader-graph to per-stage code. RTSL partitions the shader

graph directly according to rates of computation (e.g., mapping computations with

the vertex rate to the vertex-processing stage and creating inter-stage interpolants for

every vertex-to-fragment edge). In contrast, Spark relies on the dual representation

between record types and rates of computation (see Section 3.2).

As a brief refresher:

• Each rate of computation in the shader graph is identified with a corresponding

record type.

• The attributes (nodes) in the graph with a given rate correspond, conceptu-

ally, to fields of the corresponding record type (and in some cases, constructor

parameters).

• Constructing an instance of record type R has the effect of performing those

computation in the shader graph with rate @R, and collecting the result values

in a record.

• The stages of the pipeline run per-stage shader procedures, which are responsible

for constructing records as needed.

Given this background, we now describe the overall flow of our translation to HLSL.

Record Types

A Spark record type like RasterVertex is translated into an HLSL “connector”

struct. For example, RasterVertex would be a connector output by the GS stage

and input to the PS. As an optimization, only those attributes with @RasterVertex

rate that are actually used in down-stream computations will be included in the HLSL

struct. We also define an HLSL function for the RasterVertex constructor, which

takes parameters corresponding to any input attributes with the corresponding rate;

the body of the constructor executes the corresponding shader-graph code, stores the

resulting values in a RasterVertex structure, and returns it.

CHAPTER 4. THE SPARK SYSTEM 83

Shader Procedures

In the general case, a stage like the GS makes use of a user-defined procedure that

can construct and output zero or more RasterVertex records. Since we expose the

GS procedure directly in Spark (see Section 3.3.1), we generate HLSL code for the GS

stage simply by translating this user-defined procedure. Code in the GS procedure

that constructs RasterVertex records will call the generated RasterVertex construc-

tor function described above, and thereby execute any shader-graph code with the

@RasterVertex rate.

As discussed in Section 3.2.2 we can consider other programmable pipeline stages

as having system-defined procedures (e.g., a VS procedure that constructs a single

CoarseVertex). We can thus generate HLSL code for these stages by translating the

system-defined procedure with the same approach as used for the GS.

This approach means that ideally we should be able to define all of the per-stage

procedures directly in the Spark language (whether in user or system code), and

employ a uniform strategy for translation to HLSL. A number of practical issues get

in the way of this approach:

• The syntax and rules of the HLSL language aren’t always consistent: different

shader stages require that their inputs and outputs be declared in specific,

idiosyncratic styles.

• In the particular case of the HS stage, the HLSL compiler applies an auto-

parallelization technique that requires a particular idiomatic style of input for

best results.

• When optional pipeline stages are disabled, we need to change the per-stage

procedures to move computation to the remaining stages.

• We expose some stages (the IA and OM) as “almost” programmable, but as they

are not programmable in HLSL, we must employ another translation strategy.

We will now describe these implementation issues in more detail.

CHAPTER 4. THE SPARK SYSTEM 84

Hull Shader

The HS stage uses both a per-control-point procedure (constructing a ControlPoint)

and a per-patch procedure. The per-patch procedure is responsible for performing

the computations associated with several Spark rates of computation, corresponding

to patch corners, edges, and interior axes (in the case of quadrilateral domains),

as well as constructing an output Patch. The HLSL compiler employs an auto-

parallelization approach that finds parallelizable loops in the per-patch procedure

and translates them into fine-grained fork/join parallelism in the generated shader

bytecode. For example, the compiler will detect when a loop over the corners of

a patch is parallelizable, and generate bytecode which processes all of the corners

in parallel. In order to exploit this facility, our compiler needs to generate HLSL

loops with the particular kind of structure that the auto-parallelizer will detect. In

practice, achieving this result is one of the most complex parts of our implementation,

but we have confirmed that our code-generation strategy allows the HLSL compiler

to detect fine-grained parallelism between independent patch corners and edges for

Spark shaders.

One additional implementation detail that pertains to the HS stage is that we chose to

expose a @InputPatch rate in Spark, that is convertible to both the @ControlPoint

and @Patch rates. We currently support this rate by duplicating computation: we

construct an InputPatch record as the first step in both the per-control-point and

per-patch procedures that we generate. This abstraction has proved convenient for

defining computations that should be available to both per-control-point and per-

patch logic, even though the required dataflow is not directly supported by D3D11.

A similar modification could be used to express a rate for per-instance computation

(e.g., @Instance) when using geometry instancing in the IA stage. Per-instance

computation would ultimately map to the VS stage (the earliest programmable stage

in the pipeline).

CHAPTER 4. THE SPARK SYSTEM 85

Disabling Stages

As described in Section 3.3.8, we allow the user to opt out of certain pipeline stages,

and move computation accordingly. For example, if a shader makes no use of the HS,

DS, or GS pipeline stages then all @CoarseVertex, @FineVertex, and @RasterVertex

computation must be mapped to the VS pipeline stage. This can be achieved by gener-

ating code from different per-stage procedures depending on which pipeline stages are

enabled. For example, a VS procedure that constructs a CoarseVertex, FineVertex,

and RasterVertex in order—passing each into the constructor of the next—can be

used when all of the HS, DS, and GS are disabled.

Input Assembler and Output Merger

As discussed in Section 3.3.9, Spark allows the fixed-function IA and OM pipeline

stages to be configured using code rather than data. We currently generate configu-

ration data for these stages from code with the @AssembledVertex and @Pixel rates

using ad hoc pattern matching.

This has been sufficient for our needs so far, but is not entirely satisfactory. When

code does not conform to the constraints of these stages, we issue an error diagnostic.

Unfortunately, since we are working with optimized code at this point in the compiler,

we often do not have useful source location information to report to the user.

Plumbing

Plumbing operators implemented entirely in Spark code do not cause complications

for code generation; they are always inlined as part of our optimization process.

Subsequently, the code generator only sees code that directly manipulates records,

and applies projection to them. Both of these are trivial to map to HLSL, since we

convert record types to HLSL structs. In particular, projection in HLSL can always

(after optimization) be translated into a simple field reference on an HLSL struct.

CHAPTER 4. THE SPARK SYSTEM 86

Some plumbing operators in the system library cannot be implemented directly in

Spark, since they expose capabilities implemented in fixed-function stages. The most

notable example of this is interpolation from @RasterVertex to @Fragment rate,

which is provided by the RS stage, but declared as qualifiers on PS stage inputs. We

handle these cases in an ad hoc fashion.

Host Code

In addition to generating D3D11 shader bytecode via translation to HLSL, we also

generate code for the host CPU, as either C++ source or LLVM IR [LA04]. The

generated code includes routines to be used by an application for initializing shader

instances, and for submitting rendering operations.

The initialization code is responsible for:

• Performing any @Constant operations from the shader graph.

• Allocating a constant buffer and any fixed-function state objects required by

the shader (e.g., IA, blending, sampler, rasterizer, or depth-stencil states).

• Loading shader bytecode through the D3D11 interface to generate optimized

machine code for per-stage shaders.

In order to support this initialization code, we embed the compiled D3D11 shader

bytecode into the generated C++/LLVM as static data.

The submission code is responsible for:

• Performing any @Uniform operations from the shader graph.

• Filling in the constant buffer with shader parameters.

• Binding constant buffers, textures, render targets, and other resources.

• Binding state objects for fixed-funtion pipeline stages.

• Binding shader procedures for programmable pipeline stages.

• Submitting a rendering command (e.g., a D3D11 DrawPrimitive() call).

CHAPTER 4. THE SPARK SYSTEM 87

shader class Base extends D3D11DrawPass

{

input @Uniform float4x4 view;

}

mixin shader class ColorMixin extends Base

{

input @Uniform float4 color;

}

shader class Derived extends Base , ColorMixin

{

output @Pixel float4 target = color;

}

Listing 4.1: Spark shaders using mixin inheritance.

4.1.4 Wrapper Generation

An application that uses Spark is statically compiled against a header file generated

by the Spark compiler. This header file defines the interface to each shader class,

as discussed in Section 3.3.2. In particular, the C++ wrapper class exposes setter

functions for each of the shader’s parameters (e.g., input @Uniform attributes), along

with a Submit() function for performing rendering.

One complication that arises in the generation of C++ wrappers is multiple inher-

itance. Spark implements multiple inheritance (of mixin shader classes) using a

linearization approach, as described in Sections 2.3.1 and 3.3.2. To accurately reflect

the Spark inheritance graph in our C++ wrappers, we would need to make heavy

use of C++ multiple inheritance and virtual inheritance. Given the limitations of

C++’s approach to multiple inheritance, we instead use the following strategy when

generating C++ wrappers:

• The inheritance of primary (non-mixin) Spark shader classes is directly reflected

in the inheritance of the C++ wrapper classes. Since Spark limits primary

shader classes to a single-inheritance tree, this creates no complications.

CHAPTER 4. THE SPARK SYSTEM 88

• When a shader class C inherits from a mixin shader class M, we replace the

inheritance (is-a) relationship with aggregation (has-a). That is, we give the

C++ wrapper C a data member of type M.

This approach is illustrated in Listings 4.1 and 4.2. Because the C++ wrapper for a

shader class C does not directly inherit from a mixin class M, we cannot directly use

an instance of C where an M is expected. We work around this limitation in two ways.

First, we generate functions in C for setting shader parameters that forward to the

contained instance of M. Second, we provide a templated StaticCast() function that

can be used on a C instance to cast it to any type it inherits from in Spark (e.g., M),

whether or not it does so in C++.

4.1.5 Runtime Loading and Composition

The compiled implementations of shader classes can either be linked into the applica-

tion as C++ code, or loaded at run-time as LLVM IR. Supporting dynamic loading of

shader code is made difficult by the fact that application code is statically compiled

using the header files generated by the Spark compiler. If the Spark compiler has

already been run to generate the headers, why not just embed the generated shader

code as well?

Two main use-cases motivate runtime loading of shader code. First, a programmer

may wish to be able to alter the implementation of one or more shaders, in a way that

does not affect their C++ interface. In this case, it should ideally be possible to mod-

ify and reload the Spark shader code on the fly without recompiling the application.

Such rapid iteration can be important when fine-tuning or debugging shader code.

Second, in many cases a programmer can define a suite of shading effects as a li-

brary of many mixin shader classes in Spark, and generate C++ wrappers for these

mixins. They can then load this shader code at runtime and use it to compose

new shader classes on the fly. Since the new shader classes are strictly compositions

of the existing mixins, no new wrapper interfaces need to be generated for these

dynamically-composed classes.

CHAPTER 4. THE SPARK SYSTEM 89

class Derived : public Base

{

public:

// Setter inherited from Base

// void SetView(spark:: float4x4 value);

// Setter generated for parameter declared in Derived

void SetTarget(ID3D11RenderTargetView* value);

// Setter that forwards to ColorMixin

void SetColor(spark:: float4 value) {

this ->StaticCast <ColorMixin >()-> SetColor(value);

}

// Helper function to cast to other Spark

// shader class types

template <typename T>

T* StaticCast ()

{

return StaticCastImpl((T*) NULL);

}

protected:

// Default case: allow cast to any type

// that the C++ wrapper inherits from

template <typename T>

T* StaticCastImpl(T* dummy)

{

return this;

}

// Special case: allow case to mixin

ColorMixin* StaticCastImpl(ColorMixin* dummy)

{

return &_M_ColorMixin;

}

private:

// Aggregate instance of mixin

ColorMixin _M_ColorMixin;

};

// Primary class

Listing 4.2: C++ wrapper code for Derived in Listing 4.1.

CHAPTER 4. THE SPARK SYSTEM 90

Listing 4.3 shows a brief example of how the Spark runtime API can be used to

compose shader classes on the fly. In this listing, a module of Spark code is loaded

and compiled on the fly. Subsequently, the runtime representation of shader classes

like Base and ColorMixin are looked up in this module, and used to create an array

of shader classes to be composed. The runtime function CreateShaderClass() is

used to construct a new, composed shader class from which we can construct and use

instances. Because the new class is composed from pre-existing shader classes, we

can interact with instances of the dynamically-generated class through the existing

wrappers for Base and ColorMixin.

4.1.6 Limitations

While it is one of our design goals to support the full capabilities of the D3D11

rendering pipeline, our current implementation has some limitations. First we enu-

merate those limitations that pose no particular challenges to our design approach,

and simply come from limited development time:

• At present, the Spark compiler assigns all @Uniform shader parameters to a sin-

gle D3D constant buffer. Using multiple constant buffers is sometimes beneficial

for performance.

• The current Spark system supports a @Constant rate, but doesn’t support

input @Constant parameters, even though their semantics are well-defined.

All @Constant computations must be fully resolvable by the compiler.

• Our interface to D3D11 does not yet support the Stream Out (SO) pipeline stage.

As discussed briefly in Section 2.2.2, the Spark system does not currently expose

atomic read-modify-write operations in shaders, through the Unordered Access View

(UAV) feature of D3D11. Simply exposing the feature is not a challenge per se: Spark

supports procedural subroutines, which may in theory perform operations with ar-

bitrary side effects, and these subroutines may be invoked in the definition of the

CHAPTER 4. THE SPARK SYSTEM 91

spark :: IContext* sparkContext = /* ... */;

// Load and compile shader -code module

spark :: IModule* module =

sparkContext ->LoadModule("MyShaders.spark");

// Figure out what classes/mixins we want to use

spark :: IShaderClass* mixins[MAX_MIXINS];

int mixinCount = 0;

mixins[mixinCount ++] = module ->FindShaderClass <Base >();

if(usingColorMixin)

mixins[mixinCount ++] =

module ->FindShaderClass <ColorMixin >();

// ...

// Create a new shader class from a list of classes/mixins

spark:: IShaderClass* shaderClass =

context ->CreateShaderClass(mixins , mixinCount);

// Create an instance of the new shader class

spark:: IShaderInstance* shaderInstance =

shaderClass ->CreateInstance(d3dDevice);

// Cast the instance to the generated C++ wrapper interfaces

Base* base = shaderInstance ->DynamicCast <Base >();

ColorMixin* colorMixin =

shaderInstance ->DynamicCast <ColorMixin >();

Listing 4.3: Runtime composition of a Spark shader class.

CHAPTER 4. THE SPARK SYSTEM 92

declarative shader graph. If we were to use such an approach then the order of oper-

ations within such a procedure would be well-defined, but our implementation does

not guarantee a particular evaluation order between shader-graph nodes. Determin-

ing whether such an implementation would suffice for the needs of users is future

work; we discuss this situation and our conjectures in Section 5.4.1.

4.2 System Experience

In order to evaluate the Spark language, as well as our compiler and runtime im-

plementation, we implemented several shading workloads. In this section, we will

describe these workloads, and provide an in-depth discussion of two of them.

4.2.1 Workloads

During development of the Spark implementation, our initial workloads were derived

by porting several example programs from the Microsoft Direct3D SDK:

BasicHLSL (Figure 4.2) Renders a single model with a diffuse texture map and

directional light.

DetailTessellation (Figure 4.3) Uses tessellation, displacement, and normal map-

ping to add detail to a flat surface. It supports adaptive tessellation based on

distance as well as local surface detail.

PNTriangles (Figure 4.4) Performs tessellation of PN triangle patches [VPBM01],

with several schemes for controlling tessellation rates: distance-, orientation-,

and screen-space-adaptive. Supports frustum and backface culling of patches.

CubeMapGS (Figure 4.5) Implements several techniques for rendering to a cube

map: multipass rendering, instancing in the IA stage, looping in the GS stage,

and instancing in the GS stage.

We also implemented a workload using the example Spark shaders given in Section 3.4

to confirm that they work as expected.

CHAPTER 4. THE SPARK SYSTEM 93

Figure 4.2: BasicHLSL example, showing a single model with diffuse texture map
and directional lighting.

Figure 4.3: DetailTessellation example, showing a tessellated and displaced terrain
surface. The tessellation rate is determined in part by local surface detail.

CHAPTER 4. THE SPARK SYSTEM 94

Figure 4.4: PNTriangles example, demonstrating screen-space adaptive tessellation.

Figure 4.5: CubeMapGS example, showing a car model reflecting its environment,
using a dynamic reflection cube map.

CHAPTER 4. THE SPARK SYSTEM 95

Component Description
Base Various shader parameters
SurfaceAttributes Surface-attribute interface
PackGBuffer Pack surface attributes into g-buffer
UnpackGBuffer Unpack surface attributes from g-buffer
GenerateSurfaceAttributes Generate surface attributes in forward pass
Light Light interface
DirectionalLight Directional light
SpotLight Spot light

Table 4.1: Shader components used in surface-lighting application.

In addition to these smaller examples, we have developed two more complicated

applications that involve suites of components (implemented as Spark shader classes),

intended to be composed. We will discuss these applications further in the following

sections. The first application was authored by a user with some prior experience

with D3D 11 and HLSL, but no experience with Spark. This example involves simple

shading and lighting: implementing both a forward and deferred rendering strategy.

The second application was authored by an experienced Spark user, and comprises a

library of geometric effects: animation, tessellation, etc.

In looking at these applications, we are interested in two questions. First, does

the Spark shader code demonstrate our goals of modularity and composability?

Second, does our Spark shader code perform similarly to traditional shading lan-

guages like HLSL?

4.2.2 Library for Lighting Surfaces

The motivation for our first application was to see whether Spark could be used

to encapsulate the difference between forward and deferred rendering, so that or-

thogonal concerns like light shaders could be written once and re-used across both

rendering strategies.

Table 4.1 lists the key Spark shader components used in this application. The key

feature of this design is that we define an abstract interface, SurfaceAttributes,

CHAPTER 4. THE SPARK SYSTEM 96

for the surface attributes in the material model, which other components provide or

consume. Two components provide the interface: GenerateSurfaceAttributes and

UnpackGBuffer. The interface is consumed by PackGBuffer and the two concrete

subclasses of Light: DirectionalLight, and SpotLight. These components can be

composed in three basic patterns:

• Composing GenerateSurfaceAttributes with one of the concrete Light com-

ponents yields a forward-rendering pass.

• Composing GenerateSurfaceAttributes with PackGBuffer yields a g-buffer

generation pass.

• Composing UnpackGBuffer with one of the concrete Light components yields

a deferred-lighting pass.

Because the particular light shaders DirectionalLight and SpotLight depend only

on the SurfaceAttributes interface, their definitions are independent of whether

forward or deferred rendering is being used. This demonstrates that the Spark shader

code as been able to achieve the desired decomposition of the problem, but how does

this compare to existing shader-per-stage languages like HLSL? We will explore this

question next.

The Spark Code

Figure 4.6 shows a zoomed-out view of the Spark code for this application. Different

colors represent different concerns, and the dashed boxes outline individual Spark

shader classes. For the most part, we see that separate concerns are encapsulated in

separate shader classes, with two exceptions:

• The parameters of all the effects are bundled in a single Base shader class.

• The spot-light shader class includes code for things like sampling a shadow map,

and additive blending that are not particular to spot-light illumination.

