Announcements

Subtopics for next lecture?
Linux/Windows 2000 teams?
Assignment 1 progress and questions?
Questions from last lecture?

Questions on slides from this lecture?
Invite friends, family at next lecture.
Revisit ThreadlLocal.

Chapter 6: CPU Scheduling

Basic Concepits.

Scheduling Criteria.
Scheduling Algorithms.
Multiple-Processor Scheduling.
Real-Time Scheduling.
Algorithm Evaluation.

Basic Concepts

m Multiprogramming achieves maximum CPU utilization.

m CPU-I/O Burst Cycle — Process execution consists of a
cycle of CPU execution and I/O wait. Relative ratio
distinguishes I/O- vs. CPU- bound processes.

m CPU burst distribution helps select and/or fine-tune CPU
scheduling algorithm. <ﬁ1

load store
add store
read from file CPU burst

wail for IO 140 burst

store increment
index CPU burst

write to file

wair for I/0 1D burst

load store
add store
read from file CPU burst

wait for IO 1 burst

16 24

burst duration (milliseconds)

CPU Scheduler

Selects from among the processes (or kernel threads) in
memory that are ready to execute, and allocates the CPU
to one of them.

CPU scheduling decisions may take place when a
process:
1. Switches from running to waiting state (e.g. read(), walit()).
2. Switches from running to ready state (e.g. timer interrupt).
3. Switches from waiting to ready (e.g. /O completed).
4. Terminates.
Scheduling under 1 and 4 is nonpreemptive: processes
willingly relinquish control of CPU.
All other scheduling is preemptive:
= Under 2: process kicked off CPU. Need choose successor.
= Under 3: process may kick out another process from CPU.

Dispatcher

m Dispatcher module gives control of the CPU to the
process selected by the CPU scheduler; steps:
= (Context switch.
= Switch to user mode.
= Jump to the proper location in the user code to restart that
Process.
m Dispatch latency — time it takes for the dispatcher to stop
one process and restart another.
m CPU scheduler is (semi-automated) policy, dispatcher is
pure mechanism.

Scheduling Criteria

CPU utilization — keep the CPU as busy as possible.

= Can starve 1/0O-bound jobs.
Throughput — # of processes that complete their
execution per time unit.

= (Can starve long jobs.
Turnaround time — amount of time to execute a particular
process from submission to completion.

= Can appear unresponsive under time-sharing.
Waiting time — amount of time a process has been waiting
In the ready queue.

= Some non-critical jobs don’t mind waiting.
Response time — amount of time it takes from when a

request was submitted until the first response is
computed and sent to I/O device.

= Does not include I/O processing time.
= Think “Is =R | more”.
= Can’t distinguish debugging vs. real output.

Optimality

Optimize average measure.

Optimize minimum or maximum, e.g. minimize max
response time.

Minimize variance (predictable system).
Examples that follow:

= Minimize average waiting time.

= Assume single burst.

= Assume context switch overhead = 0.

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P, 24
P, 3
P, 3

M Suppose that the processes arrive in the order: P, , P, , P,.
The Gantt Chart for the schedule is:

P, P, P,

0 24 27 30

m Waiting time for P, =0; P, =24; P,=27.
m Average waiting time: (0 + 24 + 27)/3 = 17.

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order: P, , P, , P,.
The Gantt chart for the schedule is:

P, P, P,

0 3 6 30

Waiting time for P, =6,P,=0.P,=3.
Average waiting time: (6 + 0 + 3)/3 = 3.
Much better than previous case.

Convoy effect. short process behind long process like
motorbikes behind a bus.

If long process goes into infinite loop, “kill” won’t be able to
stop it: if we preempt, stuck process still has priority over “Kill”.

Shortest-Job-First (SJF) Scheduling

m Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with the
shortest time.

m Two schemes:

= Nonpreemptive — once CPU given to the process it cannot
be preempted until it completes its CPU burst.

= Preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This is Shortest-Remaining-Time-First (SRTF)
scheduling.

m SJF is optimal — gives minimum average waiting time for
a given set of processes.

