
Announcements

� Subtopics for next lecture?
� Linux/Windows 2000 teams?
� Assignment 1 progress and questions?
� Questions from last lecture?
� Questions on slides from this lecture?
� Invite friends, family at next lecture.
� Revisit ThreadLocal.

Chapter 6: CPU Scheduling

� Basic Concepts.
� Scheduling Criteria.
� Scheduling Algorithms.
� Multiple-Processor Scheduling.
� Real-Time Scheduling.
� Algorithm Evaluation.

Basic Concepts

� Multiprogramming achieves maximum CPU utilization.
� CPU–I/O Burst Cycle – Process execution consists of a

cycle of CPU execution and I/O wait. Relative ratio
distinguishes I/O- vs. CPU- bound processes.

� CPU burst distribution helps select and/or fine-tune CPU
scheduling algorithm.

CPU Scheduler

� Selects from among the processes (or kernel threads) in
memory that are ready to execute, and allocates the CPU
to one of them.

� CPU scheduling decisions may take place when a
process:
1. Switches from running to waiting state (e.g. read(), wait()).
2. Switches from running to ready state (e.g. timer interrupt).
3. Switches from waiting to ready (e.g. I/O completed).
4. Terminates.

� Scheduling under 1 and 4 is nonpreemptive: processes
willingly relinquish control of CPU.

� All other scheduling is preemptive:
� Under 2: process kicked off CPU. Need choose successor.
� Under 3: process may kick out another process from CPU.

Dispatcher

� Dispatcher module gives control of the CPU to the
process selected by the CPU scheduler; steps:
� Context switch.
� Switch to user mode.
� Jump to the proper location in the user code to restart that

process.

� Dispatch latency – time it takes for the dispatcher to stop
one process and restart another.

� CPU scheduler is (semi-automated) policy, dispatcher is
pure mechanism.

Scheduling Criteria
� CPU utilization – keep the CPU as busy as possible.

� Can starve I/O-bound jobs.
� Throughput – # of processes that complete their

execution per time unit.
� Can starve long jobs.

� Turnaround time – amount of time to execute a particular
process from submission to completion.
� Can appear unresponsive under time-sharing.

� Waiting time – amount of time a process has been waiting
in the ready queue.
� Some non-critical jobs don’t mind waiting.

� Response time – amount of time it takes from when a
request was submitted until the first response is
computed and sent to I/O device.
� Does not include I/O processing time.
� Think “ls –R | more”.
� Can’t distinguish debugging vs. real output.

Max

Min

Max

Min

Min

Optimality

� Optimize average measure.
� Optimize minimum or maximum, e.g. minimize max

response time.
� Minimize variance (predictable system).
� Examples that follow:

� Minimize average waiting time.
� Assume single burst.
� Assume context switch overhead = 0.

First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

� Suppose that the processes arrive in the order: P1 , P2 , P3.
The Gantt Chart for the schedule is:

� Waiting time for P1 = 0; P2 = 24; P3 = 27.
� Average waiting time: (0 + 24 + 27)/3 = 17.

P1 P2 P3

24 27 300

FCFS Scheduling (Cont.)

� Suppose that the processes arrive in the order: P2 , P3 , P1.
The Gantt chart for the schedule is:

� Waiting time for P1 = 6; P2 = 0; P3 = 3.
� Average waiting time: (6 + 0 + 3)/3 = 3.
� Much better than previous case.
� Convoy effect: short process behind long process like

motorbikes behind a bus.
� If long process goes into infinite loop, “kill” won’t be able to

stop it: if we preempt, stuck process still has priority over “kill”.

P1P3P2

63 300

Shortest-Job-First (SJF) Scheduling

� Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with the
shortest time.

� Two schemes:
� Nonpreemptive – once CPU given to the process it cannot

be preempted until it completes its CPU burst.
� Preemptive – if a new process arrives with CPU burst length

less than remaining time of current executing process,
preempt. This is Shortest-Remaining-Time-First (SRTF)
scheduling.

� SJF is optimal – gives minimum average waiting time for
a given set of processes.

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

� SJF (non-preemptive):

� Average waiting time = (0 + 6 + 3 + 7)/4 = 4.

Example of Non-Preemptive SJF

P1 P3 P2

7 160

P4

8 12

Example of Preemptive SJF

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

� SJF (preemptive):

� Average waiting time = (9 + 1 + 0 +2)/4 = 3.

P1 P3P2

42 110

P4

5 7

P2 P1

16

Determining Length of Next CPU Burst
� Can only estimate the length.
� Can be done by using the length of previous CPU bursts,

using exponential averaging.

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of lenght actual 1.

≤≤
=

=

+

αα
τ 1n

th
n nt

() .1 1 nnn t ταατ −+=+

Past predictions; history.

Examples of Exponential Averaging

� α = 0:
� τn+1 = τn = τ0.
� Recent history does not count.

� α = 1:
� τn+1 = tn.
� Only the actual last CPU burst counts.

� If we expand the formula, we get:
τn+1 = α tn+(1 - α) α tn-1 + …

+(1 - α)j α tn-j + …
+(1 - α)n+1 τo .

� If α>0 then (1 - α)<1, so each successive term has less
weight than its predecessor.

Initial guess without past data,
e.g. historical system average.

Priority Scheduling

� A priority number (integer) is associated with each
process: smallest integer means highest priority.