CHAPTER 4. THE SPARK SYSTEM 97

abstract mixin shader class SurfaceAttributes extends D3D11DrawPass
{
 abstract @Fragment float3 positionView; // View space position
 abstract @Fragment float3 normal; // View space normal
 abstract @Fragment float4 albedo;
 abstract @Fragment float specularAmount; // Treated as a multiplier on albedo
 abstract @Fragment float specularPower;
}

abstract mixin shader class GenerateSurfaceAttributes
 extends Base, SurfaceAttributes
{
 @Uniform float4x4 worldview = mul(world, view);
 @Uniform float4x4 viewProj = mul(view, proj);
 @Uniform float4x4 worldViewProj = mul(world, viewProj);

 @AssembledVertex PNU fetched = myVertexStream(IA_VertexID);
 @AssembledVertex float3 P_model = fetched.position;
 @AssembledVertex float3 N_model = fetched.normal;
 @AssembledVertex float2 texCoord = fetched.texCoord;

 override IA_DrawSpan = myDrawSpan;

 // @CoarseVertex
 //
 @CoarseVertex float3 N_world = mul(N_model, float3x3(world));
 @CoarseVertex float3 N_view = mul(N_model, float3x3(worldview));
 @CoarseVertex float3 P_view = mul(float4(P_model,1.0f), worldview).xyz;

 // @RasterVertex
 //
 override RS_Position = mul(float4(P_model, 1.0f), worldViewProj);

 override positionView = P_view; // View space position
 override normal = normalize(N_view); // View space normal
 override albedo = Sample(diffuseTexture, linearSampler, texCoord);
 override specularAmount = 0.9f; // Treated as a multiplier on albedo
 override specularPower = 25.0f;
}

abstract mixin shader class Light
 extends Base, SurfaceAttributes
{
 abstract output @Pixel float4 myTarget;
}

abstract mixin shader class DirectionalLight
 extends Base, SurfaceAttributes, Light
{
 @Fragment float4 GetColor(@Fragment float4 color) {
 if (gUseDirectionalLight == 1) {
 return color;
 }
 return float4(0, 0, 0, 1);
 }

 //@Fragment float4 color = float4(normal, 1.0f);
 // @Pixel
 //
 @Fragment float4 diffuse = albedo;
 @Fragment float lighting = max(saturate(dot(lightDir, normal)), ambient);
 @Fragment float4 tmp_color = diffuse * lighting ;
 // The following line works
 @Fragment float4 color = tmp_color * gUseDirectionalLight;
 // but the next one doesn't
// @Fragment float4 color = GetColor(tmp_color);

 override output @Pixel float4 myTarget = color ;
}

abstract mixin shader class SpotLight
 extends Base, SurfaceAttributes, Light
{
 @Fragment float4 ComputeSpotLighting(@Fragment float4 vDiffuse,
 @Fragment float3 positionView,
 @Fragment float3 normalView)
 {
 float D3DX_PI = 3.141592654f;

 float d = distance(positionView, g_SpotLightPosView.xyz);
 float3 lightDirView = normalize(g_SpotLightPosView.xyz - positionView);
 float fLighting = saturate(dot(lightDirView, normalView));

 float cosoutside = cos (g_SpotLightParams.x);
 float cosinside = cos (g_SpotLightParams.x - D3DX_PI/36.0f);
 float cosangle = saturate(dot(normalize(-g_SpotLightDir.xyz), lightDirView)) ;
 float atten = pow(cosangle, 2.0f) / (d * d);
 atten = atten * smoothstep(cosoutside, cosinside, cosangle);
 float intensity = 20000.0f;
 return atten * intensity * vDiffuse * fLighting;
 }

 @Fragment float Visibility(@Fragment float3 posView)
 {
 float vis = float(1);
 if (gShadow == 1) {
 float4 vPositionView = float4(posView, 1.0f);
 float4 vPositionWorld = mul(vPositionView, g_viewInv);
 float4 vPositionSM = mul(vPositionWorld, g_LightViewProj);
 float3 ndc = vPositionSM.xyz/vPositionSM.w;
 float2 xy_old = (ndc.xy + float2(1.0f, 1.0f)) * 0.5f;
 float2 xy = float2(xy_old.x, 1.0f - xy_old.y);
 vis = SampleCmpLevelZero(shadowMap, pcfSampler, xy, ndc.z);
 }
 return vis ;
 }

 //@Fragment float4 color = float4(normal, 1.0f);
 // @Pixel
 //
 @Fragment float vis = Visibility(positionView);
 @Fragment float4 lighting = ComputeSpotLighting(float4(1.0f, 0.0f, 1.0f, 0.0f), positionView, normal);
 @Fragment float4 color = vis * lighting ;

 override output @Pixel float4 myTarget = color + (myTarget @ OM_Dest) ;
 override OM_DepthStencilState = myDepthStencilState;
}

shader class GenShadowMap extends Base
{
 @Uniform float4x4 worldview = mul(world, view);
 @Uniform float4x4 viewProj = mul(view, proj);
 @Uniform float4x4 worldViewProj = mul(world, viewProj);

 @AssembledVertex PNU fetched = myVertexStream(IA_VertexID);
 @AssembledVertex float3 P_model = fetched.position;

 override IA_DrawSpan = myDrawSpan;
 override RS_Position = mul(float4(P_model, 1.0f), worldViewProj);
}

shader class Forward extends GenerateSurfaceAttributes, DirectionalLight {}
shader class ForwardSpotLight extends GenerateSurfaceAttributes, SpotLight {}
shader class GenerateGBuffer extends GenerateSurfaceAttributes, PackGBuffer {}
shader class DirectionalLightGBuffer extends FullScreenTriangle, UnpackGBuffer, DirectionalLight {}
shader class SpotLightGBuffer extends FullScreenTriangle, UnpackGBuffer, SpotLight {}

abstract shader class Base extends D3D11DrawPass
{
 // @Uniform
 //
 input @Uniform float4x4 world;
 input @Uniform float4x4 view;
 input @Uniform float4x4 proj;
 input @Uniform float4 objectColor;
 input @Uniform Texture2D[float4] diffuseTexture;
 input @Uniform SamplerState linearSampler;
 input @Uniform DepthStencilState myDepthStencilState;

 // @AssembledVertex
 //
 struct PNU
 {
 float3 position;
 float3 normal;
 float2 texCoord;
 }

 input @Uniform VertexStream[PNU] myVertexStream;
 input @Uniform DrawSpan myDrawSpan;
 input @Uniform float3 lightDir;
 input @Uniform float ambient;

 // SpotLight parameters.
 input @Uniform float4 g_SpotLightPosView;
 input @Uniform float4 g_SpotLightDir;
 input @Uniform float4 g_SpotLightParams;
 input @Uniform uint gUseSpotLight;
 input @Uniform uint gShadow ;
 input @Uniform float gShadowMapWidth;
 input @Uniform float gShadowMapHeight ;
 input @Uniform uint gUseDirectionalLight;

// Shadowmap related things.
 input @Uniform float4x4 g_viewInv;
 input @Uniform float4x4 g_LightViewProj;
 input @Uniform Texture2D[float] shadowMap;
 input @Uniform SamplerComparisonState pcfSampler;
}

abstract mixin shader class PackGBuffer
 extends Base, SurfaceAttributes
{
 float2 EncodeSphereMap(float3 n)
 {
 return n.xy * rsqrt(8.0f - 8.0f * n.z) + 0.5f;
 }

 @Fragment float4 normalSpecular = float4(EncodeSphereMap(normal),
 specularAmount,
 specularPower);

 @Fragment float2 positionZGrad = float2(ddx_coarse(positionView.z),
 ddy_coarse(positionView.z));

 output @Pixel float4 normalSpecularTarget = normalSpecular;
 output @Pixel float4 albedoTarget = albedo;
 output @Pixel float2 positionZGradTarget = positionZGrad;
}

abstract mixin shader class UnpackGBuffer
 extends Base, SurfaceAttributes
{
 float3 ComputePositionViewFromZ(float2 positionScreen,
 float viewSpaceZ, float4x4 proj)
 {
 float2 screenSpaceRay = float2(positionScreen.x / proj._11,
 positionScreen.y / proj._22);

 float3 positionView = float3(
 // Solve the two projection equations
 screenSpaceRay.xy * viewSpaceZ,
 viewSpaceZ);

 return positionView;
 }

 float3 DecodeSphereMap(float2 e)
 {
 float2 tmp = e - e * e;
 float f = tmp.x + tmp.y;
 float m = sqrt(4.0f * f - 1.0f);
 float3 n = float3(
 m * (e * 4.0f - 2.0f),
 3.0f - 8.0f * f);
 return n;
 }

 input @Uniform Texture2D[float4] normalSpecularTexture;
 input @Uniform Texture2D[float4] albedoTexture;
 input @Uniform Texture2D[float2] zGradTexture;
 input @Uniform Texture2D[float2] zBufferTexture;

 // Get it somehow..
 @Fragment uint2 positionViewport = uint2(PS_ScreenSpacePosition.xy);

 @Fragment float4 normalSpecular = Load(normalSpecularTexture, positionViewport.xy).xyzw;
 override albedo = Load(albedoTexture, positionViewport.xy).xyzw;
 @Fragment float2 positionZGrad = Load(zGradTexture, positionViewport.xy).xy;
 @Fragment float zBuffer = Load(zBufferTexture, positionViewport.xy).x;

 @Fragment float2 gbufferDim = GetDimensions(albedoTexture);

 // Compute screen/clip-space position and neighbour positions
 // NOTE: Mind DX11 viewport transform and pixel center!
 // NOTE: This offset can actually be precomputed on the CPU but it's actually slower to read it from
 // a constant buffer than to just recompute it.
 @Fragment float2 screenPixelOffset = float2(2.0f, -2.0f) / gbufferDim;
 @Fragment float2 positionScreen = (float2(positionViewport.xy) + 0.5f) * screenPixelOffset.xy + float2(-1.0f, 1.0f);
 @Fragment float2 positionScreenX = positionScreen + float2(screenPixelOffset.x, 0.0f);
 @Fragment float2 positionScreenY = positionScreen + float2(0.0f, screenPixelOffset.y);

 // Decode into reasonable outputs

 // Unproject depth buffer Z value into view space
 @Fragment float viewSpaceZ = proj._43 / (zBuffer - proj._33);

 override positionView = ComputePositionViewFromZ(positionScreen, viewSpaceZ, proj);

 override normal = DecodeSphereMap(normalSpecular.xy);

 override specularAmount = normalSpecular.z;
 override specularPower = normalSpecular.w;
}

abstract mixin shader class FullScreenTriangle extends D3D11DrawPass
{
override IA_DrawSpan = TriangleList(3);

 @CoarseVertex float2 grid = float2((VS_VertexID << 1) & 2, VS_VertexID & 2);
 override RS_Position = float4(grid * float2(2.0f, -2.0f) + float2(-1.0f, 1.0f), 0.0f, 1.0f);
}

Generate Surface
Attributes

Directional Light

Spot Light

Sample Shadow Map

Additive Blending

Generate Shadow Map

Full-Screen Triangle

Unpack G-Buffer

Pack G-Buffer

Surface Attribute Interface

Light Interface

Parameters

Figure 4.6: Spark source code for deferred lighting application. The different colors
indicate different concerns in the program. The dashed boxes indicate different Spark
shader classes.

CHAPTER 4. THE SPARK SYSTEM 98

In each case, it would be possible to refactor the code to remove the unwanted cou-

pling: the parameters of each of the components could be moved into the correspond-

ing shader class; the shadow-mapping and additive-blending code could be moved into

their own independent shader classes. We have left the code as it was originally de-

composed by the programmer in order to ensure that the comparison to HLSL is fair.

The HLSL Code

Figure 4.7 shows a zoomed-out view of the HLSL code for the lighting application.

Again, different concerns have been color-coded – the colors correspond to those in

Figure 4.6. The dashed lines here enclose each of the per-stage shader entry points.

We can see that the decomposition of the HLSL code is quite similar to the Spark

code. This is partly due to how this application was developed: the programmer first

wrote the HLSL shader code and then ported it to Spark. Rather than the Spark

SurfaceAttributes interface, the HLSL code has a SurfaceAttributes struct

type. The various forward- and deferred-rendering components are expressed in HLSL

as subroutines that consume or produce values of this type.

The most salient difference between the Spark and HLSL code is that the HLSL code

requires a specific Pixel Shader entry point for each of the concrete rendering passes

(e.g., forward-rendered spot light). Each of these composed rendering passes in Spark

also requires a distinct shader class, but each of these is a one-line declaration.

CHAPTER 4. THE SPARK SYSTEM 99

cbuffer cbPerObject : register(b0)
{
 matrix g_viewInv : packoffset(c0);
 matrix g_LightViewProj : packoffset(c4);
 float4 g_vObjectColor : packoffset(c8);
};

cbuffer cbPerFrame : register(b1)
{
 matrix mCameraProj : packoffset(c0);
 float3 g_vLightDir : packoffset(c4);
 float g_fAmbient : packoffset(c4.w);

 float4 g_SpotLightPosView : packoffset(c5);
 float4 g_SpotLightDir : packoffset(c6);
 float4 g_SpotLightParams : packoffset(c7);

 uint gUseSpotLight : packoffset(c8.x);
 uint gShadow : packoffset(c8.y);
 float gShadowMapWidth : packoffset(c8.z);
 float gShadowMapHeight : packoffset(c8.w);

 uint gUseDirectionalLight : packoffset(c9.x);
};

Texture2D g_txDiffuse : register(t0);
SamplerState g_samLinear : register(s0);
Texture2D<float> g_ShadowMap : register (t1) ;
SamplerComparisonState g_samPCF : register(s1);

struct GBuffer
{
 float4 normal_specular : SV_Target0;
 float4 albedo : SV_Target1;
 float2 positionZGrad : SV_Target2;
};

float2 EncodeSphereMap(float3 n)
{
 return n.xy * rsqrt(8.0f - 8.0f * n.z) + 0.5f;
}

void GBufferPS(PS_INPUT input, out GBuffer outputGBuffer)
{
 SurfaceData surface = ComputeSurfaceDataFromGeometry(input);
 outputGBuffer.normal_specular = float4(EncodeSphereMap(surface.normal),
 surface.specularAmount,
 surface.specularPower);
 outputGBuffer.albedo = surface.albedo;
 outputGBuffer.positionZGrad = float2(ddx_coarse(surface.positionView.z),
 ddy_coarse(surface.positionView.z));
}

Texture2D<float4> gGBufferTextures[4] : register(t2);

float3 ComputePositionViewFromZ(float2 positionScreen,
 float viewSpaceZ)
{
 float2 screenSpaceRay = float2(positionScreen.x / mCameraProj._11,
 positionScreen.y / mCameraProj._22);

 float3 positionView;
 positionView.z = viewSpaceZ;
 // Solve the two projection equations
 positionView.xy = screenSpaceRay.xy * positionView.z;

 return positionView;
}

SurfaceData ComputeSurfaceDataFromGBufferSample(uint2 positionViewport, uint sampleIndex)
{
 // Load the raw data from the GBuffer
 GBuffer rawData;
 rawData.normal_specular = gGBufferTextures[0].Load(uint3(positionViewport.xy, 0)).xyzw;
 rawData.albedo = gGBufferTextures[1].Load(uint3(positionViewport.xy, 0)).xyzw;
 rawData.positionZGrad = gGBufferTextures[2].Load(uint3(positionViewport.xy, 0)).xy;
 float zBuffer = gGBufferTextures[3].Load(uint3(positionViewport.xy, 0)).x;

 float2 gbufferDim;
 uint dummy;
 gGBufferTextures[0].GetDimensions(gbufferDim.x, gbufferDim.y);

 // Compute screen/clip-space position and neighbour positions
 // NOTE: Mind DX11 viewport transform and pixel center!
 // NOTE: This offset can actually be precomputed on the CPU but it's actually slower to read it from
 // a constant buffer than to just recompute it.
 float2 screenPixelOffset = float2(2.0f, -2.0f) / gbufferDim;
 float2 positionScreen = (float2(positionViewport.xy) + 0.5f) * screenPixelOffset.xy + float2(-1.0f, 1.0f);
 float2 positionScreenX = positionScreen + float2(screenPixelOffset.x, 0.0f);
 float2 positionScreenY = positionScreen + float2(0.0f, screenPixelOffset.y);

 // Decode into reasonable outputs
 SurfaceData data;

 // Unproject depth buffer Z value into view space
 float viewSpaceZ = mCameraProj._43 / (zBuffer - mCameraProj._33);

 data.positionView = ComputePositionViewFromZ(positionScreen, viewSpaceZ);

 data.normal = DecodeSphereMap(rawData.normal_specular.xy);
 data.albedo = rawData.albedo;

 data.specularAmount = rawData.normal_specular.z;
 data.specularPower = rawData.normal_specular.w;

 return data;
}

float3 DecodeSphereMap(float2 e)
{
 float3 n;
 float2 tmp = e - e * e;
 float f = tmp.x + tmp.y;
 float m = sqrt(4.0f * f - 1.0f);
 n.xy = m * (e * 4.0f - 2.0f);
 n.z = 3.0f - 8.0f * f;
 return n;
}

struct FullScreenTriangleVSOut
{
 float4 positionViewport : SV_Position;
};

FullScreenTriangleVSOut FullScreenTriangleVS(uint vertexID : SV_VertexID)
{
 FullScreenTriangleVSOut output;

 // Parametrically work out vertex location for full screen triangle
 float2 grid = float2((vertexID << 1) & 2, vertexID & 2);
 output.positionViewport = float4(grid * float2(2.0f, -2.0f) + float2(-1.0f, 1.0f), 0.0f, 1.0f);

 return output;
}

cbuffer cbPerObject : register(b0) {
 matrix g_mWorldViewProjection : packoffset(c0);
 matrix g_mWorld : packoffset(c4);
 matrix g_mWorldView : packoffset(c8);
 float4 g_vCameraPos : packoffset(c12) ;
};

struct VS_INPUT {
 float4 vPosition : POSITION;
 float3 vNormal : NORMAL;
 float2 vTexcoord : TEXCOORD0;
};

struct VS_OUTPUT {
 float3 vViewVector : VIEWVECTOR;
 float3 vPositionView : POSITION_VIEW;
 float3 vNormal : NORMAL;
 float2 vTexcoord : TEXCOORD0;
 float4 vPosition : SV_POSITION;
};

VS_OUTPUT VSMain(VS_INPUT Input) {
 VS_OUTPUT Output;

 Output.vViewVector = normalize((g_vCameraPos.xyz - mul(Input.vPosition, g_mWorld).xyz));
 Output.vPositionView = mul(Input.vPosition, g_mWorldView).xyz;
 Output.vPosition = mul(Input.vPosition, g_mWorldViewProjection);
 Output.vNormal = mul(Input.vNormal, (float3x3)g_mWorldView);
 Output.vTexcoord = Input.vTexcoord;

 return Output;
}

struct PS_INPUT {
 float3 vViewVector : VIEWVECTOR;
 float3 vPositionView : POSITION_VIEW;
 float3 vNormal : NORMAL;
 float2 vTexcoord : TEXCOORD0;
};

struct SurfaceData {
 float3 positionView; // View space position
 float3 normal; // View space normal
 float4 albedo;
 float specularAmount; // Treated as a multiplier on albedo
 float specularPower;
};

SurfaceData ComputeSurfaceDataFromGeometry(PS_INPUT input) {
 SurfaceData surface;
 surface.positionView = input.vPositionView;

 surface.normal = normalize(input.vNormal);

 surface.albedo = g_txDiffuse.Sample(g_samLinear, input.vTexcoord);
 //surface.albedo.rgb = mUI.lightingOnly ? float3(1.0f, 1.0f, 1.0f) : surface.albedo.rgb;

 surface.specularAmount = 0.9f;
 surface.specularPower = 25.0f;

 return surface;
}

float4 PSMain(PS_INPUT Input) : SV_TARGET {
 if (gUseDirectionalLight) {
 float4 vDiffuse = g_txDiffuse.Sample(g_samLinear, Input.vTexcoord);

 float fLighting = saturate(dot(g_vLightDir, normalize(Input.vNormal)));
 fLighting = max(fLighting, g_fAmbient);
 return vDiffuse * fLighting;
 } else
 return float4(0, 0, 0, 1);
}

float4 DirectionalLightPS(FullScreenTriangleVSOut input) : SV_Target
{
 if (gUseDirectionalLight) {
 SurfaceData surface = ComputeSurfaceDataFromGBufferSample(uint2(input.positionViewport.xy), 0);
 float4 vDiffuse = surface.albedo;

 float fLighting = saturate(dot(g_vLightDir, surface.normal));
 fLighting = max(fLighting, g_fAmbient);
 return vDiffuse * fLighting;
 } else {
 return float4(0, 0, 0, 1.0f);
 }
}

float4 ComputeSpotLighting(float4 vDiffuse, float3 positionView, float3 normalView)
{
 float d = distance(positionView, g_SpotLightPosView.xyz);
 float3 lightDirView = normalize(g_SpotLightPosView.xyz - positionView);
 float fLighting = saturate(dot(lightDirView, normalView));

 float cosoutside = cos (g_SpotLightParams.x);
 float cosinside = cos (g_SpotLightParams.x - D3DX_PI/36.0f);
 float cosangle = saturate(dot(normalize(-g_SpotLightDir.xyz), lightDirView)) ;
 float atten = pow(cosangle, 2.0f) / (d * d);
 atten *= smoothstep(cosoutside, cosinside, cosangle);
 const float intensity = 20000.0f;
 return atten * intensity * vDiffuse * fLighting;
}

float Visibility(float3 posView)
{
 float vis = 1.0f;
 if (gShadow) {
 float4 vPositionView = float4(posView, 1.0f);
 float4 vPositionWorld = mul(vPositionView, g_viewInv);
 float4 vPositionSM = mul(vPositionWorld, g_LightViewProj);
 float3 ndc = vPositionSM.xyz/vPositionSM.w;
 float2 xy = (ndc.xy + float2(1.0f, 1.0f)) * 0.5f;
 xy.y = 1.0f - xy.y;
 vis = g_ShadowMap.SampleCmpLevelZero(g_samPCF, xy, ndc.z);
 }
 return vis;
}

float4 PSMainSpotLight(PS_INPUT Input) : SV_TARGET
{
 float visibility = Visibility(Input.vPositionView);
 float4 vDiffuse = g_txDiffuse.Sample(g_samLinear, Input.vTexcoord);
 float3 normal = normalize(Input.vNormal);
 return visibility * ComputeSpotLighting(float4(1.0f, 0.0f, 1.0f, 0.0f), Input.vPositionView, normal);
}

float4 SpotLightPS(FullScreenTriangleVSOut input) : SV_Target
{

 SurfaceData surface = ComputeSurfaceDataFromGBufferSample(uint2(input.positionViewport.xy), 0);
 surface.normal = normalize(surface.normal);
 float vis = Visibility(surface.positionView);
 return vis * ComputeSpotLighting(/*surface.albedo*/float4(1.0f, 0.0f, 1.0f, 0.0f), surface.positionView, surface.normal);
}

Parameters

Pack G-Buffer

Unpack G-Buffer

Full-Screen Triangle

Generate Surface
Attributes

Directional Light (Forward)

Directional Light (Deferred)

Spot Light (Forward)

Spot Light (Deferred)

Sample Shadow Map

Figure 4.7: HLSL source code for deferred lighting application. The different colors
indicate different concerns in the program. The dashed boxes indicate per-stage shader
entry points.

