
Announcements

� Assignment 2 is online; due Monday 3/22.
� No office hours on Thursday:

� Ask assignment 2 questions during Friday office hours.
� Or call on Sunday at home from 5p-7p at 829 5639.

� Final examination is open book.
� Questions from last lecture?
� Revisit Segmentation with Paging.

Chapter 10: Virtual Memory

� Background.
� Demand Paging.
� Page Replacement.
� Allocation of Frames.
� Thrashing/Working Set.
� Other Considerations.

Background

� Virtual memory: separation of user logical memory from
physical memory.
� Intuition:

� CPU cache existence transparent to programmer; we think
all operations go to RAM, but they don’t.

� Similarly, pretend all operations go to disk. RAM then
becomes transparent cache for disk.

� Practical difference: hardware manages CPU cache, OS
manages RAM caching of disk.

� Only part of the program needs to be in memory for execution.
� Logical address space can therefore be much larger than

physical address space.
� More efficient process creation: give process minimal memory to

get started.
� Virtual memory can be implemented via:

� Demand segmentation (OS/2).
� Demand paging (this lecture).

Virtual Memory Larger Than Physical Memory

(page table
for demand paging)

(cache for disk)

disk

virtual memory size limited by disk capacity only

Demand Paging

� Bring a page into memory only when it is needed:
� Like lazy swapper only at level of pages not whole processes

(pager).
� Less I/O needed: unused pages not moved.
� Less memory needed: unused pages not in memory.
� Faster response: process starts as soon as minimal pages are

in memory.
� More users/processes: less memory per process, more

processes.
� When is a page needed? When process refers to it.

� In general, process reference is one of three types:
� Invalid reference (seg fault) � abort/signal the process.
� Reference to page in memory � access memory.
� Reference to page on disk only � bring to memory.

Valid-Invalid Bit

� Page table entry bit states whether page is in memory:
� 1: in-memory; 0: not-in-memory.
� Also called valid-invalid bit, but it’s logically separate bit than

the one marking page table entries that are in use vs.
unused ones (invalid references).

� Can be same hardware bit meaning “trap into OS”, and then
OS looks up at parallel page table to distinguish used vs.
unused from memory vs. disk.

� Initially bit set to 0 on all entries (user program is on disk).
� During address translation, if bit is

� 1: access memory.
� 0: page fault (bring from disk); simplified algorithm:

� Get available free frame.
� Copy/swap page into frame.
� Update page table (set valid bit).
� Update free frame list.
� Restart instruction.

Page Table With Pages Are Not in Main Memory

� Page starts on disk.
� Copied (not moved) to memory, only if needed.

disk

Unused pages
(invalid references);

hence neither on
disk nor in memory.

Process logical
memory ends here.

Instruction Restart

� Restart sometimes not easy:
� ADD A, B, C: just repeat until both operands can be read

and result can be stored.
� Block move: single instruction copies lots of data that span

page boundary; blocks overlap.

� Auto increment/decrement location: MOV (R2)+,-(R3).
� Like *(R2++)=*(--R3) in C.
� Should not repeat R2++ and --R3 if *R3 fails.

� Conclusion: hardware architecture should be helpful
(RISC).

fault

Cannot restart since
we’d copy

not into first
position

source

dest

Steps in Handling a Page Fault

More Benefits

� Copy-on-Write (COW):
� Allows both parent and child processes to initially share the same

pages in memory.
� Child process starts much faster (fast fork()).
� If either process modifies a shared page, only then is the page

copied.
� Benefit of general paging, not just Virtual Memory.

� Memory-mapped file I/O:
� File is initially read using demand paging. A page-sized portion of

the file is read from the file system into a physical page.
Subsequent reads/writes to/from the file are treated as ordinary
memory accesses.

� Simpler file access by routing file I/O through memory rather than
read(), write() system calls. Many OSs transparently replace
those system calls with memory-mapped I/O.

� No system call overhead for each byte read/written.
� Processes that use the same file share the pages.

Memory Mapped Files

No Free Frame?

� Page replacement: find some victim page in memory, but not
actively in use, and swap it out.
� Need copy back to disk only if dirty, i.e. changed since last swap-in.
� Want algorithm which will minimize number of page faults.

� Page Fault Rate p (p=0 no page faults; p=1 always fault).
� Effective Access Time (EAT) =

(1 – p) x memory access + p x (overhead
+ [possibly swap page out]
+ swap page in)

� Assume:
� Memory access time = 1 ms.
� Swap Page Time = 10 sec = 10,000 ms.
� 50% of the time the page dirty, hence expected swap out time is

5,000 ms.
� Then EAT ~ (1 – p) x 1 + p (15000) = 1 + 15000 p ms.
� Need very low fault rate p.

Includes all memory,
TLB accesses

Need For Page Replacement

OS
OS

User/Process 1 just executed instruction which needs
page M. But there is no free frame available.

Page Replacement

Used to contain
f, now it has
disk block 0.

Disk block 0

Used to contain
disk block n, now

it has f.

Disk block n

Also common to have separate columns for frame, disk block:
if a page needs to be swapped out, no disk allocation overhead.

Just reuse the block it came from.