Example of Non-Preemptive SJF

Process Arrival Time Burst Time
P, 0 7
P, 2 4
P, 4 1
P, 5 2
m SJF (non-preemptive):
P, P, P, P,
— —— ——
0 /7 8 12 16

m Average waitingtime=(0+6 +3 + 7)/4 = 4.

Example of Preemptive SJF

Process Arrival Time Burst Time
P, 0

A = b

2
P, 4
3)

m SJF (preemptive):

P, | P, |P, | P, P, P,
I I I | I | | | [
0 2 4 5 7 11 16

m Average waitingtime=(9+ 1 + 0 +2)/4 = 3.

Determining Length of Next CPU Burst

m Can only estimate the length.

m Can be done by using the length of previous CPU bursts,
using exponential averaging.

a,0<a<
Define:

Tn+1=6”n+(1—;ED-

Past predictions; history.

0~

t, =actual lenght of nCPU burst
7., =predicted value for the next CPU burst

CPU burst (t)

"guess” (t) 10

Examples of Exponential Averaging

o =0:
7 Tt =T =T
= Recent history does not count.
o=1:
T Tyt = by
= Only the actual last CPU burst counts.
If we expand the formula, we get:
Toog =0t +(7T-0)ot ,+... Initial guess without past data,

+1-a)a tn_j:,__/ e.g. historical system average.
+(1- o)™(T)

If >0 then (1 - a)<1, so each successive term has less
weight than its predecessor.

Priority Scheduling

A priority number (integer) is associated with each
process: smallest integer means highest priority.

The CPU is allocated to the process with the highest
priority.

= Preemptive.

= Nonpreemptive.
SJF is a priority scheduler: priority is the predicted next
CPU burst time.
Problem: starvation — low priority processes may never
execute.

= Solution: aging — as time progresses, increase the priority of
waiting processes.

Example of Priority Scheduling

Process Burst Time Priority
P, 10 3
P, 1 1
P, 2 4
P, 1 5
P 5 2

m Nonpreemptive:

P, P, P, P, P,
0 1 6 16 18 19

m Average waitingtime=(0+1+6+ 16 + 18)/5 =8.2.

Round Robin (RR)

m Each process:

= Gets a small unit of CPU time (time quantum), usually 10-
100 milliseconds.

= After this time has elapsed, the process is preempted and
added to the tail of the ready queue.

m If there are n processes in the ready queue and the time
quantum is g, then:

= Each process gets 1/n of the CPU time in chunks of at most
g time units at once.

= No process waits more than (n-1)q time units.
m Performance:
= qlarge = FCFS (FIFO).

= g small = overhead is too high as g gets closer to context
switch duration.

Time Quantum and Context Switch Time

procass time =10 quantum context
awitchas

Example of RR with Time Quantum = 20

Process Burst Time
P, 53
P, 17
P, 68
P, 24

B The Gantt chart is:

P, [P, | P, | P, |P | P, | P, | P | P, | P,

0 20 37 57 77 97 117 121 134 154 162

m Typically better response than SJF (though higher
average waiting, turnaround time).

Turnaround Time Varies With The Time Quantum

process SJF: P3 P2 P1 P4
Average turnaround =
(1 +

1+3 +

1+3+6 +

1+3+6+7)/4 =8.

@
E
4
©

{

3

o

=

«©

c

=

=)
=

(O]

[@)]

©

—

(O]

>

©

1 2 3 4 5 6 7 Becomes FCFS
time quantum since max burst=7.

Multilevel Queue

m Ready queue is partitioned into separate queues:
= Foreground (interactive) processes.
= Background (batch) processes.

m Each queue has its own scheduling algorithm:
= Foreground — RR.
= Background — FCFS.

m Scheduling must be done between the queues:

= Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to
foreground in RR, 20% to background in FCFS.

= Fixed priority scheduling; (i.e., serve all from foreground
then from background). May starve background jobs so use
aging and allow processes to move between queues.