CHAPTER 4. THE SPARK SYSTEM 100

Discussion

This application is something of a negative result: while the Spark decomposition is

no worse than the HLSL, it is not significantly better. The reason for this is simple:

the concerns being decomposed here primarily intersect a single pipeline stage (the

Pixel Shader). There are no cross-cutting concerns that might benefit from expression

in Spark. For our next example we specifically select an application area that is more

likely to yield cross-cutting concerns.

4.2.3 Library for Geometric Effects

As a second application, we had an expert HLSL and Spark user develop a suite

of shader classes that implement a variety of geometric effects. The goal was to

demonstrate that different subsets of these effects could be composed to render models

under different conditions, without writing additional code.

Table 4.2 summarizes the most important shader components in the suite. Among the

shader components, CubicGregoryQuads and RenderToCubeMap include groupwise

operations; all the others comprise only pointwise shading code. Table 4.3 shows

which components are used by each of our models. The shading code for each model

is simply a composition of existing shader classes; no additional shader code was

written per-model.

Figure 4.8 shows a scene composed of these models. Note that the Lizard and Vor-

tigaunt models are both rendered into the reflection cube map used by the Big Guy

(this is most visible in the pink reflections on the right side of the Big Guy). Because

RenderToCubeMap defines suitable plumbing operators, it may be combined with any

of the other shader components to render a model into a cube map in a single pass,

without additional code.

CHAPTER 4. THE SPARK SYSTEM 101

Figure 4.8: Example models rendered with Spark shaders. From left to right the
models are Lizard, Big Guy, and Vortigaunt. Lizard is a triangle mesh with skeletal
animation, diffuse/normal maps, and Phong illumination. Big Guy is an approximate
subdivision surface rendered with a dynamic reflection cube map (reflecting both the
Lizard and Vortigaunt). Vortigaunt uses both skeletal animation and approximate
subdivision surfaces. Vortigaunt model data provided courtesy of Valve Corp; Uffizi
Gallery light probe image courtesy of Paul Debevec.

Component Description
SkeletalAnimation Transformation by “bone” matrices
CubicGregoryQuads Tessellate approximate subdivision surfaces [LSNCn09]
RenderToCubeMap Uses GS instancing
PhongMaterial Phong illumination [Pho73]
EnvMapMaterial Sample a reflection cube map
NormalMaterial Visualize normals

Table 4.2: Shader components used in Figure 4.8.

Model Components
Lizard SkeletalAnimation, PhongMaterial

Big Guy CubicGregoryQuads, EnvMapMaterial

Vortigaunt SkeletalAnimation, CubicGregoryQuads, NormalMaterial

Table 4.3: Models used in Figure 4.8, and the shader components they use. For
a given rendering pass, these may additionally be composed with shader components
implementing light sources, or with the RenderToCubeMap component.

CHAPTER 4. THE SPARK SYSTEM 102

The Spark Code

Figure 4.9 shows a zoomed-out view of the Spark code for this application. As in

Section 4.2.2, dashed outlines indicate distinct Spark shader classes. We do not

color-code individual concerns, but instead group concerns into broad categories:

• Vertex attributes (red). These might be provided by particular models be-

ing rendered, and are required by certain effects (e.g., animation requires bone

weights and indices). We highlight texture coordinates, tangent vectors, and

animation weights/indices, but do not call out positions or normals; these

attributes are pervasive enough that we do not consider them as logically-

orthogonal concerns.

• Skeletal animation (blue).

• Tessellation (green). The code supports the appropximation of Catmull-Clark

subdivision surfaces by cubic Gregory patches [LSNCn09]. The code is factored

into cases for triangles and quadrilaterals, and a base class for the common code.

Computation of tessellation rates is specified through a separate component,

although uniform tessellation is the only option implemented.

• Geometry Shader effects (teal). We only support a single use of the GS—

single-pass rendering to a cube map—but we factor out the behavior of a “pass-

through” GS as a base class.

• Material and lighting model (orange). We support a small number of materials,

along with two types of lights.

• Material parameters (purple). Material parameters such as diffuse color may

be specified per-model or through a texture map. In order to express this

variability, we use several shader components.

At a glance, the decomposition here is more successful than that in Section 4.2.2:

distinct categories of features do not cross shader-class boundaries. We will discuss

a few aspects of this decomposition in more detail, with a focus on possible areas

for future work.

CHAPTER 4. THE SPARK SYSTEM 103

abstract mixin shader class ConstantTessellation extends D3D11Tessellation
{
 input @Uniform float tessellationFactor;
 override HS_EdgeFactor = tessellationFactor;
 override HS_InsideFactor = tessellationFactor;
}

abstract mixin shader class CubicGregory extends Base, D3D11Tessellation
{
 input @Uniform Buffer[uint] patchInfos;
 input @Uniform Buffer[uint] patchOrders;
 input @Uniform Buffer[uint] patchStencils;
 input @Uniform Buffer[uint] controlPointStencils;
 @InputPatch uint stencilOffset = (patchInfos(HS_PatchID*uint(2) + uint(0)) / uint(4));
 @InputPatch uint patchOrderOffset = (patchInfos(HS_PatchID*uint(2) + uint(1)) / uint(4));
 @InputPatch uint cornerOrderOffset = patchOrderOffset;
 @InputPatch uint stencilOrderOffset = patchOrderOffset + uint(4);
 @PatchCorner CoarseVertex patchCornerCoarseVertex =
 HS_InputCoarseVertices(patchOrders(cornerOrderOffset + HS_PatchCornerID));
 implicit @PatchCorner T ICP2PC[type T](
 @CoarseVertex T value) {
 return value @ patchCornerCoarseVertex;
 }
 override TS_Partitioning = FractionalOddPartitioning;
 override TS_OutputTopology = TriangleCWTopology;
 @ControlPoint float3 ComputeControlPoint() {
 uint id = HS_ControlPointID;
 uint ocpCount = patchStencils(stencilOffset + uint(1));
 float3 result = float3(0.0f);
 if(id < ocpCount) {
 uint icpCount = patchStencils(stencilOffset + uint(0));
 uint mask = patchStencils(stencilOffset + uint(2) + id*uint(2) + uint(0));
 uint cpStencilOffset = patchStencils(stencilOffset + uint(2) + id*uint(2) + uint(1)) / uint(4);
 for(ii in Range(0,int(icpCount))) {
 uint index = patchOrders(stencilOrderOffset + uint(ii));
 uint indexBit = (uint(1) << index);
 if((mask & indexBit) != uint(0)) {
 uint cpStencilIndex = countbits(mask & (indexBit-uint(1)));
 float weight = asfloat(controlPointStencils(cpStencilOffset + cpStencilIndex));
 float3 icpPos = P_model @ HS_InputCoarseVertices(ii);
 result = result + weight*icpPos;
 }
 }
 }
 return result;
 }
 @ControlPoint float3 gregory = ComputeControlPoint();
 float GregoryDenom(float value) {
 if(value == 0.0f)
 return 1.0f;
 return value;
 }
 abstract @FineVertex float3 pos;
 abstract @FineVertex float3 tu;
 abstract @FineVertex float3 tv;
 @FineVertex float3 n = normalize(cross(tu,tv));
 override P_fine = pos;
 override N_fine = n;
 override @FineVertex Tangent CoarseToFineTangent(@CoarseVertex Tangent value) {
 @FineVertex float3 interpolated = CoarseToFine(float3(value));
 return Tangent(normalize(interpolated - n * dot(n, interpolated)));
 }
}

abstract mixin shader class CubicGregoryQuads extends CubicGregory, D3D11QuadTessellation
{
 override HS_InputCoarseVertexCount = 32;
 override HS_OutputControlPointCount = 20;
 Array[float, 4] Bernstein(float t) {
 float invT = 1.0f - t;
 return Array[float](
 invT*invT*invT,
 3*(invT*invT*t),
 3*(t*t*invT),
 t*t*t);
 }
 Array[float, 4] BernsteinDerivative(float t) {
 float invT = 1.0f - t;
 return Array[float](
 -3 * invT*invT,
 3*invT*invT - 6*t*invT,
 6*t*invT - 3*t*t,
 3*t*t);
 }
 float3 InterpU(
 Array[float3, 16] cp,
 int offset,
 Array[float, 4] weightsU) {
 return cp(offset + 0) * weightsU(0)
 + cp(offset + 1) * weightsU(1)
 + cp(offset + 2) * weightsU(2)
 + cp(offset + 3) * weightsU(3);
 }
 float3 InterpUV(
 Array[float3, 16] cp,
 Array[float, 4] weightsU,
 Array[float, 4] weightsV) {
 return InterpU(cp, 0, weightsU) * weightsV(0)
 + InterpU(cp, 4, weightsU) * weightsV(1)
 + InterpU(cp, 8, weightsU) * weightsV(2)
 + InterpU(cp, 12, weightsU) * weightsV(3);
 }
 @FineVertex float u = DS_DomainLocation.x;
 @FineVertex float v = DS_DomainLocation.y;
 @FineVertex float uInv = 1 - u;
 @FineVertex float vInv = 1 - v;
 @FineVertex float3 p_0 = gregory @ DS_InputControlPoints(0);
 @FineVertex float3 e_0p = gregory @ DS_InputControlPoints(1);
 @FineVertex float3 e_0n = gregory @ DS_InputControlPoints(2);
 @FineVertex float3 f_0p = gregory @ DS_InputControlPoints(3);
 @FineVertex float3 f_0n = gregory @ DS_InputControlPoints(4);
 @FineVertex float3 p_1 = gregory @ DS_InputControlPoints(5);
 @FineVertex float3 e_1p = gregory @ DS_InputControlPoints(6);
 @FineVertex float3 e_1n = gregory @ DS_InputControlPoints(7);
 @FineVertex float3 f_1p = gregory @ DS_InputControlPoints(8);
 @FineVertex float3 f_1n = gregory @ DS_InputControlPoints(9);
 @FineVertex float3 p_2 = gregory @ DS_InputControlPoints(10);
 @FineVertex float3 e_2p = gregory @ DS_InputControlPoints(11);
 @FineVertex float3 e_2n = gregory @ DS_InputControlPoints(12);
 @FineVertex float3 f_2p = gregory @ DS_InputControlPoints(13);
 @FineVertex float3 f_2n = gregory @ DS_InputControlPoints(14);
 @FineVertex float3 p_3 = gregory @ DS_InputControlPoints(15);
 @FineVertex float3 e_3p = gregory @ DS_InputControlPoints(16);
 @FineVertex float3 e_3n = gregory @ DS_InputControlPoints(17);
 @FineVertex float3 f_3p = gregory @ DS_InputControlPoints(18);
 @FineVertex float3 f_3n = gregory @ DS_InputControlPoints(19);
 @FineVertex float3 F_0 = (u*f_0p + v*f_0n) / GregoryDenom(u + v);
 @FineVertex float3 F_1 = (uInv*f_1n + v*f_1p) / GregoryDenom(uInv + v);
 @FineVertex float3 F_2 = (uInv*f_2p + vInv*f_2n) / GregoryDenom(uInv + vInv);
 @FineVertex float3 F_3 = (u*f_3n + vInv*f_3p) / GregoryDenom(u + vInv);
 @FineVertex Array[float3, 16] bezierCPs = Array[float3](
 p_0, e_0p, e_1n, p_1,
 e_0n, F_0, F_1, e_1p,
 e_3p, F_3, F_2, e_2n,
 p_3, e_3n, e_2p, p_2,
);
 @FineVertex Array[float,4] basisU = Bernstein(u);
 @FineVertex Array[float,4] basisV = Bernstein(v);
 @FineVertex Array[float,4] dBasisU = BernsteinDerivative(u);
 @FineVertex Array[float,4] dBasisV = BernsteinDerivative(v);
 override pos = InterpUV(bezierCPs, basisU, basisV);
 override tu = normalize(InterpUV(bezierCPs, dBasisU, basisV));
 override tv = normalize(InterpUV(bezierCPs, basisU, dBasisV));
 override @FineVertex T CoarseToFine[type T, implicit Linear[T]](@CoarseVertex T value) {
 @PatchCorner T patchCornerValue = ICP2PC(value);
 return (patchCornerValue @ HS_PatchCorners(0))*uInv*vInv
 + (patchCornerValue @ HS_PatchCorners(1))*u*vInv
 + (patchCornerValue @ HS_PatchCorners(2))*u*v
 + (patchCornerValue @ HS_PatchCorners(3))*uInv*v;
 }
}

abstract mixin shader class CubicGregoryTris extends CubicGregory, D3D11TriTessellation
{
 override HS_InputCoarseVertexCount = 32;
 override HS_OutputControlPointCount = 15;
 @FineVertex float u = DS_DomainLocation.x;
 @FineVertex float v = DS_DomainLocation.y;
 @FineVertex float w = DS_DomainLocation.z;
 @FineVertex float3 p_0 = gregory @ DS_InputControlPoints(0);
 @FineVertex float3 e_0p = gregory @ DS_InputControlPoints(1);
 @FineVertex float3 e_0n = gregory @ DS_InputControlPoints(2);
 @FineVertex float3 f_0p = gregory @ DS_InputControlPoints(3);
 @FineVertex float3 f_0n = gregory @ DS_InputControlPoints(4);
 @FineVertex float3 p_1 = gregory @ DS_InputControlPoints(5);
 @FineVertex float3 e_1p = gregory @ DS_InputControlPoints(6);
 @FineVertex float3 e_1n = gregory @ DS_InputControlPoints(7);
 @FineVertex float3 f_1p = gregory @ DS_InputControlPoints(8);
 @FineVertex float3 f_1n = gregory @ DS_InputControlPoints(9);
 @FineVertex float3 p_2 = gregory @ DS_InputControlPoints(10);
 @FineVertex float3 e_2p = gregory @ DS_InputControlPoints(11);
 @FineVertex float3 e_2n = gregory @ DS_InputControlPoints(12);
 @FineVertex float3 f_2p = gregory @ DS_InputControlPoints(13);
 @FineVertex float3 f_2n = gregory @ DS_InputControlPoints(14);
 @FineVertex float3 F_0 = (w*f_0n + v*f_0p) / GregoryDenom(v + w);
 @FineVertex float3 F_1 = (u*f_1n + w*f_1p) / GregoryDenom(w + u);
 @FineVertex float3 F_2 = (v*f_2n + u*f_2p) / GregoryDenom(u + v);
 override pos =
 u*u*u*p_0
 + v*v*v*p_1
 + w*w*w*p_2
 + 3*u*v*(u + v)*(u*e_0p + v*e_1n)
 + 3*v*w*(v + w)*(v*e_1p + w*e_2n)
 + 3*w*u*(w + u)*(w*e_2p + u*e_0n)
 + 12*u*v*w*(u*F_0 + v*F_1 + w*F_2);
 override tu = normalize(-(12 * u * v * ((F_0 * u) + (F_1 * v) + (F_2 * w))) - (3 * e_2n * v * w * (v + w)) - (3 * p_2 * (w * w)) - (3 * u * ((e_0n * u) + (e_2p * w)) * (u + w)) - (3 * v * ((e_1p * v) + (e_2n * w)) * (v + w)) - (3 * v * w * ((e_1p * v) + (e_2n * w)))
 override tv = normalize(-(12 * u * v * ((F_0 * u) + (F_1 * v) + (F_2 * w))) - (3 * e_2p * u * w * (u + w)) - (3 * p_2 * (w * w)) - (3 * u * ((e_0n * u) + (e_2p * w)) * (u + w)) - (3 * u * w * ((e_0n * u) + (e_2p * w))) - (3 * v * ((e_1p * v) + (e_2n * w)) * (v + w))
 override @FineVertex T CoarseToFine[type T, implicit Linear[T]](@CoarseVertex T value) {
 @PatchCorner T patchCornerValue = ICP2PC(value);
 return (patchCornerValue @ HS_PatchCorners(0))*u
 + (patchCornerValue @ HS_PatchCorners(1))*v
 + (patchCornerValue @ HS_PatchCorners(2))*w;
 }
}

abstract shader class Base
 extends D3D11DrawPass
{
 input @Uniform float4x4 world;
 input @Uniform float4x4 projection;
 input @Uniform float3 eyePosition;
 input @Uniform IndexStream indexStream;
 input @Uniform PrimitiveSpan primitiveSpan;
 override IA_DrawSpan = Draw(indexStream, primitiveSpan);
 abstract @CoarseVertex float3 P_base;
 abstract @CoarseVertex float3 N_base;
 virtual @CoarseVertex float3 BaseToModelPoint(@CoarseVertex float3 point) { return point; }
 virtual @CoarseVertex float3 BaseToModelVector(@CoarseVertex float3 vector) { return vector; }
 @CoarseVertex float3 P_model = BaseToModelPoint(P_base);
 @CoarseVertex float3 N_model = BaseToModelVector(N_base);
 virtual @FineVertex float3 P_fine = P_model;
 virtual @FineVertex float3 N_fine = N_model;
 virtual @FineVertex float3 P_disp = P_fine;
 @FineVertex float3 P_world = mul(float4(P_disp,1), world).xyz;
 @FineVertex float3 N_world = mul(float4(N_fine,0), world).xyz;
 abstract @RasterVertex float4x4 view;
 @RasterVertex float3 P_view = mul(float4(P_world,1), view).xyz;
 virtual @Fragment float3 N_frag = normalize(N_world);
 override RS_Position = mul(float4(P_view, 1), projection);
}

abstract mixin shader class TextureCoordinate
 extends D3D11DrawPass
{
 abstract @CoarseVertex float2 texCoord;
}

abstract mixin shader class BoneAttributes
 extends D3D11DrawPass
{
 abstract @CoarseVertex uint4 boneIndices;
 abstract @CoarseVertex float4 boneWeights;
}

abstract mixin shader class TangentAttributes
 extends Base
{
 abstract @CoarseVertex Tangent tangentT_base;
 abstract @CoarseVertex Tangent tangentS_base;
 @CoarseVertex Tangent tangentT_model = Tangent(BaseToModelVector(float3(tangentT_base)));
 @CoarseVertex Tangent tangentS_model = Tangent(BaseToModelVector(float3(tangentS_base)));
 @FineVertex Tangent tangentT_world = mul(tangentT_model, world);
 @FineVertex Tangent tangentS_world = mul(tangentS_model, world);
}

abstract mixin shader class AssemblePN
 extends Base
{
 struct PN {
 float3 position;
 float3 normal;
 }
 input @Uniform VertexStream[PN] vertexStream;
 @AssembledVertex PN assembled = vertexStream(IA_VertexID);
 override P_base = assembled.position;
 override N_base = assembled.normal;
}

abstract mixin shader class AssemblePNU
 extends Base, TextureCoordinate
{
 struct PNU {
 float3 position;
 float3 normal;
 float2 texCoord;
 }
 input @Uniform VertexStream[PNU] vertexStream;
 @AssembledVertex PNU assembled = vertexStream(IA_VertexID);
 override P_base = assembled.position;
 override N_base = assembled.normal;
 override texCoord = assembled.texCoord;
}