� The CPU is allocated to the process with the highest
priority.
� Preemptive.
� Nonpreemptive.

� SJF is a priority scheduler: priority is the predicted next
CPU burst time.

� Problem: starvation – low priority processes may never
execute.
� Solution: aging – as time progresses, increase the priority of

waiting processes.

Example of Priority Scheduling

Process Burst Time Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

� Nonpreemptive:

P2 P5 P1 P3 P4

0 1 6 16 18 19

� Average waiting time = (0 + 1 + 6 + 16 + 18)/5 = 8.2.

Round Robin (RR)

� Each process:
� Gets a small unit of CPU time (time quantum), usually 10-

100 milliseconds.
� After this time has elapsed, the process is preempted and

added to the tail of the ready queue.

� If there are n processes in the ready queue and the time
quantum is q, then:
� Each process gets 1/n of the CPU time in chunks of at most

q time units at once.
� No process waits more than (n-1)q time units.

� Performance:
� q large � FCFS (FIFO).
� q small � overhead is too high as q gets closer to context

switch duration.

Time Quantum and Context Switch Time

Example of RR with Time Quantum = 20

Process Burst Time
P1 53
P2 17
P3 68
P4 24

� The Gantt chart is:

� Typically better response than SJF (though higher
average waiting, turnaround time).

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Turnaround Time Varies With The Time Quantum

Becomes FCFS
since max burst=7.

SJF: P3 P2 P1 P4
Average turnaround =
(1 +
1+3 +
1+3+6 +
1+3+6+7)/4 =8.

Multilevel Queue

� Ready queue is partitioned into separate queues:
� Foreground (interactive) processes.
� Background (batch) processes.

� Each queue has its own scheduling algorithm:
� Foreground – RR.
� Background – FCFS.

� Scheduling must be done between the queues:
� Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to
foreground in RR, 20% to background in FCFS.

� Fixed priority scheduling; (i.e., serve all from foreground
then from background). May starve background jobs so use
aging and allow processes to move between queues.

Multilevel Queue Scheduling

Multilevel Feedback Queue

� A process can move between the various queues; aging
can be implemented this way.

� Multilevel-feedback-queue scheduler defined by the
following parameters:
� Number of queues.
� Scheduling algorithms for each queue.
� Method used to determine when to upgrade a process.
� Method used to determine when to demote a process.
� Method used to determine which queue a process will enter

when that process needs service.

Example of Multilevel Feedback Queue

� Three queues:
� Q0 – RR time quantum 8 milliseconds.
� Q1 – RR time quantum 16 milliseconds.
� Q2 – FCFS.

� Scheduling:
� A new job enters queue Q0. When it gains CPU, job

receives 8 milliseconds. If it does not finish in 8
milliseconds, job is preempted and moved to queue Q1.

� At Q1 job is again served (eventually) and receives 16
additional milliseconds. If it still does not complete, it is
preempted and moved to queue Q2.

� I/O-bound jobs return to Q0 to finish short CPU-burst and
return to waiting for new I/O.

Multilevel Feedback Queues

Multiple-Processor Scheduling

� CPU scheduling more complex when multiple CPUs are
available.

� Processor types within a multiprocessor:
� Homogeneous: all same architecture.
� Heterogeneous: some processes incompatible with

architecture of some CPUs.

� Load balancing/sharing: one ready queue for all processors,
idle CPU assigned job at head of queue.

� Asymmetric multiprocessing:
� Only one processor (master scheduler) accesses the system

data structures, alleviating the need for protected access to
shared data (if self-scheduling from common queue).

� Easier, implemented first on new hardware.

Real-Time Scheduling

� Hard real-time systems:
� Critical task must complete within a guaranteed time interval.
� New process admitted with guarantee: resource reservation.

� Soft real-time computing:
� Requires priority-like scheduling (e.g. multiple queues).
� Critical processes receive priority over less fortunate ones.
� Priority of real-time processes doesn’t drop (no demotion).
� Low dispatch latency.

� Low dispatch latency techniques:
� Kernel must be preemptible (Solaris 2); often isn’t, to keep

system data structures safe from corruption (interrupt during
partial modification).

� If shared data is in-use by lower priority process, critical
process must wait: priority inversion.
� Solution: priority inheritance: low priority process gets

critical process priority until it releases held resources.

Dispatch Latency
1. Hardware interrupt indicating critical event.
2. Basic interrupt handling: interrupt vector, service routine,

identify critical process to handle event and get ready to run.
3. Preempt other processes, resolve priority inversion.
4. Dispatch critical process.
5. Critical process computes response to event, takes action.

1

2

3 4 5

Algorithm Evaluation
� Deterministic modeling:

� Given particular predetermined workload, compute
performance measure of each algorithm for that workload.

� Queueing models: statistics:
� Scheduler is math function f() mapping process arrival &

burst times to performance measure.
� Given probability distribution of P, compute distribution of

f(P): expected value, variance, etc.
� Simulation:

� Application that behaves like hardware+OS but given
process characteristics as input, not actual processes.

� Extreme is virtual machine with real OS, i.e. near same
effort as implementation (but no hardware glitches).

� Implementation.
� Assignment 1 is coarse simulation mix:

� Input hand-specified as in deterministic modeling.
� Performance evaluated by simulating system activities

under given input.

Evaluation of CPU Schedulers by Simulation