Multilevel Queue Scheduling

ighest priority
- | system processes - |

interactive editing processes

batch processes

student processes

Multilevel Feedback Queue

m A process can move between the various queues; aging
can be implemented this way.

m Multilevel-feedback-queue scheduler defined by the
following parameters:
= Number of queues.
Scheduling algorithms for each queue.
Method used to determine when to upgrade a process.
Method used to determine when to demote a process.

Method used to determine which queue a process will enter
when that process needs service.

W)
U

@
)

Il
)

W)
U

Example of Multilevel Feedback Queue

m Three queues:
= Q, — RR time quantum 8 milliseconds.
= @, — RR time quantum 16 milliseconds.
= Q,—FCFS.

m Scheduling:

= A new job enters queue Q,. When it gains CPU, job
receives 8 milliseconds. If it does not finish in 8
milliseconds, job is preempted and moved to queue Q,.

= At Q, job is again served (eventually) and receives 16
additional milliseconds. |If it still does not complete, it is
preempted and moved to queue Q.

= |/O-bound jobs return to Q, to finish short CPU-burst and
return to waiting for new 1/O.

Multilevel Feedback Queues

bl quantum =8 F

—
quantum = 16 ’—

Multiple-Processor Scheduling

CPU scheduling more complex when multiple CPUs are
available.
Processor types within a multiprocessor:

= Homogeneous: all same architecture.

= Heterogeneous: some processes incompatible with
architecture of some CPUs.

Load balancing/sharing. one ready queue for all processors,
idle CPU assigned job at head of queue.
Asymmetric multiprocessing:

= Only one processor (master scheduler) accesses the system
data structures, alleviating the need for protected access to
shared data (if self-scheduling from common queue).

= Easier, implemented first on new hardware.

Real-Time Scheduling

m Hard real-time systems:
-~ Critical task must complete within a guaranteed time interval.
= New process admitted with guarantee: resource reservation.
m Soft real-time computing:
= Requires priority-like scheduling (e.g. multiple queues).
Critical processes receive priority over less fortunate ones.
= Priority of real-time processes doesn’t drop (no demotion).
- Low dispatch latency.
m Low dispatch latency techniques:

= Kernel must be preemptible (Solaris 2); often isn’t, to keep
system data structures safe from corruption (interrupt during
partial modification).

= |If shared data is in-use by lower priority process, critical
process must wait: priority inversion.

=) Solution: priority inheritance: low priority process gets
critical process priority until it releases held resources.

Y

Dispatch Latency

Hardware interrupt indicating critical event.

Basic interrupt handling: interrupt vector, service routine,
identify critical process to handle event and get ready to run.

Preempt other processes, resolve priority inversion.
Dispatch critical process.
Critical process computes response to event, takes action.

respanse 1o evant

response interval =

process made
inlarnapt available
processing

————————— dizpatch latency ——————————

raal-lome

process
EXaCUtIon
¢ N

l—— conflicts dispatch —m

(5)

Algorithm Evaluation

Deterministic modeling:

= @iven particular predetermined workload, compute
performance measure of each algorithm for that workload.

Queueing models: statistics:

= Scheduler is math function f() mapping process arrival &
burst times to performance measure.

= @iven probability distribution of P, compute distribution of
f(P): expected value, variance, etc.

Simulation:

= Application that behaves like hardware+OS but given
process characteristics as input, not actual processes.

= Extreme is virtual machine with real OS, i.e. near same
effort as implementation (but no hardware glitches).

Implementation.
Assignment 1 is coarse simulation mix:
= Input hand-specified as in deterministic modeling.

= Performance evaluated by simulating system activities
under given input.

Evaluation of CPU Schedulers by Simulation

paformance

simulation mje statisfics
| for FCFS
FCFS

CFLU 10
W 213

actual cPU 12 perfarmance

ProCess W 112 E— simulation mje statislics
axacution CPU 2 for SJF

W 147 & 1F
CPU 173

frace tape
performanca
simulation mjp- Statistics

for AR(GQ = 14]
[RRi{C=14) |