abstract mixin shader class AssemblePNUST
 extends Base, TextureCoordinate, TangentAttributes
{
 struct PNUST {
 float3 position;
 float3 normal;
 float2 texCoord;
 Tangent tangentS;
 Tangent tangentT;
 }
 input @Uniform VertexStream[PNUST] vertexStream;
 @AssembledVertex PNUST assembled = vertexStream(IA_VertexID);
 override P_base = assembled.position;
 override N_base = assembled.normal;
 override texCoord = assembled.texCoord;
 override tangentT_base = assembled.tangentT;
 override tangentS_base = assembled.tangentS;
}

abstract mixin shader class AssemblePBNU
 extends Base, TextureCoordinate, BoneAttributes
{
 struct PBNU {
 float3 position;
 unorm4 boneWeights;
 ubyte4 boneIndices;
 float3 normal;
 float2 texCoord;
 }
 input @Uniform VertexStream[PBNU] vertexStream;
 @AssembledVertex PBNU assembled = vertexStream(IA_VertexID);
 override P_base = assembled.position;
 override N_base = assembled.normal;
 override texCoord = assembled.texCoord;
 override boneIndices = assembled.boneIndices;
 override boneWeights = assembled.boneWeights;
}

abstract mixin shader class AssemblePBNUST
 extends Base, TextureCoordinate, BoneAttributes, TangentAttributes
{
 struct PBNUST {
 float3 position;
 unorm4 boneWeights;
 ubyte4 boneIndices;
 float3 normal;
 float2 texCoord;
 Tangent tangentS;
 Tangent tangentT;
 }
 input @Uniform VertexStream[PBNUST] vertexStream;
 @AssembledVertex PBNUST assembled = vertexStream(IA_VertexID);
 override P_base = assembled.position;
 override N_base = assembled.normal;
 override texCoord = assembled.texCoord;
 override boneIndices = assembled.boneIndices;
 override boneWeights = assembled.boneWeights;
 override tangentT_base = assembled.tangentT;
 override tangentS_base = assembled.tangentS;
}

abstract mixin shader class SkeletalAnimation
 extends Base, BoneAttributes
{
 input @Uniform Buffer[float4] boneMatrices;
 float4x4 getBoneMatrix(Buffer[float4] buffer, uint index) {
 return float4x4(
 buffer(index * uint(4) + uint(0)),
 buffer(index * uint(4) + uint(1)),
 buffer(index * uint(4) + uint(2)),
 buffer(index * uint(4) + uint(3)));
 }
 override @CoarseVertex float3 BaseToModelPoint(@CoarseVertex float3 point) {
 return mul(float4(point,1), getBoneMatrix(boneMatrices, boneIndices.x)).xyz * boneWeights.x
 + mul(float4(point,1), getBoneMatrix(boneMatrices, boneIndices.y)).xyz * boneWeights.y
 + mul(float4(point,1), getBoneMatrix(boneMatrices, boneIndices.z)).xyz * boneWeights.z
 + mul(float4(point,1), getBoneMatrix(boneMatrices, boneIndices.w)).xyz * boneWeights.w;
 }
 override @CoarseVertex float3 BaseToModelVector(@CoarseVertex float3 vector) {
 return mul(float4(vector,0), getBoneMatrix(boneMatrices, boneIndices.x)).xyz * boneWeights.x
 + mul(float4(vector,0), getBoneMatrix(boneMatrices, boneIndices.y)).xyz * boneWeights.y
 + mul(float4(vector,0), getBoneMatrix(boneMatrices, boneIndices.z)).xyz * boneWeights.z
 + mul(float4(vector,0), getBoneMatrix(boneMatrices, boneIndices.w)).xyz * boneWeights.w;
 }
}

abstract mixin shader class RenderColor
 extends D3D11DrawPass
{
 abstract @Fragment float4 fragmentColor;
 output @Pixel float4 target = fragmentColor;
}

abstract mixin shader class RenderToTexture2D
 extends Base, RenderColor
{
 input @Uniform float4x4 viewMatrix;
 override view = viewMatrix;
}

abstract mixin shader class DefaultGeometryShader
 extends D3D11GeometryShader
{
 override GS_InputVertexCount = 3;
 override GS_MaxOutputVertexCount = 3;
 input @RasterVertex FineVertex fine;
 override virtual @GeometryOutput void GeometryShader() {
 for(ii in Range(0, GS_InputVertexCount)) {
 Append(
 GS_OutputStream,
 RasterVertex(
 fine: GS_InputVertices(ii)));
 }
 }
 override @RasterVertex T FineToRaster[type T](@FineVertex T value) {
 return value @ fine;
 }
}

abstract mixin shader class RenderToTextureCube
 extends Base, RenderColor, DefaultGeometryShader
{
 input @Uniform Array[float4x4, 6] viewMatrices;
 override GS_InstanceCount = 6;
 override RS_RenderTargetArrayIndex = GS_InstanceID;
 override view = viewMatrices(GS_InstanceID);
}

abstract mixin shader class SimpleLightingModel
 extends Base
{
 @Fragment float3 E_world = normalize(eyePosition - P_world);
 @Fragment float3 R_world = reflect(-E_world, N_frag);
 abstract @Fragment float3 L_world;
 @Fragment float3 H_world = normalize(E_world + N_frag);
 @Fragment float nDotL = max(0, dot(N_frag, L_world));
 @Fragment float nDotH = max(0, dot(N_frag, H_world));
}

abstract mixin shader class DirectionalLight
 extends SimpleLightingModel
{
 input @Uniform float3 lightDirection;
 override L_world = lightDirection;
}

abstract mixin shader class LinearSampler
 extends D3D11DrawPass
{
 input @Uniform SamplerState linearSampler;
}

abstract mixin shader class SimpleMaterialModel
 extends Base
{
 virtual @Fragment float4 ambient = float4(0.0f);
 virtual @Fragment float4 emissive = float4(0.0f);
 virtual @Fragment float4 diffuse = float4(1.0f);
 virtual @Fragment float4 specular = float4(0.0f);
 virtual @Fragment float specularPower = 1.0f;
}

abstract mixin shader class UniformAmbient
 extends SimpleMaterialModel
{
 input @Uniform float4 uniformAmbient;
 override ambient = uniformAmbient;
}

abstract mixin shader class UniformEmissive
 extends SimpleMaterialModel
{
 input @Uniform float4 uniformEmissive;
 override emissive = uniformEmissive;
}

abstract mixin shader class DiffuseTexture
 extends SimpleMaterialModel, TextureCoordinate, LinearSampler
{
 input @Uniform Texture2D[float4] diffuseTexture;
 override diffuse = Sample(diffuseTexture, linearSampler, texCoord);
}

abstract mixin shader class UniformDiffuse
 extends SimpleMaterialModel
{
 input @Uniform float4 uniformDiffuse;
 override diffuse = uniformDiffuse;
}

abstract mixin shader class SpecularTexture
 extends SimpleMaterialModel, TextureCoordinate, LinearSampler
{
 input @Uniform Texture2D[float4] specularTexture;
 override specular = Sample(specularTexture, linearSampler, texCoord);
}

abstract mixin shader class UniformSpecular
 extends SimpleMaterialModel
{
 input @Uniform float4 uniformSpecular;
 override specular = uniformSpecular;
}

abstract mixin shader class SpecularPowerTexture
 extends SpecularTexture
{
 override specularPower = specular.w * 64.0f;
}

abstract mixin shader class UniformSpecularPower
 extends SimpleMaterialModel
{
 input @Uniform float uniformSpecularPower;
 override specularPower = uniformSpecularPower;
}

abstract mixin shader class NormalTexture
 extends Base, LinearSampler, TextureCoordinate, TangentAttributes
{
 input @Uniform Texture2D[float3] normalTexture;
 @Fragment float3 N_ts = 2.0f*Sample(normalTexture, linearSampler, texCoord) - 1.0f;
 override N_frag = normalize(
 N_ts.x * normalize(float3(tangentS_world))
 + N_ts.y * normalize(float3(tangentT_world))
 + N_ts.z * normalize(N_world));
}

abstract mixin shader class PhongMaterial
 extends Base, RenderColor, SimpleLightingModel, SimpleMaterialModel
{
 override fragmentColor = (nDotL*0.9 + 0.1)*diffuse + pow(nDotH, specularPower)*specular;
}

abstract mixin shader class NormalMaterial
 extends Base, RenderColor
{
 override fragmentColor = float4((N_frag+1)*0.5, 1);
}

abstract mixin shader class EnvMapMaterial
 extends Base, RenderColor, SimpleLightingModel
{
 input @Uniform TextureCube[float4] envTex;
 input @Uniform SamplerState envSampler;
 @Fragment float4 envColor = Sample(envTex, envSampler, R_world);
 @Fragment float4 diffuse = float4(0.0);
 @Fragment float4 reflection = float4(1.0);
 override fragmentColor = nDotL*diffuse + envColor*reflection;
}

abstract mixin shader class DisplacementMap
 extends Base, TextureCoordinate, LinearSampler
{
 input @Uniform Texture2D[float] displacementTexture;
 input @Uniform float displacementScale;
 input @Uniform float displacementBias;
 @FineVertex float rawDisplacement = SampleLevel(displacementTexture, linearSampler, texCoord, 0.0f);
 @FineVertex float displacement = displacementScale * (rawDisplacement + displacementBias);
 override P_disp = P_fine + displacement * N_fine;
}

Cubic Gregory ACC

Cubic Gregory
Interpolation

(Quads)

Cubic Gregory
Interpolation

(Triangles)

Uniform Tessellation

Texture Coordinates

Bone Weights/Indices

Tangent Vectors

Skeletal Animation

Transformation

Assemble (PN)

Assemble (PNU)

Assemble (PNUST)

Assemble (PBNU)

Assemble (PBNUST)

Render Color

Render to 2D Texture

Render to Cube Map

Pass-Through
Geometry Shader

Simple Lighting Model

Directional Light

Surface Attributes

Uniform Ambient

Uniform Emissive

Diffuse Map

Uniform Diffuse

Specular Map

Uniform Specular

Specular Power Map

Uniform Specular Power

Normal Map

Phong Material

Normal Material

Environment Map Material

Displacement Map

Figure 4.9: Spark source code for geometric effect application. The different colors
indicate different categories of concerns in the program. The dashed boxes indicate
different Spark shader classes.

CHAPTER 4. THE SPARK SYSTEM 104

The shader classes representing vertex attributes (e.g., “Texture Coordinates”) repre-

sent an interface between classes that provide the particular attribute (e.g., “Assem-

ble (PNU)”) and those that require the attribute (e.g., “Diffuse Map”). The various

“Assemble” components configure the IA pipeline stage, and correspond to different

in-memory layouts for vertex data; this application supports five different layouts,

and so there are five different classes for vertex assembly.

The proliferation of classes related to vertex assembly speaks to a possible weakness

of our design choice to have Spark target the entire pipeline, including fixed-function

stages. An application that configures the IA stage through a C++ API rather than

shader code could more easily data-drive the configuration of this stage.

Ideally, Spark would allow vertex-assembly operations to be flexibly composed like

other kinds of shader code, but this is made challenging by the need to support a

well-defined in-memory layout for vertex data. To clarify this point, we note that it is

(relatively) easy for a programmer to understand the memory layout of a C++ struct

that uses single inheritance. In contrast, in the presence of multiple mixin inheritance,

the in-memory layout would depend on details of the linearization algorithm. Spark

currently avoids the potential confusion by drawing a sharp divide between struct

types (which guarantee a memory layout, but do not support any kind of inheritance),

and classes and record types (which support multiple mixin inheritance and virtual-

class-based further extension, respectively).

The decomposition in Figure 4.9 also shows a large number of shader classes to support

material parameters (e.g., ambient, diffuse, and specular colors). Depending on the

model, these parameters might be computed at one of several rates (the current code

supports material parameters as uniform shader parameter as well as texture maps;

conceivably one might also wish to support per-vertex color channels). Currently, the

concerns of what material parameters are available, and how those parameters are

specified are coupled. Ideally, we should be able to define the notion of a “material

parameter” once, and simply specify that both diffuse and specular reflectance are

surface attributes.

CHAPTER 4. THE SPARK SYSTEM 105

The HLSL Code

For comparison, we also implemented an idiomatic HLSL über-shader for the same

set of effects and compared performance results. In the über-shader, each of our

shader components corresponds, approximately, to a preprocessor flag. For example,

a preprocessor flag is used to enable or disable rendering to a cube map.

When creating an über-shader, certain global optimizations can be implemented using

the preprocessor. For example, the material used on the Vortigaunt does not make

use of interpolated positions or texture coordinates in the PS. Therefore, when this

material is used, some plumbing code in earlier pipeline stages is dead code, and may

be eliminated. In our HLSL über-shader, we perform dead-code elimination by condi-

tionally defining per-stage shader outputs based on the needs of downstream stages.

Figure 4.10 shows a zoomed-out view of the HLSL shader code; some preprocessing

directives have been stripped from this code to minimize the overall length. Dashed

boxes mark per-stage shader entry points, and code pertaining to different concerns

is color-coded to match Figure 4.9. In some cases, blocks of one color are “nested”

inside of another color to make clear that both features are in the same subroutine.

Compared to the Spark code, individual features are more widely distributed in the

code, and some features are coupled in the HLSL code that were separate in Spark. In

particular, note how plumbing code related to vertex attributes (red) appears inside

the animation (blue) and tessellation (green) features. In practice, adding support

for a new vertex attribute (e.g., per-vertex diffuse color) to the über-shader could

require modification at each of these red locations. Similarly, the tessellation effect

could only be re-used in another shader by first decoupling it from the particular

vertex attributes used here and copy-pasting the tessellation-related code (green)

into a new shader.

CHAPTER 4. THE SPARK SYSTEM 106

FineVertex CreateFineVertex(CoarseVertex input, float3 N_model) {
 FineVertex result = (FineVertex) 0; float3 P_model = input.P_model;
#ifdef USING_DisplacementMap
 float displacement = displacementScale * (displacementTexture.SampleLevel(linearSampler, input.texCoord, 0.0f) + displacementBias);
 P_model = P_model + displacement * N_model;
#endif
 float3 P_world = mul(float4(P_model, 1), world).xyz; float3 N_world = mul(float4(N_model, 0), world).xyz;
 result.P_world = P_world; result.N_world = N_world;
#ifdef USING_TexCoord
 result.texCoord = input.texCoord;
#endif
#ifdef USING_ShadingTangents
 float3 tangentS = input.tangentS; float3 tangentT = input.tangentT;
 tangentS = mul(float4(tangentS,0), world).xyz; tangentT = mul(float4(tangentT, 0), world).xyz;
 result.tangentS = tangentS; result.tangentT = tangentT;
#endif // USING_ShadingTangents
 return result; }

#ifdef USING_Tessellation
Patch main_patch_hs(InputPatch<CoarseVertex, 32> input, uint patchID : SV_PrimitiveID) {
 Patch result = (Patch) 0; uint stencilOffset = patchInfos[patchID*2 + 0] / (uint)4;
 uint patchOrderOffset = patchInfos[patchID*2 + 1] / (uint)4;
 uint cornerOrderOffset = patchOrderOffset; uint stencilOrderOffset = patchOrderOffset + 4;
 for(int cornerID = 0; cornerID < HS_CornerCount; cornerID++) {
 CoarseVertex patchCornerCoarseVertex = input[patchOrders[cornerOrderOffset + cornerID]];
#ifdef USING_TexCoord
 result.cornerTexCoords[cornerID] = patchCornerCoarseVertex.texCoord;
#endif
#ifdef USING_ShadingTangents
 result.cornerTangentS[cornerID] = patchCornerCoarseVertex.tangentS;
 result.cornerTangentT[cornerID] = patchCornerCoarseVertex.tangentT;
#endif // USING_ShadingTangents
 }
#ifdef USING_ConstantTessellation
 for(int edgeID = 0; edgeID < HS_EdgeCount; edgeID++) { result.HS_EdgeFactor[edgeID] = tessellationFactor; }
 for(int interiorID = 0; interiorID < HS_InteriorCount; interiorID++) {
 result.HS_InsideFactor[interiorID] = tessellationFactor; }
#endif
 return result; }
[patchconstantfunc("main_patch_hs")]
#ifdef USING_CubicGregoryQuads
[domain("quad")]
#endif
#ifdef USING_CubicGregoryTris
[domain("tri")]
#endif
[outputcontrolpoints(HS_OutputControlPointCount)][partitioning("fractional_odd")][outputtopology("triangle_cw")]
ControlPoint main_hs(InputPatch<CoarseVertex, 32> input, uint patchID : SV_PrimitiveID, uint id : SV_OutputControlPointID) {
 uint stencilOffset = patchInfos[patchID*2 + 0] / (uint)4;
 uint patchOrderOffset = patchInfos[patchID*2 + 1] / (uint)4;
 uint cornerOrderOffset = patchOrderOffset; uint stencilOrderOffset = patchOrderOffset + 4;
 uint ocpCount = patchStencils[stencilOffset + 1]; float3 gregory = 0;
 if(id < ocpCount) {
 uint icpCount = patchStencils[stencilOffset + 0]; uint mask = patchStencils[stencilOffset + 2 + id*2 + 0];
 uint cpStencilOffset = patchStencils[stencilOffset + 2 + id*2 + 1] / (uint) 4;
 for(uint ii = 0; ii < icpCount; ii++) {
 uint index = patchOrders[stencilOrderOffset + ii]; uint indexBit = ((uint) 1) << index;
 if((mask & indexBit) != 0) {
 uint cpStencilIndex = countbits(mask & (indexBit - 1));
 float weight = asfloat(controlPointStencils[cpStencilOffset + cpStencilIndex]);
 float3 icpPos = input[ii].P_model;
 gregory += weight*icpPos; } } }
 ControlPoint result = (ControlPoint) 0; result.gregory = gregory; return result; }
static inline float GregoryDenom(float value) { if(value == 0.0f) return 1.0f; return value; }
static void Bernstein(float t, out float result[4]) {
 float invT = 1.0f - t; result[0] = invT*invT*invT;
 result[1] = 3*t*invT*invT; result[2] = 3*t*t*invT;
 result[3] = t*t*t; }
static void BernsteinDerivative(float t, out float result[4]) {
 float invT = 1.0f - t; result[0] = -3 * invT * invT;
 result[1] = 3 * invT * invT - 6 * t * invT;
 result[2] = 6 * t * invT - 3 * t * t; result[3] = 3 * t * t; }
float3 InterpU(float3 cp[16], int offset, float weightsU[4]) {
 return cp[offset + 0] * weightsU[0] + cp[offset + 1] * weightsU[1]
 + cp[offset + 2] * weightsU[2] + cp[offset + 3] * weightsU[3]; }
float3 InterpUV(const float3 cp[16], float weightsU[4], float weightsV[4]) {
 return InterpU(cp, 0, weightsU) * weightsV[0] + InterpU(cp, 4, weightsU) * weightsV[1]
 + InterpU(cp, 8, weightsU) * weightsV[2] + InterpU(cp, 12, weightsU) * weightsV[3]; }
#ifdef USING_CubicGregoryQuads
[domain("quad")]
#endif
#ifdef USING_CubicGregoryTris
[domain("tri")]
#endif
DSOutput main_ds(OutputPatch<ControlPoint, HS_OutputControlPointCount> input, Patch patch,
#ifdef USING_CubicGregoryQuads
 float2 uv : SV_DomainLocation
#endif
#ifdef USING_CubicGregoryTris
 float3 uvw : SV_DomainLocation
#endif
) { CoarseVertex interpolated;
 float3 pos; float3 tu; float3 tv; float2 texCoord;
#ifdef USING_CubicGregoryQuads
 float u = uv.x; float v = uv.y; float uInv = 1 - u; float vInv = 1 - v;
 float3 p_0 = input[0].gregory; float3 e_0p = input[1].gregory;
 float3 e_0n = input[2].gregory; float3 f_0p = input[3].gregory;
 float3 f_0n = input[4].gregory; float3 p_1 = input[5].gregory;
 float3 e_1p = input[6].gregory; float3 e_1n = input[7].gregory;
 float3 f_1p = input[8].gregory; float3 f_1n = input[9].gregory;
 float3 p_2 = input[10].gregory; float3 e_2p = input[11].gregory;
 float3 e_2n = input[12].gregory; float3 f_2p = input[13].gregory;
 float3 f_2n = input[14].gregory; float3 p_3 = input[15].gregory;
 float3 e_3p = input[16].gregory; float3 e_3n = input[17].gregory;
 float3 f_3p = input[18].gregory; float3 f_3n = input[19].gregory;
 float3 F_0 = (u*f_0p + v*f_0n) / GregoryDenom(u + v);
 float3 F_1 = (uInv*f_1n + v*f_1p) / GregoryDenom(uInv + v);
 float3 F_2 = (uInv*f_2p + vInv*f_2n) / GregoryDenom(uInv + vInv);
 float3 F_3 = (u*f_3n + vInv*f_3p) / GregoryDenom(u + vInv);
 float3 bezierCPs[16] = { p_0, e_0p, e_1n, p_1, e_0n, F_0, F_1, e_1p,
 e_3p, F_3, F_2, e_2n, p_3, e_3n, e_2p, p_2, };
 float basisU[4]; Bernstein(u, basisU); float basisV[4]; Bernstein(v, basisV);
 float dBasisU[4]; BernsteinDerivative(u, dBasisU); float dBasisV[4]; BernsteinDerivative(v, dBasisV);
 pos = InterpUV(bezierCPs, basisU, basisV);
 tu = normalize(InterpUV(bezierCPs, dBasisU, basisV)); tv = normalize(InterpUV(bezierCPs, basisU, dBasisV));
#ifdef USING_TexCoord
 texCoord = patch.cornerTexCoords[0]*uInv*vInv + patch.cornerTexCoords[1]*u*vInv
 + patch.cornerTexCoords[2]*u*v + patch.cornerTexCoords[3]*uInv*v;
#endif
#ifdef USING_ShadingTangents
 float3 tangentS = patch.cornerTangentS[0]*uInv*vInv + patch.cornerTangentS[1]*u*vInv
 + patch.cornerTangentS[2]*u*v + patch.cornerTangentS[3]*uInv*v;

 float3 tangentT = patch.cornerTangentT[0]*uInv*vInv + patch.cornerTangentT[1]*u*vInv
 + patch.cornerTangentT[2]*u*v + patch.cornerTangentT[3]*uInv*v;
#endif // USING_ShadingTangents
#endif
#ifdef USING_CubicGregoryTris
 float u = uvw.x; float v = uvw.y; float w = uvw.z;
 float3 p_0 = input[0].gregory; float3 e_0p = input[1].gregory;
 float3 e_0n = input[2].gregory; float3 f_0p = input[3].gregory;
 float3 f_0n = input[4].gregory; float3 p_1 = input[5].gregory;
 float3 e_1p = input[6].gregory; float3 e_1n = input[7].gregory;
 float3 f_1p = input[8].gregory; float3 f_1n = input[9].gregory;
 float3 p_2 = input[10].gregory; float3 e_2p = input[11].gregory;
 float3 e_2n = input[12].gregory; float3 f_2p = input[13].gregory;
 float3 f_2n = input[14].gregory;
 float3 F_0 = (w*f_0n + v*f_0p) / GregoryDenom(v + w);
 float3 F_1 = (u*f_1n + w*f_1p) / GregoryDenom(w + u);
 float3 F_2 = (v*f_2n + u*f_2p) / GregoryDenom(u + v);
 pos = u*u*u*p_0 + v*v*v*p_1 + w*w*w*p_2 + 3*u*v*(u + v)*(u*e_0p + v*e_1n)
 + 3*v*w*(v + w)*(v*e_1p + w*e_2n) + 3*w*u*(w + u)*(w*e_2p + u*e_0n)
 + 12*u*v*w*(u*F_0 + v*F_1 + w*F_2);
 tu = normalize(-(12 * u * v * ((F_0 * u) + (F_1 * v) + (F_2 * w))) - (3 * e_2n * v * w * (v + w)) - (3 * p_2 * (w * w)) - (3 * u * ((e_0n * u) + (e_2p * w)) * (u + w)) - (3 * v * ((e_1p * v) + (e_2n * w)) * (v + w)) - (3 * v * w * ((e_1p * v) + (e_2n * w)))
 tv = normalize(-(12 * u * v * ((F_0 * u) + (F_1 * v) + (F_2 * w))) - (3 * e_2p * u * w * (u + w)) - (3 * p_2 * (w * w)) - (3 * u * ((e_0n * u) + (e_2p * w)) * (u + w)) - (3 * u * w * ((e_0n * u) + (e_2p * w))) - (3 * v * ((e_1p * v) + (e_2n * w)) * (v + w))
#ifdef USING_TexCoord
 texCoord = patch.cornerTexCoords[0]*u + patch.cornerTexCoords[1]*v + patch.cornerTexCoords[2]*w;
#endif
#ifdef USING_ShadingTangents
 float3 tangentS = patch.cornerTangentS[0]*u + patch.cornerTangentS[1]*v + patch.cornerTangentS[2]*w;
 float3 tangentT = patch.cornerTangentT[0]*u + patch.cornerTangentT[1]*v + patch.cornerTangentT[2]*w;
#endif // USING_ShadingTangents
#endif
 interpolated.P_model = pos; float3 N_model = normalize(cross(tu,tv));
#ifdef USING_TexCoord
 interpolated.texCoord = texCoord;
#endif
#ifdef USING_ShadingTangents
 tangentS = normalize(tangentS - n * dot(n, tangentS)); tangentT = normalize(tangentT - n * dot(n, tangentT));
 interpolated.tangentS = tangentS; interpolated.tangentT = tangentT;
#endif // USING_ShadingTangents
 FineVertex fineVertex = CreateFineVertex(interpolated, N_model);
#ifdef USING_GeometryShader
 return fineVertex;
#else
 RasterVertex rasterVertex = CreateRasterVertex(fineVertex, 0); return rasterVertex;
#endif
}
#endif // USING_Tessellation

cbuffer Uniforms : register(b0) { float4x4 world;
#ifdef USING_RenderToTexture2D
 float4x4 viewMatrix;
#endif
#ifdef USING_RenderToTextureCube
 float4x4 viewMatrices[6];
#endif
#ifdef USING_ConstantTessellation
 float tessellationFactor;
#endif
 float4x4 projection;
#ifdef USING_DirectionalLight
 float3 lightDirection;
#endif
 float3 eyePosition;
#ifdef USING_DisplacementMap
 float displacementScale; float displacementBias;
#endif
#ifdef USING_UniformAmbient
 float4 uniformAmbient;
#endif
#ifdef USING_UniformEmissive
 float4 uniformEmissive;
#endif
#ifdef USING_UniformDiffuse
 float4 uniformDiffuse;
#endif
#ifdef USING_UniformSpecular
 float4 uniformSpecular;
#endif
#ifdef USING_UniformSpecularPower
 float uniformSpecularPower;
#endif
}
#ifdef USING_SkeletalAnimation
Buffer<float4> boneMatrices;
float4x4 getBoneMatrix(uint index) {
 return float4x4(boneMatrices[index*4 + 0], boneMatrices[index*4 + 1],
 boneMatrices[index*4 + 2], boneMatrices[index*4 + 3]); }
#endif // USING_SkeletalAnimation
#ifdef USING_CubicGregory
Buffer<uint> patchInfos; Buffer<uint> patchOrders;
Buffer<uint> patchStencils; Buffer<uint> controlPointStencils;
#endif
#ifdef USING_DisplacementMap
Texture2D<float> displacementTexture;
#define USING_LinearSampler 1
#endif
#ifdef USING_DiffuseTexture
Texture2D<float4> diffuseTexture;
#define USING_LinearSampler 1
#endif
#ifdef USING_SpecularTexture
Texture2D<float4> specularTexture;
#define USING_LinearSampler 1
#endif
#ifdef USING_NormalTexture
Texture2D<float3> normalTexture;
#define USING_LinearSampler 1
#endif
#ifdef USING_LinearSampler
SamplerState linearSampler;
#endif
#ifdef USING_EnvMapMaterial
TextureCube<float4> envMap;
SamplerState envMapSampler;
#endif
struct AssembledVertex {
#ifdef USING_AssemblePNU
 float3 position : Position; float3 normal : Normal;
#ifdef USING_AssemblePBNU

 float4 boneWeights : BoneWeights; uint4 boneIndices : BoneIndices;
#endif // USING_AssemblePBNU
 float2 texCoord : TextureCoordinate;
#ifdef USING_AssembleST
 float3 tangentS : TangentS; float3 tangentT : TangentT;
#endif // USING_AssemblePBNUST
#endif // USING_AssemblePNU
};
struct CoarseVertex {
 float3 P_model : Position;
#ifdef USING_MeshNormal
 float3 N_model : Normal;
#endif
#ifdef USING_TexCoord
 float2 texCoord : TextureCoordinate;
#endif
#ifdef USING_ShadingTangents
 float3 tangentS : TangentS; float3 tangentT : TangentT;
#endif
};
#ifdef USING_CubicGregoryQuads
#define HS_CornerCount 4
#define HS_EdgeCount 4
#define HS_InteriorCount 2
#define HS_OutputControlPointCount 20
#endif
#ifdef USING_CubicGregoryTris
#define HS_CornerCount 3
#define HS_EdgeCount 3
#define HS_InteriorCount 1
#define HS_OutputControlPointCount 15
#endif

struct Patch {
#ifdef USING_CubicGregory
 float HS_EdgeFactor[HS_EdgeCount] : SV_TessFactor; float HS_InsideFactor[HS_InteriorCount] : SV_InsideTessFactor;
#ifdef USING_TexCoord
 float2 cornerTexCoords[HS_CornerCount] : TextureCoordinate;
#endif
#ifdef USING_ShadingTangents
 float3 cornerTangentS[HS_CornerCount] : TangentS; float3 cornerTangentT[HS_CornerCount] : TangentT;
#endif
#endif
};
struct ControlPoint { float3 gregory : Gregory; };
struct FineVertex {
 float3 P_world : Position; float3 N_world : Normal;
#ifdef USING_TexCoord
 float2 texCoord : TextureCoordinate;
#endif
#ifdef USING_ShadingTangents
 float3 tangentS : TangentS; float3 tangentT : TangentT;
#endif
};
struct RasterVertex {
 float4 RS_Position : SV_Position;
#ifdef USING_RenderToTextureCube
 uint RS_RenderTargetArrayIndex : SV_RenderTargetArrayIndex;
#endif
#ifdef USING_ShadingPosition
 float3 P_world : Position;
#endif
 float3 N_world : Normal;
#ifdef USING_ShadingTexCoord
 float2 texCoord : TextureCoordinate;
#endif
#ifdef USING_ShadingTangents
 float3 tangentS : TangentS; float3 tangentT : TangentT;
#endif
};
struct Fragment {
#ifdef USING_RenderColor
 float4 target : SV_Target0;
#endif
};
CoarseVertex CreateCoarseVertex(AssembledVertex input, uint vertexID, uint instanceID) {
 CoarseVertex result = (CoarseVertex) 0;
 float3 P_base = 0; float3 N_base = 0; float2 texCoord = 0;
#ifdef USING_AssemblePNU
 P_base = input.position; N_base = input.normal; texCoord = input.texCoord;
#endif // USING_AssemblePNU
#ifdef USING_AssemblePBNU
 uint4 boneIndices = input.boneIndices; float4 boneWeights = input.boneWeights;
#endif // USING_AssemblePBNU
#ifdef USING_ShadingTangents
 float3 tangentS = input.tangentS; float3 tangentT = input.tangentT;
#endif // USING_ShadingTangents
 float3 P_model = P_base; float3 N_model = N_base;
#ifdef USING_SkeletalAnimation
 P_model = mul(float4(P_base,1), getBoneMatrix(boneIndices.x)).xyz * boneWeights.x
 + mul(float4(P_base,1), getBoneMatrix(boneIndices.y)).xyz * boneWeights.y
 + mul(float4(P_base,1), getBoneMatrix(boneIndices.z)).xyz * boneWeights.z
 + mul(float4(P_base,1), getBoneMatrix(boneIndices.w)).xyz * boneWeights.w;
 N_model = mul(float4(N_base,0), getBoneMatrix(boneIndices.x)).xyz * boneWeights.x
 + mul(float4(N_base,0), getBoneMatrix(boneIndices.y)).xyz * boneWeights.y
 + mul(float4(N_base,0), getBoneMatrix(boneIndices.z)).xyz * boneWeights.z
 + mul(float4(N_base,0), getBoneMatrix(boneIndices.w)).xyz * boneWeights.w;
#ifdef USING_ShadingTangents
 tangentS = mul(float4(tangentS,0), getBoneMatrix(boneIndices.x)).xyz * boneWeights.x
 + mul(float4(tangentS,0), getBoneMatrix(boneIndices.y)).xyz * boneWeights.y
 + mul(float4(tangentS,0), getBoneMatrix(boneIndices.z)).xyz * boneWeights.z
 + mul(float4(tangentS,0), getBoneMatrix(boneIndices.w)).xyz * boneWeights.w;
 tangentT = mul(float4(tangentT,0), getBoneMatrix(boneIndices.x)).xyz * boneWeights.x
 + mul(float4(tangentT,0), getBoneMatrix(boneIndices.y)).xyz * boneWeights.y
 + mul(float4(tangentT,0), getBoneMatrix(boneIndices.z)).xyz * boneWeights.z
 + mul(float4(tangentT,0), getBoneMatrix(boneIndices.w)).xyz * boneWeights.w;
#endif // USING_ShadingTangents
#endif // USING_SkeletalAnimation
 result.P_model = P_model;
#ifdef USING_MeshNormal
 result.N_model = N_model;
#endif
#ifdef USING_TexCoord
 result.texCoord = texCoord;
#endif
#ifdef USING_ShadingTangents
 result.tangentS = tangentS; result.tangentT = tangentT;
#endif // USING_ShadingTangents
 return result; }

RasterVertex CreateRasterVertex(FineVertex input, int GS_InstanceID) {
 RasterVertex result = (RasterVertex) 0; float4x4 view;
#ifdef USING_RenderToTexture2D
 view = viewMatrix;
#endif
#ifdef USING_RenderToTextureCube
 view = viewMatrices[GS_InstanceID];
#endif
 float3 P_world = input.P_world; float3 P_view = mul(float4(P_world, 1), view).xyz;
 result.RS_Position = mul(float4(P_view, 1), projection);
#ifdef USING_RenderToTextureCube
 result.RS_RenderTargetArrayIndex = GS_InstanceID;
#endif
#ifdef USING_ShadingPosition
 result.P_world = input.P_world;
#endif
 result.N_world = input.N_world;
#ifdef USING_ShadingTexCoord
 result.texCoord = input.texCoord;
#endif
#ifdef USING_ShadingTangents
 result.tangentS = input.tangentS; result.tangentT = input.tangentT;
#endif // USING_ShadingTangents
 return result; }
VSOutput main_vs(AssembledVertex input, uint vertexID : SV_VertexID, uint instanceID : SV_InstanceID) {
 CoarseVertex coarseVertex = CreateCoarseVertex(input, vertexID, instanceID);
#ifndef USING_Tessellation
 FineVertex fineVertex = CreateFineVertex(coarseVertex, coarseVertex.N_model);
#ifndef USING_GeometryShader
 RasterVertex rasterVertex = CreateRasterVertex(fineVertex, 0);
 return rasterVertex;
#else
 return fineVertex;
#endif
#else
 return coarseVertex;
#endif // !USING_Tessellation
}

#ifdef USING_GeometryShader
#define GS_MaxOutputVertexCount 3
[maxvertexcount(GS_MaxOutputVertexCount)]
#ifdef USING_RenderToTextureCube
[instance(6)]
#endif
void main_gs(triangle FineVertex input[3], inout TriangleStream<RasterVertex> output
#ifdef USING_RenderToTextureCube
 , uint GS_InstanceID : SV_GSInstanceID
#endif
) {
#ifndef USING_RenderToTextureCube
 uint GS_InstanceID = 0;
#endif
 for(int ii = 0; ii < GS_MaxOutputVertexCount; ++ii) {
 RasterVertex rasterVertex = CreateRasterVertex(input[ii], GS_InstanceID); output.Append(rasterVertex);
 }
}
#endif // USING_GeometryShader

Fragment main_ps(RasterVertex input) {
 Fragment result = (Fragment) 0;
#ifdef USING_RenderColor
 float4 fragmentColor;
 float3 N_world = normalize(input.N_world);
#ifdef USING_NormalTexture
 float3 N_ts = 2*normalTexture.Sample(linearSampler, input.texCoord) - 1;
 N_world = normalize(N_ts.x * normalize(input.tangentS)
 + N_ts.y * normalize(input.tangentT)
 + N_ts.z * N_world);
#endif

 float3 L_world;
#ifdef USING_DirectionalLight
 L_world = lightDirection;
#endif

#ifdef USING_ShadingPosition
 float3 E_world = normalize(eyePosition - input.P_world);
 float3 R_world = reflect(-E_world, N_world);
 float3 H_world = normalize(E_world + N_world);
 float nDotH = max(0, dot(N_world, H_world));
#endif

 float nDotL = max(0, dot(N_world, L_world));
 float4 ambient = 0.0f; float4 emissive = 0.0f;
 float4 diffuse = 1.0f; float4 specular = 0.0f;
 float specularPower = 1.0f;

#ifdef USING_UniformAmbient
 ambient = uniformAmbient;
#endif

#ifdef USING_UniformEmissive
 emissive = uniformEmissive;
#endif

#ifdef USING_UniformDiffuse
 diffuse = uniformDiffuse;
#endif

#ifdef USING_UniformSpecular
 specular = uniformSpecular;
#endif

#ifdef USING_UniformSpecularPower
 specularPower = uniformSpecularPower;
#endif

#ifdef USING_DiffuseTexture
 diffuse = diffuseTexture.Sample(linearSampler, input.texCoord);
#endif

#ifdef USING_SpecularTexture
 specular = specularTexture.Sample(linearSampler, input.texCoord);
#endif

#ifdef USING_PhongMaterial
 fragmentColor = (nDotL*0.9 + 0.1)*diffuse + pow(nDotH, specularPower)*specular;
#endif

#ifdef USING_EnvMapMaterial
 float4 envColor = envMap.Sample(envMapSampler, R_world);
 diffuse = 0.0;
 float reflection = 1.0;
 fragmentColor = nDotL*diffuse + envColor*reflection;
#endif

#ifdef USING_NormalMaterial
 fragmentColor = float4((N_world+1)*0.5, 1);
#endif

 result.target = fragmentColor;
#endif // USING_RenderColor

 return result;
}

Figure 4.10: HLSL source code for geometric effect application. The different colors
indicate different categories of concerns in the program. The dashed boxes indicate
per-stage shader entry points.

CHAPTER 4. THE SPARK SYSTEM 107

Model Time HLSL (ms) Time Spark (ms) Compile Time (ms)
no DCE DCE HLSL Spark

Render to Cube Map (1024×1024×6)

Lizard 0.507 0.506 0.507 (+0%) 155 568 (3.7×)
Vortigaunt 6.49 4.36 4.37 (+0%) 230 631 (2.7×)

Render to Screen (1792×512)

Lizard 0.093 0.093 0.091 (−2%) 117 374 (3.2×)
Big Guy 1.12 0.990 1.01 (+2%) 178 387 (2.2×)

Vortigaunt 0.974 0.851 0.867 (+2%) 207 511 (2.5×)

Table 4.4: Performance results comparing Spark and HLSL. We measure GPU
execution time of each draw pass for the view shown in Figure 4.8, rendered on an
ATI Radeon HD 5870, as well as cumulative shader compilation times for each pass,
measured on an Intel Core i7 975. For the HLSL über-shader, we measure rendering
performance without and with manual dead-code elimination (DCE). Spark-compiled
shaders perform similarly to HLSL with this global optimization applied.

These results serve as qualitative evidence that Spark is better suited to modular,

reusable expression of these shading effects. In the next section, we present quantita-

tive data to demonstrate that this improved expressiveness does not have an undue

performance cost.

Performance

Table 4.4 shows performance results for the rendering passes in Figure 4.8, using

both HLSL and Spark. We give results for our HLSL über-shader both with and

without manual dead-code elimination. The benefits of dead-code elimination are

most notable when rendering the Vortigaunt to our reflection cube map: performance

is improved by 33%. Rendering passes using Spark-compiled shaders have similar

performance to the HLSL über-shader with dead-code elimination: between 2% slower

and 2% faster. This is because, as described in Section 4.1.2, the Spark system

automatically performs global dead-code elimination as part of compilation.

CHAPTER 4. THE SPARK SYSTEM 108

Table 4.4 also shows HLSL and Spark compile times for the combination of features in

each rendering pass. The per-combination cost of the Spark compilation is between

two and four times that of HLSL. In the case of Spark, this cost includes global

optimization of the composed shader class, source-to-source translation to HLSL,

compilation of the generated HLSL, and generation of CPU code for shader binding

and @Uniform computation. In addition to the per-combination cost, the Spark path

also incurs a one-time startup cost of 6.6 seconds to parse and type-check the Spark

shader suite. This startup cost could potentially be mitigated by performing type-

checking at application compile time and instead loading a serialized representation

of the Spark shader suite.

Language Code Preprocessor Total
HLSL 478 260 738
Spark 501 0 501

Table 4.5: Comparison of lines of code (non-whitespace, non-comment) in Spark
and HLSL implementations of the shader suite.

Table 4.5 compares the number of non-comment lines of code in the Spark and HLSL

implementations of the shader suite. While both the Spark and HLSL implemen-

tations use similar amounts of code to express the shading algorithms themselves,

the HLSL implementation also requires preprocessor directives to select between the

different über-shader code paths, and to implement dead code elimination. In the

case of Spark, components are defined as distinct shader classes, and so preproces-

sor directives are not required to enable or disable features. Considering both code

and preprocessor directives, the Spark implementation requires 32% fewer lines to

implement the same effects, with similar performance.

Chapter 5

Discussion

We have presented both the design of the Spark shading language, as well as our ex-

perience implementing and using a compiler and runtime for Spark. In this chapter,

we will discuss possible directions for continuing or extending our work. We begin by

sketching the connections between the type system of the Spark language and more

familiar work on programming languages. We then turn our attention to various pos-

sible extension of the Spark language or system that could provide a better experience

to future users.

5.1 Rates of Computation Are Functors

In this section, we will relate the core type system of Spark to the notation intro-

duced in Section 2.3.4, and use this notation to demonstrate how Spark’s rates of

computation serve as mathematical functors.

As discussed in Section 2.3.4, our type system has two levels: expressions and their

values are classified by types, while types are in turn classified by kinds.

109

CHAPTER 5. DISCUSSION 110

5.1.1 Kinds

Our Spark type system has three fundamental kinds, and one kind constructor:

K ::=

| ∗ // kind of proper types

| K1 ⇒ K2 // arrow kind constructor

| RecordType // kind of record types

| RateQualifiedType // kind of rate-qualified types

The kinds ∗ and⇒ are as presented in Section 2.3.4: ∗ is the kind of all proper types,

and ⇒ is used to form the kinds of “generic” or “templated” types. In our concrete

Spark syntax we use square brackets [] to represent the application of a generic type

to arguments (e.g., Array[float,6]).

The RecordType kind is used to classify record types such as Fragment. All record

types are also proper types (but not vice versa), since records (vertices, fragments,

etc.) are values at run-time. Formally, we say that RecordType is a sub-kind of ∗.

5.1.2 Rate-Qualified Types

The remaining kind in our system is RateQualifiedType, and all attributes in our

system have types of this kind. Rate-qualified types are created using the @ type

constructor, which takes two parameters: a record type and any data type, and

returns an attribute type.

@ :: RecordType ⇒ ∗ ⇒ RateQualifiedType

The following set of kinding derivations give an example of how the @ operator works:

Fragment :: RecordType

float4 :: ∗
@ Fragment float4 :: RateQualifiedType

In the concrete syntax of Spark, we write a type like @ Fragment float4 in the

stylized form @Fragment float4, and call the @Fragment part a rate of computation.

CHAPTER 5. DISCUSSION 111

5.1.3 Rates of Computation

Since the two-argument @ operator is given in a curried form, so it can be partially

applied to a record type, and so a rate of computation like @Fragment is in fact a

one-argument type constructor:

@Fragment :: ∗ ⇒ RateQualifiedType

5.1.4 Lifting

Most functions in Spark, whether built in or user-defined, are simply declared to

operate on ordinary values (i.e., with types of kind ∗). These functions can then

be automatically lifted by the compiler to operate on attributes (with types of kind

RateQualifiedType).

That is, if a simple mathematical operator like floating-point addition:

+ : (float× float)→ float

is applied to arguments of type @R float, the compiler automatically synthesizes a

version of the operator lifted to the @R rate:

+@R : (@R float× @R float)→ @R float

5.1.5 Plumbing Operators

While most functions must be lifted to work on attributes (rate-qualified types),

plumbing operators, introduced in Section 3.2.4, are functions that work directly on

values with rate-qualified types, e.g.:

perspectiveInterpolate : @CoarseVertex float4→ @Fragment float4

CHAPTER 5. DISCUSSION 112

5.1.6 Projection

Section 3.3.6 shows how user-defined plumbing operators are typically implemented

using projection. We briefly digress here to show how projection fits into our presen-

tation of Spark’s type system. In our concrete syntax for Spark, we overload the @

character as an infix projection operator. To avoid ambiguity, however, we will use #

here instead.

We treat # as a type-parametric infix operator:

: ∀R :: RecordType.∀T :: ∗.@R T→ R→ T

Here the ∀ symbol is used to introduce a type parameter, so that this definition may

be read as: given a record type R and a data type T, the # operator is a function that

maps an attribute of type @R T and a record of type R to a value of type T.

The following derivation illustrates use of projection (leaving out the type parameter

of #, since it can be inferred from context):

color : @ControlPoint float4

cp : ControlPoint

color # cp : float4

In general, project interacts in an orthogonal fashion with lifting, so that:

color : @ControlPoint float4

cp0 : @FineVertex ControlPoint

color # cp0 : @FineVertex float4

Here we have lifted the projection operator to the @FineVertex rate. The result is a

projection similar to that used in Listing 3.1.

CHAPTER 5. DISCUSSION 113

5.1.7 Rates of Computation Are Functors

Given these preliminaries, we can now show that rates of computation in Spark are

mathematical functors. We use the definition as given in Pierce’s introduction [Pie91]:

Given categories C and D, a functor F : C→ D is a map taking:

• each C-object A to a D-object F (A), and

• each C-arrow f : A→ B to a D-arrow F (f) : F (A)→ F (B)

such that:

• F (idX) = idF (X) for all C-objects A, and

• F (g ◦ f) = F (g) ◦ F (f) for all composable C-arrows f and g.

That is, identity mappings and composition are preserved by F .

In the case of Spark, a rate of computation @R : ∗ ⇒ RateQualifiedType is a map

taking:

• each data type T to a rate-qualified type @R T, and

• each function f : A→ B to a lifted operator f@R : @R A→ @R B

That is, C is the category of types of kind ∗, and D is the category of types of kind

RateQualifiedType. Our approach to lifting trivially preserves identity mappings and

composition, since a a lifted operator f@R is applied pointwise.

We note that in the GPipe system [Bex], the Vertex ’a and Fragment ’a type con-

structors are similar in function to Spark’s @Vertex A and @Fragment A. These types

in GPipe are instances of the Haskell type-class Functor, which represents the math-

ematical functor concept (although it does not enforce the two equality constraints).

CHAPTER 5. DISCUSSION 114

5.2 Record Types Are Virtual Classes

In the preceding section we concerned ourselves with the code that appears inside of

a Spark shader class. We now turn our attention to the mechanisms by which shader

classes are extended and composed.

As we discuss in Section 3.3.5, record types in Spark constitute a specialized case of

the general concept of virtual classes, as introduced in Section 2.3.2. In particular,

each record type can be seen as a virtual class, nested inside of the shader class.

When inheriting from a shader class, we also inherit the record types it contains, and

can further extend those record types with new members.

In this section, we will make this connection explicit by describing an approach for

translating ordinary Spark shader code to a language with support for virtual classes.

As the target of our translation we use the Scala language, with a proposed extension

[Sca] that adds direct support for virtual classes (the current Scala language supports

virtual types but not full virtual classes).

5.2.1 Spark

Listing 5.1 shows a Spark shader class Base that might be defined in a system library

for a simple rendering pipeline, and a shader class Derived that might be defined in

user code. We will briefly discuss the declarations in these classes before moving on

to their translation.

The Base class defines three record types for a simple rendering pipeline: Uniform,

Vertex, and Fragment. Two of these record types are marked concrete, which

indicates to the Spark compiler that we need to be able to construct instances of

them. In practice, this means that a class that inherits from Base cannot define new

input attributes with per-vertex or per-fragment rates, because doing so would alter

the signature of the Vertex or Fragment record constructor, respectively. We have not

encountered the concrete keyword previously (e.g., in the examples in Section 3.4)

because user code in Spark does not typically need to define new record types.

CHAPTER 5. DISCUSSION 115

shader class Base

{

record Uniform;

concrete record Vertex;

concrete record Fragment;

input @Vertex uint VS_VertexID;

abstract @Vertex float4 VS_Position;

abstract @Fragment float4 PS_Color;

input @Vertex Uniform __u2v;

implicit @Vertex T UniformToVertex[type T](

@Uniform T value)

{ return value @ __u2v; }

input @Fragment Uniform __f2v;

implicit @Fragment T UniformToFragment[type T](

@Uniform T value)

{ return value @ __f2v; }

input @Fragment Vertex v2f;

implicit @Fragment T VertexToFragment[type T](

@Vertex T value)

{ return value @ __v2f; }

// ...

}

shader class Derived extends Base

{

input @Uniform float4x4 modelViewProj;

input @Uniform VertexStream[float4] positionStream;

input @Uniform VertexStream[float4] colorStream;

@Vertex float4 P_model = positionStream(VS_VertexID);

@Vertex float4 C = colorStream(VS_VertexID);

override VS_Position = mul(modelViewProj , P_model);

override PS_Color = C;

}

Listing 5.1: Spark shader classes to illustrate translation to virtual classes. Base

represents a pipeline interface that might appear in a system library, and Derived a
shader using that interface.

CHAPTER 5. DISCUSSION 116

The Base class then defines attributes that a derived shader can use. A shader can

use VS_VertexID to fetch per-vertex data, and must provide values for VS_Position

and PS_Color to be used in rasterization and blending, respectively.

Finally, the Base class defines several plumbing operators, in order to allow data to

be plumbed from @Uniform rate to @Vertex or @Fragment, and also from @Vertex

to @Fragment. If this were an interface to a real pipeline, such plumbing operators

might be implemented with support from a pipeline module in the compiler (see Sec-

tion 4.1.1), but here we provide dummy implementations with the help of additional

“private” input attributes (marked with leading underscores on their names—e.g.,

__u2v—since Spark does not support private members).

The Derived class extends Base to define some shading computations. We assume

here that types such as float4 and VertexStream have been defined in Base, but

left out of this example to conserve space. The code in Derived makes (implicit)

use of the plumbing operators defined by Base, to plumb @Uniform parameters like

modelViewProj into per-vertex computation, and to plumb the per-vertex attribute

C to a per-fragment computation.

5.2.2 Scala with Virtual Class Support

Listing 5.2 shows a translation of the Spark shader class Base to the Scala language

extended with direct support for virtual classes (see the Scala project site [Sca] for

details on this notation). Listing 5.3 shows the matching translation of Derived.

We now describe the steps of this translation:

• Each Spark shader class is translated to a Scala class. The Scala class is

abstract iff the Spark class was.

• If the Spark shader class inherited from any base classes, the Scala class inherits

from the corresponding classes.

CHAPTER 5. DISCUSSION 117

abstract class Base

{ // record Uniform;

trait Uniform <: {}

// concrete record Vertex;

abstract class Vertex(

// input attributes:

val u2v : Uniform ,

val VS_VertexID : uint) <:

{ // other attributes:

def VS_Position : float4;

// plumbing operators:

def UniformToVertex[T](value : Uniform=>T)

= value(u2v);

}

// concrete record Fragment;

abstract class Fragment(

// input attributes:

val u2f : Uniform ,

val v2f : Vertex) <:

{ // other attributes:

def PS_Color : float4;

// plumbing operators:

def UniformToFragment[T](value : Uniform=>T)

= value(u2f);

def VertexToFragment [T](value : Vertex=>T)

= value(v2f);

}

}

Listing 5.2: Translation of the shader class Base in Listing 5.1 to Scala, extended
with direct support for virtual classes.

CHAPTER 5. DISCUSSION 118

• Each concrete record type maps to a nested Scala class, and each non-concrete

record type maps to a Scala trait. If the Spark record type has any abstract

attributes, the corresponding Scala class is marked abstract.

• The class/trait corresponding to a record type is declared virtual. This is

marked in Scala by the <: token (which in Scala represents the “is subtype

of” relation).

• Each of the input attributes of a concrete record type is translated into a

constructor parameter on the corresponding class (c.f., VS_VertexID).

• Every other attribute of a record type is translated into a zero-argument method

in the body of the corresponding Scala class/trait. Abstract attributes trans-

late to abstract methods, while concrete attributes translating their defining

expression from Spark to Scala.

• Plumbing operators in Spark are translated to ordinary Scala methods. Param-

eters with rate-qualified types (e.g., @Uniform T) are translated to functions

(e.g., Uniform=>T). Projection in Spark (e.g., value @ u2f) is translated to

function application in Scala: value(u2f).

• Applications of plumbing operators are all made explicit, and their parameters

are turned into explicit functions. For example, when passed to a plumbing

operator, the @Vertex float4 attribute C is replaced with (v:Vertex) => v.C.

Each of the nested classes/traits inside of the Scala translation of Derived, which

correspond to record types in the original Spark shader, further extends the equivalent

declaration in Base. That is, the type Derived.Vertex includes all the members of

Base.Vertex, as well as any new ones declared (like P_model).

The Scala code here is more verbose than the equivalent Spark. This is in part

because of making invocation of plumbing operators explicit, and also because the

concrete Vertex and Fragment types must re-declare the constructor signature of

the equivalent classes in Base (see Section 2.3.3 for a discussion of this issue with

traditional constructors).

CHAPTER 5. DISCUSSION 119

class Derived extends Base

{ // Uniform:

trait Uniform <:

{

val modelViewProj : float4x4;

val positionStream : VertexStream[float4];

val colorStream : VertexStream[float4];

}

// Vertex:

class Vertex(

// input attributes:

val u2v : Uniform ,

val VS_VertexID : uint) <:

{ // apply implicit plumbing:

def positionStream = UniformToVertex(

(u : Uniform) => u.positionStream);

def colorStream = UniformToVertex(

(u : Uniform) => u.colorStream);

def modelViewProj = UniformToVertex(

(u : Uniform) => u.modelViewProj);

// attributes:

def P_model = positionStream(VS_VertexID);

def C = colorStream(VS_VertexID);

def VS_Position = mul(modelViewProj , P_model);

}

// Fragment

class Fragment(

// input attributes:

val u2f : Uniform ,

val v2f : Vertex) <:

{ // apply implicit plumbing:

def C = VertexToFragment((v : Vertex) => v.C);

// attributes:

def PS_Color = C;

}

}

Listing 5.3: Translation of the shader class Derived in Listing 5.1 to Scala, extended
with direct support for virtual classes.

CHAPTER 5. DISCUSSION 120

The same resource that introduces the Scala virtual class notation also introduces a

strategy for encoding most use cases for virtual classes in terms of Scala’s existing

support for virtual types. We have applied this strategy to the example given in

this section (the resulting code is quite verbose, and not especially interesting), and

confirmed that the resulting Scala code type-checks, runs, and behaves as we expect

given the high-level Spark.

5.2.3 Summary

The translation process outlined in this section gives us reason to believe that the

semantics of Spark record types are indeed a constrained form of virtual classes. We

have not, however, proved that the results of our translation process are semantically

equivalent to the original Spark. Formalizing this translation is a possible direction

for future research.

We remark that it is an important benefit that a Spark programmer need not un-

derstand the relationship between record types and virtual classes, or the details of

functors as given in the preceding section. In fact, the original shader class Derived

in Listing 5.1 is written entirely in terms of rates of computation; this shader could

in fact have been easily written in the RTSL system. The relationships sketched here

have proved valuable in implementing and understanding the fundamental abstrac-

tions of the Spark language, and how it expands upon the programming model of

RTSL, but ultimately do no interfere with day-to-day programming in our system.

CHAPTER 5. DISCUSSION 121

5.3 Spark and Aspect-Oriented Programming

Section 2.4.3 introduced the aspect-oriented programming (AOP) paradigm. Having

discussed the design of Spark, we now describe how the language can be viewed as an

AOP language, by relating Spark concepts to standard AOP terminology [KLM+97].

Spark’s shader classes serve the role of aspects : each can encapsulate a program

concern that might cross-cut the pipeline structure. Rates of computation are then

pointcuts, describing places in the execution of a program that we might want to

intercept: per-vertex, per-fragment, etc. We introduce advice at a given pointcut

(e.g., a rate @R) by declaring attributes: each attribute modifies the program behavior

by augmenting the shader graph.

The dual representation between rates of computation and record types in Spark

reflects the essence of weaving in AOP. The user specifies their program primarily

according to one decomposition (rates of computation), and then our compilation

strategy (as outlined in Section 4.1.3) transforms the program into an a different

decomposition for execution.

This connection between Spark and AOP was not a planned one, but it provides yet

another lens through which our approach can be understood.

CHAPTER 5. DISCUSSION 122

5.4 Future Work

A language designed to give programmers what they want may initially succeed

but create pernicious problems as it catches on. However, a language designed

to give programmers what they really need may never catch fire at all

Seven Paradoxes of Object-Oriented Programming Langauges

David Ungar

In this section, we sketch several potential extensions to the Spark language and

programming model. These extensions address some of the difficulties we have found

when programming in Spark, and demonstrate possible directions for future shading

languages that build on our results.

5.4.1 Improved Support for Procedural Operations

In Section 2.2.2 we describe how recent rendering pipelines such as D3D11 have begun

to incorporate features of “compute” interfaces like CUDA, OpenCL, and Compute

Shader: in particular, atomic read-modify-writes to global memory (using UAVs).

Our declarative shader-graph language design was originally motivated by rendering

pipelines without support for these operations. As discussed in 4.1.6, our implemen-

tation does not prohibit the use of side-effecting operations in procedural shading

code, but it does not specify a particular evaluation order for side effects in distinct

shader-graph nodes.

Given that the use of UAVs is likely to increase in future rendering applications, we

must ask: will our design choices in Spark be good ones moving forward? We have

not yet implemented workloads that make use of UAVs in Spark, so we cannot answer

this question with certainty, but we have reason to believe the answer is “yes.”

In our experience with advanced shading algorithms written in HLSL, most uses of

atomic operations in rendering pipelines fall into two categories:

CHAPTER 5. DISCUSSION 123

Debugging The ability to output data to a globally-visible buffer from any point

in the pipeline is an invaluable tool for debugging. In particular, by atomically

appending to a buffer, it is possible for a shader programmer to implement a

kind of “poor man’s printf()”.

Data Structure Construction Atomic operations can be used to construct data

structures based on shader invocations: for example, to construct a linked list

for each pixel, collecting all the fragments generated over that pixel [YHGT10].

In both of these cases, there is a well-defined operation that must be performed atom-

ically (outputting to a stream, appending to a list), but the order of that operation

relative to other shading computations is not important. The simple approach to

atomic operations in Spark described above would be sufficient for these examples.

We hope that gathering further experience with the Spark language will allow us to

uphold or refute this intuition.

If greater control over order of operations is required, we could investigate incorpo-

rating Spark’s most important features (rates of computation, plumbing operators,

etc.) into a purely procedural shading language. We would, of course, have to find

another way to rectify the problematic interactions between control flow and rates

of computation identified by the creators of the Cg system (see Section 2.1.4). We

conjecture that the most crucial restrictions in such a language would be:

• Under a control-flow construct that depends on an expression with rate @R, only

allow assignment to variables with rate @R.

• Do not allow nesting of control-flow constructs with different rates.

If these restrictions are sufficient, then such a language might not be as confusing as

Mark et al. feared. Proving out such a language is a possible direction for future work.

CHAPTER 5. DISCUSSION 124

5.4.2 Rate-Based Overloading

It is common in writing Spark shaders to have the same nominal attribute, e.g., a

world-space normal N_world, be defined at multiple places along the pipeline. For

example, we might initially compute the normal per-coarse-vertex:

@CoarseVertex float3 N_world = ...;

but need to re-normalize the vector before using it in per-fragment shading:

@Fragment float3 N_world_frag = normalize(N_world);

These two declarations create a bit of a problem: both represent a world-space normal,

but only one may be called N_world.

Of course, users can work around this limitation by renaming one of the two attributes,

as we have done here with N_world_frag. In doing so, however, we create a risk

that a user will forget to refer to the correct attribute N_world_frag in some per-

fragment computation:

@Fragment float NdotL = saturate(dot(N_world , L_world));

In this case, the dot product NdotL will be computed using the interpolated (but not

normalized) value of N_world, which is almost certainly not what the programmer

intended. We have encountered problems of this type in our use of Spark, and they

have been somewhat difficult to diagnose, since they typically manifest as reduced

image quality rather than obviously-incorrect results.

One possible solution would be to define a custom type (e.g., Normal) to use for a

value like N_world and give it a custom vertex-to-fragment plumbing operator that

provides the renormalization. This would obviate the need for the declaration of a

@Fragment normal attribute. Such an approach might appeal to some users (and is

implementable in the current Spark language), but it has the potentially-undesirable

effect of “hiding” the call to normalize() inside of an implicit plumbing operator.

Some programmers would prefer to make all such operations explicit in their shader.

CHAPTER 5. DISCUSSION 125

Given this situation, it would be an interesting extension of the Spark language to

allow for multiple attributes to be declared with the same name and data type, but

different rates, e.g.:

@CoarseVertex float3 N_world = ...;

@Fragment float3 N_world = normalize(interpolate(N_world));

@Fragment float NdotL = saturate(dot(N_world , L_world));

Here we define an attribute N_world at both per-coarse-vertex and per-fragment

rates. When an expression refers to N_world, such as in the definition of NdotL, the

compiler can choose the version of the attribute that is “closest” to the desired rate (as

measured by number of implicit rate conversions required, similar to Section 3.3.7). If

the user needs to override this inferred decision, they may explicitly invoke a plumbing

operator to make their intention clear; for example, the call to interpolate() in the

definition of the per-fragment normal makes it clear that the programmer is referring

to the interpolated per-coarse-vertex normal.

5.4.3 Type-System Support for Coordinate Spaces

The RenderMan Shading Language has a built-in notion of coordinate spaces. Shader

inputs such as positions and vectors are all defined in “shading space,” and geometric

quantities may be converted between this an other spaces (e.g., world or view space)

using the built-in transform() function.

It is easy for a shader programmer to incorrectly combine values defined in different

coordinate spaces. One way to avoid such problems is to perform all computations in

a “coordinate-free” fashion [MLD97], but real-time shaders often make use of specific

coordinate spaces for performance or precision reasons. Alternatively, a system can

exploit static checking to ensure that quantities in different spaces are not combined

[OP10]. Static checking of coordinate spaces is quite similar to checking units of

measure, a feature directly supported by the F# language [Ken97, Ken].

CHAPTER 5. DISCUSSION 126

We can imagine extending the Spark shading language with similar features to make

coordinate spaces explicit, e.g.:

space World;

space View;

// shader input: world -space light vector

input @Uniform Vector#World L;

// world -to-view transformation matrix

input @Uniform Transform #(View/World) view;

// compute view -space normal

@Fragment Normal#View N = ...;

// Error: dot() - Cannot combine values

// in ’World ’ space and ’View ’ space

@Fragment float NdotL_bad = saturate(dot(N, L));

// OK:

@Fragment float NdotL = saturate(dot(N, view*L));

5.4.4 Composing Classes vs. Objects

The final code that must be run for a given rendering pass may be influenced by many

factors: camera, lights, material, geometry, and participating media. One strength of

the Spark language is that we can separate out each of these concerns into separate

modules. Each of these modules is a shader class, and the code for each rendering

pass is derived by composing classes.

The representation of shader-graph composition as class inheritance in Spark is a key

design decision, and follows closely from our goal of having a clear phase separation

CHAPTER 5. DISCUSSION 127

(see Section 3.1). Because global optimizations are required to achieve good perfor-

mance, composition in Spark is an explicit and static operation, so that the user can

decide when to spend the time. Each unique combination of shader classes must be

composed, compiled, and optimized separately, at a cost in both space and time. This

problem is already known to users of über-shaders as the “shader combinatorics” or

“permutation management” problem: a simple library of components may produce

an overwhelming number of compiled shaders. While Spark does not eliminate this

combinatorial explosion, it can still increase the manageability of shader code by

allowing components to be specified and type-checked independently.

Other systems (including, e.g., some versions of Cg and Cg Effects), defer machine

code generation and optimization until the time that a draw call is issued, maintaining

a cache of previously-compiled shader code to amortize these costs. The resulting

unpredictable pauses have been criticized by interactive graphics programmers, for

whom worst-case rather than average-case performance is typically most important.

The decision to express shader composition through class inheritance in Spark brings

about an unfortunate limitation. A typical rendering application might represent

each camera, light, and geometric object in the scene as a distinct object in a scene

graph; each object might be an instance of a particular C++ class. In the RenderMan

system, each of these objects could be associated (in a one-to-one fashion) with an

RSL shader object instantiated from some RSL shader class. When the properties

of an object in the scene graph change (e.g., the brightness of a light source), these

changes can easily be propagated to the corresponding shader object.

In the Spark system, however, camera, lighting, and material concerns (expressed

as shader classes) must be composed to create composite effects before instances are

created. This breaks the one-to-one relationship between objects in a scene graph

and shader objects. An application using Spark must instead maintain a single Spark

shader object for each combination of camera, light, and material classes. The cor-

responding logic to propagate parameter values from objects in the scene graph to

shader objects becomes more complex.

CHAPTER 5. DISCUSSION 128

While our design decision in Spark followed naturally from our goal to ensure a

clear phase separation, we believe that future real-time shading languages should

endeavor to support more flexible composition of shader objects rather than shader

classes. Our shader-programming abstraction in Section 3.2 provides a foundation

that is still relevant in such a scenario. The particular use of object-oriented idioms

like inheritance and virtual members to represent provided and required interfaces,

however, might not be tenable. Instead, we believe it could be valuable to explore

more explicitly component-oriented language features (c.f., ArchJava [ACN02]). The

most important challenge, however, in supporting composition of objects rather than

classes would seem to be phase separation; how can a system avoid unpredictable

runtime pauses for shader specialization?

5.4.5 Minimizing State Changes

Spark shader objects are monolithic: they represent the configuration of the entire

rendering pipeline, including both fixed-function and programmable stages. With

our current implementation strategy, we submit corresponding hardware state-change

commands for the entire pipeline state each time a Spark shader object is submitted.

This was appropriate as our concern so far has primarily been about GPU, rather than

CPU performance, but a more serious implementation would likely need to consider

CPU costs more thoroughly.

We can envision two main ways that the CPU cost of rendering with Spark shaders

could be reduced: first by modifying the Spark language and runtime to exploit

coherence between successive rendering operations, and second by modifying the in-

terface provided by rendering architectures to better suit our approach. We discuss

the former option in this section, and the latter in the next.

Since current rendering architectures expose fine-grained incremental state changes, it

would be advantageous if a system like Spark could take advantage of this capability,

only submitting changes to the hardware when needed.

CHAPTER 5. DISCUSSION 129

A simple approach to optimizing state changes is to shadow the graphics hardware

state in CPU memory, and compare new state to the shadowed copy before submitting

changes to the hardware. This approach reduces the number of state changes that

are submitted, but at a cost of additional CPU overhead. This trade-off is unlikely

to be acceptable for most high-performance rendering applications.

Instead, we propose to exploit coherence in a less reactive fashion. We can observe

that most rendering applications bind different kinds of state at different rates. For

example, the same render-target and camera-parameter bindings will typically be used

to render an entire scene. In turn, a pass-per-light forward renderer will use the same

lighting parameters and shadow-map resource bindings across many scene objects.

We can imagine a system for composing shader objects (as in Section 5.4.4) using

a stack. Shader objects could be pushed onto and popped from the stack, with

longer-lived objects (e.g., representing the camera) remaining near the bottom of the

stack. Rendering operations could be submitted based on the combination of shader

objects presently on the stack. Between two successive rendering operations, only

state pertaining to the shader objects that have been pushed and popped needs to be

submitted to the hardware; any state related to objects further up the stack would

remain unchanged. With suitable constraints (e.g., a parent/child hierarchy over

shader objects) it would be possible for a compiler to pre-compute the state changes

involved in pushing/popping shader objects of a particular type, thus allowing for a

reduction in state-change overhead without heavy run-time CPU costs.

5.4.6 Evolving Rendering Achitectures

In this section, we discuss possible changes to future rendering architectures. While

Spark has motivated these proposals, we believe that they can be beneficial for future

rendering architectures no matter what kind of shading languages dominate.

Traditionally, the interface between a host application and a graphics processor takes

the form of a command-buffer processor [Ake93]. An application running on a CPU

CHAPTER 5. DISCUSSION 130

thread packs incremental state-change commands and rendering operations into a

command-buffer, to be submitted and consumed by the command-buffer processor,

which in turn dispatches work to the rendering pipeline. Even as the degree of

parallelism in both CPUs and GPUs has increased, this sequential interface remains

as a bottleneck between the two.

This implementation choice has influenced the application-facing interface of render-

ing architectures like OpenGL and Direct3D. Both architectures support APIs that

allow for incremental state-change commands to be submitted to the architecture;

the OpenGL architecture is explicitly described in terms of a state machine. This

availability of such fine-grained state changes has some unfortunate consequences,

which we will discuss in more detail.

Parallelization

From the perspective of an application, the rendering architecture (e.g., the OpenGL

state machine) is global, mutable state. Attempting to parallelize an application that

uses a rendering architecture is, in spirit, similar to parallelizing one that makes heavy

use of global variables. Historically, OpenGL has addressed this issue by only allowing

a rendering context to be accessed from one thread at a time.

More recently, D3D11 allows multiple application threads to create commands lists

of “deferred” commands. These command lists may be submitted to the rendering

architecture, on a single thread, for subsequent execution. The pipeline is reset to

a default configuration before and after each command list that is submitted. Each

new parallel thread that creates a command list must configure the entire pipeline

from this default thread.

We see two weaknesses to this approach, as parallelism increases:

• There is still a global, sequential stream of commands from the application

to the rendering architecture. This global point of sequencing is a potential

bottleneck and source of contention.

CHAPTER 5. DISCUSSION 131

• Because each parallel thread must set up the pipeline “from scratch,” the use

of incremental deltas saves less CPU time as parallelism increases.

Validation and Optimization

Consider the task of implementing a rendering architecture like OpenGL or Direct3D.

An implementation receives a stream of incremental state-change commands, punc-

tuated by rendering commands (e.g., to draw some triangles). In practice, the im-

plementation cannot know a priori whether the next command to arrive will cause a

state change, or will do some rendering with the current state.

Certain combinations of state might require validation or enable optimizations. For

example, we might need to validate that the number of type of attributes output by

a GS shader procedure match the inputs declared in a PS shader procedure. If we

detect that a PS shader procedure does not modify the depth value of fragments, we

might wish to enable an optimization in which we perform a conservative depth test

earlier in the pipeline. Note that in general, validation and optimization may require

information about the configuration of more than one pipeline stage.

The combination of fine-grained state changes, and the need for validation/optimiza-

tion, creates implementation challenges. Because the stream of state-change com-

mands is not known in advance, an implementation will typically track “dirty” bits

when state changes, and perform validation/optimization only when it encounters

a rendering command. Because optimization might be requested several times per

frame, an implementation is limited in the kinds of optimization it can perform; a

time-consuming optimization could actually end up wasting time overall.

Some implementations may amortize out the cost of time-consuming optimizations by

caching their results (e.g., optimized shader code). If the same pipeline configuration

is encountered again later, the previously optimized results can be re-used. Caching

approaches can improve average-case performance, but they do nothing to improve

worst-case performance. When a new object in a game scene first moves into view, the

CHAPTER 5. DISCUSSION 132

frame-rate may “stutter” while the rendering architecture implementation performs

expensive one-time optimizations. If an application also maintains a cache—e.g., a

cache of specialized shaders derived from an über-shader—then there is a chance that

the policies of the two caches will conflict and lead to thrashing.

The Direct3D 10 architecture [Bly06] coarsens the granularity of state changes (as

compared to, e.g., OpenGL) by introducing state objects which encapsulate the con-

figuration of all or part of a pipeline stage (e.g., the IA stage, or the blending part of

the OM stage). Optimization and validation that pertains to only one state object

can be performed when the object is created—perhaps at application startup time—

and need not impact run-time performance. However, this approach does not affect

the situation for inter-stage validation or optimization.

The OpenGL system provides for display lists, which may be used to record and

play back sequences of state-change and rendering commands. In principle, an imple-

mentation of OpenGL can inspect the pipeline configuration that would result from

playing back a display list and validate/optimize that configuration. Since the rep-

resentation of a display list is opaque to an application, the implementation could

transparently cache the optimized data in the display list. In practice, however, dis-

play lists have proven incapable of cleanly encapsulating pipeline configurations. The

chief problem is that the meaning and effect of a display list may be changed by

almost any state-change commands that precede it.

Proposal

Given the above issues, we propose a fundamental change in the interface to ren-

dering architectures. Rather than submitting incremental state changes, followed by

rendering commands that rely on the previously-configured state, the interface should

allow programmers to construct and submit complete rendering commands. These

rendering command should unambiguously describe the pipeline configuration to be

used. Spark shader objects (instances of shader classes) are an example of complete

rendering commands, but are by no means the only possible realization.

CHAPTER 5. DISCUSSION 133

An interface based on complete rendering commands can address the issues we identify

above:

• Because the configuration used by a command no longer depends on previously-

submitted commands, single-threaded submission is no longer required. Multi-

ple threads can submit independent rendering commands in parallel.

• If complete rendering commands are created from templates (e.g., Spark shader

classes) that describe an entire pipeline configuration, then an implementation

can perform costly inter-stage validation and optimization at the time these

templates are created, rather than relying on run-time caching.

A Spark shading class can be seen as describing a class of these complete render-

ing commands. Like an OpenGL display list, a Spark shader class can describe an

entire pipeline configuration. Unlike a display list, though, a shader class is explic-

itly parameterized: the only things that may affect the results of a Spark shader

are its parameters.

This distinction means that an implementation can perform optimization on a Spark

shader class (or similar representation) that were not possible on a display list. Any

part of the pipeline configuration that does not depend on an explicit parameter is a

candidate for optimization; nothing the user can do at run-time may invalidate such

an optimization. In turn, any part of the configuration that is parameter-dependent

might change at run-time in response to parameter changes, so an implementation

should avoid expensive optimizations.

A complete rendering command can be seen as simply the combination of a particular

shader class with its parameter data. In the simplest case it might be represented as

two pointers—one each for code and data—in a closure.

Of course, achieving such an interface to a rendering architecture is not without

challenges. For example, in current architectures the sequential nature of command

submission provides a benefit, in insulating the programmer from the details of par-

allel execution; an implementation may exploit parallelism in executing commands,

CHAPTER 5. DISCUSSION 134

but must ultimately preserver the appearance of sequential execution. If an interface

switches to explicitly parallel submission, then programmers must take responsibility

for scheduling rendering operations, so as to avoid data races.

In addition, by dispensing with the notion of a single global, mutable pipeline configu-

ration, we are effectively virtualizing that state. Carrying that virtualization through

to hardware implementation will have costs. For example, rather than store con-

figuration state for a rasterizer in dedicated storage and update it incrementally, a

GPU might instead store multiple state objects for the rasterizer in general-purpose

memory, and rely on caches to load the correct state into the rasterizer as needed.

Such caches would introduce costs in peformance, area, and power.

Despite these challenges, we have reason to believe that our proposal is in keeping

with general trends in GPU hardware architectures. For example, the OpenGL ex-

tension which introduces UAV-like atomics read-modify-write operations [BBL+10]

also introduces explicit memory barrier operations into the OpenGL interface; pro-

grammers are expected to take responsibility for some parallel scheduling decisions.

Additionally, NVIDIA’s Kepler architecture [NVI11] supports “bindless” textures;

texture-related state is virtualized and stored in the memory hierarchy.

Given these trends, we believe that a rendering architecture that completely eschews

fine-grained state changes will be practical and beneficial in the near future.

Chapter 6

Conclusion

Spark is a language for real-time shading that enables greater modularity and compos-

ability than current procedural shader-per-stage languages. It extends prior work on

declarative, graph-based shader representations by supporting algorithms that require

control flow, enabling user-defined units of modularity, and supporting programmable

groupwise operations on modern pipelines. Our experience using Spark has shown

that it can be effectively used to encapsulate complex effects like tessellation into

reusable modules.

While procedural shading languages achieve good performance by directly exposing

the topology of the rendering pipeline, our results indicate that equivalent perfor-

mance can still be achieved with a language at a higher level of abstraction, after

applying appropriate global optimizations on shader programs.

We hope that our discussion of the design of Spark will be useful to future language

designers and rendering system architects. In particular, we believe that Spark can

serve as an example of synthesis between the modularity and composability of declar-

ative programming and the expressive power of procedural shading languages.

Mainstream computing is increasingly driven by low-power devices like phones and

tablets. In order to achieve higher performance with low power consumption, these

135

CHAPTER 6. CONCLUSION 136

devices make use of optimized processing pipelines that combine fixed-function and

programmable operations – not just for 3D rendering, but also for media processing

during video capture and playback. In order to harness the power of such pipelines,

software developers need rendering architectures to expose a programming model that

achieves both flexibility and performance.

We hope that Spark can lead the way.

Appendix A

Glossary

attribute A node in a shader graph, representing a computation to

be performed as well as the result of that computation

(e.g., a per-fragment float computed as the dot prod-

uct of normal and light vectors). Every attribute has

both a rate of computation (e.g., per-fragment) and a

data type (float).

Through the identification of rates of computation and

record types, an attribute with rate @R is also a field of

the record type R. The value of such a field—that is, the

value of the attribute for a particular record—is accessed

through projection.

groupwise An operation or dataflow that considers multiple records

of input or output: e.g., interpolation from multiple con-

trol points to a tessellated vertex.

137

APPENDIX A. GLOSSARY 138

kernel A system-provided procedure that defines the behav-

ior of a particular pipeline stage. In general, a kernel

pops records off of input streams, applies fixed-function

or user-defined operations to produce new records, and

pushes the results to output streams.

per-stage shader A variety of shader that describes a function or procedure

that will run in a single stage of a pipeline.

pipeline A collection of stages which communicate records

through dataflow streams.

pipeline shader A variety of shader that may include code that will run

in more than one stage of a pipeline.

plumbing The process of transporting or converting data computed

at one rate (e.g., a per-vertex texture coordinate) to make

it available at another rate (e.g., per-fragment). In Spark,

plumbing is achieved by invoking plumbing operators.

plumbing operator In general, any function with rate-qualified types for in-

put and output, where not all of the rates are the same.

Plumbing operators may be invoked—either explicitly by

a programmer or implicitly by a compiler—to perform

plumbing by converting data from one rate to another.

pointwise Operations that are defined in terms of attributes, with-

out reference to particular records. For example, taking

the dot product of two per-fragment vectors, or plumbing

a per-vertex color to a per-fragment color.

APPENDIX A. GLOSSARY 139

rate of computation A qualifier of an attribute that conceptually describes

how often that attribute will be computed: e.g., per-

vertex, per-control-point, per-fragment, etc.

In Spark, every rate of computation is in one correspon-

dence with a record type. For example, the rate of per-

fragment computation, @Fragment, corresponds to the

type of fragment records Fragment.

rate-qualified type A kind of type, that combines a rate of computation (e.g.,

@Fragment) with a data type (e.g., a proper type like

float). Attributes in Spark have rate-qualified types.

record An instance of a record type. Code running in the stages

of a pipeline can construct records, and the stages com-

municate records over streams.

record type A kind of abstract data type used to define the overall

structure and dataflow of a pipeline. The streams that

connect different pipeline stages each carry records of

particular types: vertices, control points, fragments, etc.

In Spark, every record type is in one-to-one correspon-

dence with a rate of computation, and the attributes with

rate @R correspond to the fields of the record type R.

shader A unit of application code that describes the appearance

of rendered objects (shape, transformation, animation,

color, etc.) and that runs in the context of a rendering

system (e.g., a pipeline).

shader graph A representation of shader code as a dataflow graph.

Nodes in a shader graph represent attributes to be com-

puted, and each has a rate of computation.

APPENDIX A. GLOSSARY 140

stage A given stage in a pipeline is connected to other stages

by input and output streams which carry records. The

processing at a particular stage is defined by its kernel.

Bibliography

[ACN02] Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava: con-

necting software architecture to implementation. In Proceedings of ICSE

2002: International Conference on Software Engineering, pages 187–197,

New York, NY, USA, 2002. ACM.

[Ado11] Adobe. Pixel Bender 3D. http://labs.adobe.com/technologies/

pixelbender3d/, 2011.

[Ake93] Kurt Akeley. Reality Engine graphics. In Proceedings of SIGGRAPH

1993, pages 109–116, New York, NY, USA, 1993. ACM.

[AR05] Chad Austin and Dirk Reiners. Renaissance: A functional shading lan-

guage. In Proceedings of Graphics Hardware 2005, pages 1–8, New York,

NY, USA, 2005. ACM.

[BBL+10] Jeff Bolz, Pat Brown, Barthold Lichtenbelt, Bill Licea-Kane, Eric Wer-

ness, Graham Sellers, Greg Roth, Nick Haemel, and Pierre Boudier Piers

Daniell. OpenGL extension EXT shader image load store. http://www.

opengl.org/registry/specs/EXT/shader_image_load_store.txt,

2010.

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. SIGPLAN

Notices, 25:303–311, September 1990.

141

http://labs.adobe.com/technologies/pixelbender3d/
http://labs.adobe.com/technologies/pixelbender3d/
http://www.opengl.org/registry/specs/EXT/shader_image_load_store.txt
http://www.opengl.org/registry/specs/EXT/shader_image_load_store.txt

BIBLIOGRAPHY 142

[BCH+96] Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith Playford,

and P. Tucker Withington. A monotonic superclass linearization for Dy-

lan. SIGPLAN Notices, 31(10):69–82, October 1996.

[Bex] Tobias Bexelius. GPipe. http://www.haskell.org/haskellwiki/

GPipe.

[BFH+04] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian,

Mike Houston, and Pat Hanrahan. Brook for GPUs: stream computing

on graphics hardware. Transactions on Graphics, 23(3):777–786, August

2004.

[Bly06] David Blythe. The Direct3D 10 system. Transactions on Graphics,

25(3):724–734, July 2006.

[BNE09] Anders Bach Nielsen and Erik Ernst. Virtual class support at the vir-

tual machine level. In Proceedings of VMIL 2009: Workshop on Virtual

Machines and Intermediate Languages, pages 1:1–1:10, New York, NY,

USA, 2009. ACM.

[Buc05] Ian Buck. Stream computing on graphics hardware. PhD thesis, Stanford,

CA, USA, 2005. AAI3162314.

[Cod70] E. F. Codd. A relational model of data for large shared data banks.

Communications of the ACM, 13:377–387, June 1970.

[Coo84] Robert L. Cook. Shade trees. In Proceedings of SIGGRAPH 1984, pages

223–231, New York, NY, USA, 1984. ACM.

[Cox90] Brad J. Cox. Planning the software industrial revolution. IEEE Software,

7:25–33, November 1990.

[CPl11] C++11 standard. http://www.iso.org/iso/catalogue_detail?

csnumber=50372, October 20111. 14882:2011.

http://www.haskell.org/haskellwiki/GPipe
http://www.haskell.org/haskellwiki/GPipe
http://www.iso.org/iso/catalogue_detail?csnumber=50372
http://www.iso.org/iso/catalogue_detail?csnumber=50372

BIBLIOGRAPHY 143

[DG87] Linda G. DeMichiel and Richard P. Gabriel. The Common Lisp Object

System: An overview. In Proceedings of ECOOP 1987, pages 151–170,

London, UK, UK, 1987. Springer-Verlag.

[DH87] Roland Ducournau and Michel Habib. On some algorithms for multiple

inheritance in object-oriented programming. In Proceedings of ECOOP

1987, pages 243–252, London, UK, UK, 1987. Springer-Verlag.

[Dij82] Edsger W. Dijkstra. On the role of scientific thought. In Selected Writings

on Computing: A Personal Perspective, pages 60–66. Springer-Verlag,

1982.

[DMN68] Ole-Johan Dahl, Bjørn Myhrhaug, and Kristen Nygaard. SIMULA 67

Common Base Language. Norwegian Computing Center, 1968.

[Ell04] Conal Elliott. Programming graphics processors functionally. In Pro-

ceedings of Haskell 2004: ACM SIGPLAN Workshop on Haskell, pages

45–56, New York, NY, USA, 2004. ACM.

[EOC06] Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class

calculus. In Proceedings of POPL 2006, pages 270–282, New York, NY,

USA, 2006. ACM.

[Ern99] Erik Ernst. gbeta – a language with virtual attributes, block structure, and

propagating, dynamic Inheritance. PhD thesis, Department of Computer

Science, University of Aarhus, Århus, Denmark, 1999.

[Ern01] Erik Ernst. Family polymorphism. In Proceedings of the ECOOP 2001,

pages 303–326, London, UK, UK, 2001. Springer-Verlag.

[Ern02] Erik Ernst. Safe dynamic multiple inheritance. Nordic Journal of Com-

puting, 9:191–208, September 2002.

[Ern03] Erik Ernst. Higher-order hierarchies. In Proceedings of ECOOP 2003,

pages 303–328, Darmstadt, Germany, July 2003.

BIBLIOGRAPHY 144

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-

sign Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[HL90] Pat Hanrahan and Jim Lawson. A language for shading and lighting

calculations. In Proceedings of SIGGRAPH 1990, pages 289–298, New

York, NY, USA, 1990. ACM.

[HWG03] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. C# Language

Specification. Addison-Wesley, Boston, MA, USA, 2003.

[IB82] Alan H. Ingalls and Daniel H. H. Borning. Multiple inheritance in

Smalltalk-80. In Proceedings of the National Conference on Artificial

Intelligence, pages 234–237, Pittsburgh, PA, USA, August 1982.

[KBR03] John Kessinich, Dave Baldwin, and Randi Rost. The OpenGL R© Shading

Language, version 1.05. http://www.opengl.org, February 2003.

[KDR+02] Ujval Kapasi, William J. Dally, Scott Rixner, John D. Owens, and Brucek

Khailany. The Imagine stream processor. In Proceedings ICCD 2002:

International Conference on Computer Design, pages 282–288. IEEE,

September 2002.

[Ken] Andrew Kennedy. Units of measure in F#. http:

//blogs.msdn.com/b/andrewkennedy/archive/2008/08/29/

units-of-measure-in-f-part-one-introducing-units.aspx.

[Ken97] Andrew J. Kennedy. Relational parametricity and units of measure. In

Proceedings of POPL 1997, pages 442–455, New York, NY, USA, 1997.

ACM.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,

and William G. Griswold. An overview of AspectJ. In Proceedings of

ECOOP 2001, pages 327–353, London, UK, 2001. Springer-Verlag.

http://www.opengl.org
http://blogs.msdn.com/b/andrewkennedy/archive/2008/08/29/units-of-measure-in-f-part-one-introducing-units.aspx
http://blogs.msdn.com/b/andrewkennedy/archive/2008/08/29/units-of-measure-in-f-part-one-introducing-units.aspx
http://blogs.msdn.com/b/andrewkennedy/archive/2008/08/29/units-of-measure-in-f-part-one-introducing-units.aspx

BIBLIOGRAPHY 145

[Khr] Khronos OpenCL Working Group. The OpenCL specification, version

1.0. http://www.khronos.org/registry/cl/specs/opencl-1.0.pdf.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-

oriented programming. In Proceedings of ECOOP 1997. Springer-Verlag,

1997.

[KR91] Gregor Kiczales and Jim Des Rivieres. The Art of the Metaobject Protocol.

MIT Press, Cambridge, MA, USA, 1991.

[Kro85] Stein Krogdahl. Multiple inheritance in SIMULA-like languages. BIT

Numerical Mathematics, 25:318–326, 1985. 10.1007/BF01934377.

[KW09] Roland Kuck and Gerold Wesche. A framework for object-oriented shader

design. In Proceedings of ISVC 2009: International Symposium on Ad-

vances in Visual Computing, pages 1019–1030, Berlin, Heidelberg, 2009.

Springer-Verlag.

[LA04] Chris Lattner and Vikram Adve. LLVM: A compilation framework for

lifelong program analysis & transformation. In Proceedings of CGO 2004:

International Symposium on Code Generation and Optimization, Palo

Alto, California, Mar 2004.

[Lef06] Aaron Lefohn. Glift: Generic Data Structures for Graphics Hardware.

PhD thesis, Computer Science, University of California, Davis, Septem-

ber 2006.

[LKS+06] Aaron Lefohn, Joe Kniss, Robert Strzodka, Shubhabrata Sengupta, and

John Owens. Glift: Generic, efficient random-acccess GPU data struc-

tures. Transactions on Graphics, 25(1):60 – 99, 2006.

[LMMP89] Ole Lerhman Madsen and Birger Møller-Pedersen. Virtual classes: a

powerful mechanism in object-oriented programming. In Proceedings of

OOPSLA 1989, pages 397–406, New York, NY, USA, 1989. ACM.

http://www.khronos.org/registry/cl/specs/opencl-1.0.pdf

BIBLIOGRAPHY 146

[LO04] Calle Lejdfors and Lennart Ohlsson. PyFX – an active effect frame-

work. In Proceedings of SIGRAD 2004, pages 17–24, Gävle, Sweden,

2004. Linköping University Electronic Press.

[LS02] Paul Lalonde and Eric Schenk. Shader-driven compilation of rendering

assets. Transactions on Graphics, 21(3):713–720, 2002.

[LSNCn09] Charles Loop, Scott Schaefer, Tianyun Ni, and Ignacio Castaño. Approx-

imating subdivision surfaces with Gregory patches for hardware tessella-

tion. Transactions on Graphics, 28:151:1–151:9, 2009.

[McC00] Michael D. McCool. SMASH: A next-generation API for programmable

graphics accelerators. Technical Report CS-2000-14, University of Wa-

terloo, August 2000.

[McI68] Douglas McIlroy. Mass-produced software components. In P. Naur and

B. Randell, editors, Software Engineering, Report on a Conference Spon-

sored by the NATO Science Committee, pages 138–155, Brussels, Bel-

gium, 1968. Scientific Affairs Division, NATO.

[MGAK03] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard.

Cg: A system for programming graphics hardware in a C-like language.

Transactions on Graphics, 22:896–907, 2003.

[Mic02] Microsoft. Shader model 1 (DirectX HLSL). http://msdn.microsoft.

com, 2002.

[Mic10a] Microsoft. Direct3D 11 reference. http://msdn.microsoft.com, 2010.

[Mic10b] Microsoft. Effect format (Direct3D 11). http://msdn.microsoft.com,

2010.

[MLD97] Stephen Mann, Nathan Litke, and Tony DeRose. A coordinate free geom-

etry ADT. Technical report, Computer Science Department, University

of Waterloo, June 1997.

http://msdn.microsoft.com
http://msdn.microsoft.com
http://msdn.microsoft.com
http://msdn.microsoft.com

BIBLIOGRAPHY 147

[Moo86] David A. Moon. Object-oriented programming with Flavors. SIGPLAN

Notices, 21(11):1–8, June 1986.

[MPO08a] Adriaan Moors, Frank Piessens, and Martin Odersky. In Proceedings

of the 2008 International Workshop on Foundations of Object-Oriented

Langauges, FOOL ’08, 2008.

[MPO08b] Adriaan Moors, Frank Piessens, and Martin Odersky. Generics of a higher

kind. SIGPLAN Notices, 43:423–438, October 2008.

[MQP02] Michael D. McCool, Zheng Qin, and Tiberiu S. Popa. Shader metapro-

gramming. In Proceedings of Graphics Hardware 2002, pages 57–68, Aire-

la-Ville, Switzerland, Switzerland, 2002. Eurographics.

[NCM04] Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable ex-

tensibility via nested inheritance. SIGPLAN Notices, 39:99–115, October

2004.

[Nie07] Anders Bach Nielsen. Ensuring that user defined code does not see unini-

tialized fields. In Proceedings of ICOOOLPS 2007, Berlin, Germany, July

2007.

[NVI07] NVIDIA. CUDA technology. http://www.nvidia.com/cuda, 2007.

[NVI10] NVIDIA. Introduction to CgFX. http://developer.nvidia.com, 2010.

[NVI11] NVIDIA. Kepler GK110. http://www.nvidia.com/content/PDF/

kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf, 2011.

[OAC+04] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebas-

tian Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik

Stenman, and Matthias Zenger. An overview of the Scala programming

language. Technical Report IC/2004/64, EPFL Lausanne, Switzerland,

2004.

http://www.nvidia.com/cuda
http://developer.nvidia.com
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

BIBLIOGRAPHY 148

[OCRZ03] Martin Odersky, Vinvent Cremet, Christine Röckl, and Matthias Zenger.

A nominal theory of objects with dependent types. In Proceedings of

ECOOP 2003, pages 201–224, Darmstadt, Germany, July 2003. Springer.

[OMO10] Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes

as objects and implicits. SIGPLAN Notices, 45:341–360, October 2010.

[OP10] Jiawei Ou and Fabio Pellacini. SafeGI: Type checking to improve cor-

rectness in rendering system implementation. Computer Graphics Forum,

29(4):1269–1277, 2010.

[Par71] David L. Parnas. Information distribution aspects of design methodology.

In Proceedings of IFIP Congress, 1971.

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into

modules. Communications of the ACM, 15:1053–1058, December 1972.

[PBMH02] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray

tracing on programmable graphics hardware. Transactions on Graphics,

21(3):703–712, July 2002.

[Per85] Ken Perlin. An image synthesizer. In Proceedings of SIGGRAPH 1985,

pages 287–296, New York, NY, USA, 1985. ACM.

[Pho73] Bui Tuong Phong. Illumination for Computer-Generated Images. PhD

thesis, 1973.

[Pie91] Benjamin C. Pierce. Basic Category Theory for Computer Scientists.

MIT Press, 1991.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press,

Cambridge, MA, USA, 2002.

[PMTH01] Kekoa Proudfoot, William R. Mark, Svetoslav Tzvetkov, and Pat Hanra-

han. A real-time procedural shading system for programmable graphics

BIBLIOGRAPHY 149

hardware. In Proceedings of SIGGRAPH 2001, pages 159–170, New York,

NY, USA, 2001. ACM.

[POAU00] Mark S. Peercy, Marc Olano, John Airey, and P. Jeffrey Ungar. Inter-

active multi-pass programmable shading. In Proceedings of SIGGRAPH

2000, pages 425–432, New York, NY, USA, 2000. ACM.

[Pur04] Timothy John Purcell. Ray tracing on a stream processor. PhD thesis,

Stanford, CA, USA, 2004. AAI3128683.

[PW90] William Pugh and Grant Weddell. Two-directional record layout for

multiple inheritance. SIGPLAN Notices, 25:85–91, June 1990.

[SAF+10] Mark Segal, Kurt Akeley, Chris Frazier, Jon Leech, and Pat Brown. The

OpenGL R© graphics system: A specification (version 4.0 (core profile) -

march 11, 2010). http://www.opengl.org/registry/doc/glspec40.

core.20100311.pdf, 2010.

[Sca] Adding virtual classes to Scala. https://wiki.scala-lang.org/

display/SIW/VirtualClassesDesign.

[SDNB02] Nathanael Shärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew

Black. Traits: Composable units of behavior. Technical report, Oregon

Graduate Institute School of Science & Engineering, 2002.

[SFB+09] Jeremy Sugerman, Kayvon Fatahalian, Solomon Boulos, Kurt Akeley,

and Pat Hanrahan. GRAMPS: A programming model for graphics

pipelines. Transactions on Graphics, 28(1):1–11, 2009.

[SGG+05] Jeremy G. Siek, Douglas Gregor, Ronald Garcia, Jeremiah Willcock,

Jaakko Järvi, and Andrew Lumsdaine. Concepts for C++0x. Techni-

cal Report N1758=05-0018, ISO/IEC JTC 1, Information Technology,

Subcommittee SC 22, Programming Language C++, 2005.

http://www.opengl.org/registry/doc/glspec40.core.20100311.pdf
http://www.opengl.org/registry/doc/glspec40.core.20100311.pdf
https://wiki.scala-lang.org/display/SIW/VirtualClassesDesign
https://wiki.scala-lang.org/display/SIW/VirtualClassesDesign

BIBLIOGRAPHY 150

[Sha96] Andrew Shalit. The Dylan reference manual: the definitive guide to the

new object-oriented dynamic language. Addison Wesley Longman Pub-

lishing Co., Inc., Redwood City, CA, USA, 1996.

[Sny87] Alan Snyder. Inheritance and the development of encapsulated software

systems, pages 165–188. MIT Press, Cambridge, MA, USA, 1987.

[Str89] Bjarne Stroustrup. Multiple inheritance for C++. Computing Systems,

2(4):367–95, 1989.

[Tan] Audrey Tang. Perl 6 method resolution order. http://use.perl.org/

~autrijus/journal/25768.

[VPBM01] Alex Vlachos, Jörg Peters, Chas Boyd, and Jason L. Mitchell. Curved

PN triangles. In Proceedings of I3D 2001, pages 159–166, New York, NY,

USA, 2001. ACM.

[vR] Guido van Rossum. Unifying types and classes in Python 2.2. http:

//www.python.org/download/releases/2.2.3/descrintro/#mro.

[Wad90] Philip Wadler. Comprehending monads. In Proceeding of LFP 1990:

ACM Conference on LISP and Functional Programming, pages 61–78,

New York, NY, USA, 1990. ACM.

[YHGT10] Jason C. Yang, Justin Hensley, Holger Grün, and Nicolas Thibieroz. Real-

time concurrent linked list construction on the gpu. Computer Graphics

Forum, 29(4):1297–1304, 2010.

http://use.perl.org/~autrijus/journal/25768
http://use.perl.org/~autrijus/journal/25768
http://www.python.org/download/releases/2.2.3/descrintro/#mro
http://www.python.org/download/releases/2.2.3/descrintro/#mro

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Real-Time Rendering Architectures
	1.2 Shaders
	1.3 The Challenge
	1.4 A Motivating Example
	1.5 Dissertation Road Map

	2 Background
	2.1 Real-Time Shading Languages
	2.1.1 Declarative and Procedural Shaders
	2.1.2 RenderMan Shading Language
	2.1.3 Real-Time Shading Language
	2.1.4 Cg, HLSL, GLSL
	2.1.5 Shader Metaprogramming

	2.2 Interfaces to Graphics Hardware
	2.2.1 The Direct3D 11 Rendering Pipeline
	2.2.2 Compute Interfaces

	2.3 Programming Languages
	2.3.1 Mixin Inheritance
	2.3.2 Virtual Classes
	2.3.3 Extensible Initialization
	2.3.4 Type Systems

	2.4 Software Engineering
	2.4.1 Modularity
	2.4.2 Composability
	2.4.3 Aspect-Oriented Programming

	2.5 Summary

	3 The Spark Language
	3.1 Design Goals
	3.1.1 Differences from Cg/HLSL/GLSL
	3.1.2 Differences from RTSL

	3.2 Shader Programming Abstraction
	3.2.1 Shader Graphs
	3.2.2 Pipeline Model
	3.2.3 Rates and Record Types
	3.2.4 Plumbing Operators

	3.3 Key Design Decisions
	3.3.1 A Language with Declarative and Procedural Layers
	3.3.2 Shaders Are Classes
	3.3.3 Model Rates of Computation in Libraries, Not the Compiler
	3.3.4 Expose Rate Conversion as Plumbing Operators
	3.3.5 Implement Record Types as Virtual Classes
	3.3.6 Define Plumbing Operators Using Projection
	3.3.7 Drive Rate Conversion by Outputs, Not Inputs
	3.3.8 Move Computations When Pipeline Stages Are Disabled
	3.3.9 A Language for Configuring the Entire Pipeline

	3.4 Example Spark Shaders
	3.4.1 A Minimal Complete Shader
	3.4.2 C++ Interface
	3.4.3 Tessellation
	3.4.4 Geometry Shader

	4 The Spark System
	4.1 Implementation
	4.1.1 Architecture
	4.1.2 Optimization
	4.1.3 Code Generation
	4.1.4 Wrapper Generation
	4.1.5 Runtime Loading and Composition
	4.1.6 Limitations

	4.2 System Experience
	4.2.1 Workloads
	4.2.2 Library for Lighting Surfaces
	4.2.3 Library for Geometric Effects

	5 Discussion
	5.1 Rates of Computation Are Functors
	5.1.1 Kinds
	5.1.2 Rate-Qualified Types
	5.1.3 Rates of Computation
	5.1.4 Lifting
	5.1.5 Plumbing Operators
	5.1.6 Projection
	5.1.7 Rates of Computation Are Functors

	5.2 Record Types Are Virtual Classes
	5.2.1 Spark
	5.2.2 Scala with Virtual Class Support
	5.2.3 Summary

	5.3 Spark and Aspect-Oriented Programming
	5.4 Future Work
	5.4.1 Improved Support for Procedural Operations
	5.4.2 Rate-Based Overloading
	5.4.3 Type-System Support for Coordinate Spaces
	5.4.4 Composing Classes vs. Objects
	5.4.5 Minimizing State Changes
	5.4.6 Evolving Rendering Achitectures

	6 Conclusion
	A Glossary
	Bibliography