Page Replacement Algorithms

� Want lowest page-fault rate:
� Good algorithm.
� More frames.

� Deterministic modeling: evaluate algorithm by running it on a
particular sequence of memory references and computing the
number of page faults on that string.

First-In-First-Out (FIFO)

� Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5

10 page faults44 3

3 frames 4 frames

� Belady’s Anomaly: more frames � more page faults.

FIFO (Cont.)

Optimal

Optimal (Cont.)

� Replace page that will not be used for the longest time.
� 4 frames example: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

� How do you know which page will not be used? You don’t.
Algorithm is useful as yardstick (to evaluate others).

1

2

3

4

6 page faults

4 5

Least Recently Used (LRU)

LRU (Cont.)

� Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

� Counter implementation:
� Every page table entry has a counter field.
� When page is referenced (through this entry), copy the clock

(or global counter) into the counter.
� When looking for victim, choose entry with earliest counter.

Search needed.

1

2

3

5

4

4 3

5
8 page faults

LRU (Cont.)

� Stack implementation:
� Keep a stack of page table entries in a double linked list.
� Page referenced:

� Move entry to the top.
� Requires 6 pointers to be changed: my 2, the 2 that

used to point to me, the 2 that now point to me.
� No search for replacement.

List head

LRU Approximation

� Reference bit:
� With each page associate a bit, initially 0.
� When page is referenced, set bit to 1.
� Replace page with bit=0, if one exists.
� If all pages bit=1, which was LRU? Who sets bit to 0?

� Keep history bits (shift left at regular timer interrupt).
� Second chance algorithm:

� Key part of assignment 2.
� Need reference bit.
� A.k.a. clock replacement (but no clock involved).
� Organize pages in circular queue; queue pointer points to

next victim (like FIFO)...
� ... but if pointed page has reference bit=1. then:

� Set reference bit to 0.
� Leave page in memory.
� Try next page, subject to same rules.

Second-Chance (Clock)

Tip: the search for a victim
always starts right after the
last victim chosen. It does
not always start at the
beginning of the queue.

Global vs. Local Allocation

� Global replacement: process selects a replacement
frame from the set of all frames; one process can take a
frame from another.

� Local replacement: each process selects from only its
own set of allocated frames. How do we allocate frames?
� Assignment 2.

Allocation of Frames

� Each process needs minimum number of pages in
memory (i.e. frames allocated to process).

� Example: IBM 370 – 6 pages to handle a single SS
MOVE instruction:
� Instruction is 6 bytes long, might span 2 pages.
� Source data can span 2 pages (even just 2 adjacent bytes

but on different pages).
� Destination data can span 2 pages.

� Two major allocation schemes.
� Fixed allocation (static and local):

� Equal allocation.
� Proportional allocation (see next slide).

� Priority allocation (dynamic and global):
� If high priority process generates a page fault, select

victim from a lower priority process.

Proportional Allocation

� Bigger process � more pages, or
� Higher priority process � more pages.

m
S
s

pa

m

sS

ps

i
ii

processes i

ii

×==

=

=
=

�

for allocation

frames ofnumber total

 process of size

5964
137
127

564
137
10

137

127

10
64

2

1

2

1

≈×=

≈×=

=
=
=
=

a

a

S

s

s

m

Thrashing
� If a process does not have “enough” pages, the page-fault rate is

very high. This leads to:
� Low CPU utilization (lots of time spent doing I/O).
� Operating system thinks that it needs to increase the degree of

multiprogramming hence...

� It creates more processes...
� so processes get less memory...
� so page-fault rate increases!

� Medium-term scheduler should swap out processes.

� Thrashing: system more busy swapping pages in and out than
letting processes use CPU.

� How many pages are “enough”? Depends on program. See later
slide with integer array example.

Locality In A Memory-Reference Pattern

� Paging works due to locality
model:
� Locality is small subset of pages

in active use.
� Process migrates from one

locality to another.

� Why does thrashing occur?
Σ locality size > memory size.

processes

Working-Set Model
� ∆ ≡ working-set window: a fixed number of page references.
� WSSi (working set size of process Pi) =

total number of pages referenced in the most recent ∆.
� If ∆ too small, it will not encompass entire locality.
� If ∆ too large, it will encompass several localities.
� If ∆ = ∞, it will encompass entire program.

� D = Σ WSSi ≡ total demand frames.
� If D > total memory frames � thrashing, hence suspend one or

more processes or increase allocation of single thrasher.

processes

Keeping Track of the Working Set

� Working set related to LRU: pages in working set are
those in on-going/recent use.

� Approximate with reference bit and history bits. If a page
has non-zero history counter, then page is in working set.

1,1,1,1,1,1,1,1,1,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3

1111

0000

0000

History

1

2

3

1100

0011

0011

History

1

2

3

0000

1111

1111

History

1

2

3

2,3 not yet
in working set.

All pages
in working set.

Page 1 left
working set.

Reference
bit

2 interrupts
later

2 interrupts
later

Interrupt Interrupt Interrupt InterruptInterruptInterrupt

Page-Fault Frequency Scheme

� Establish “acceptable” page-fault rate:
� If actual rate too low, process loses frame.
� If actual rate too high, process gains frame.

Other Considerations

� Prepaging: when process suspends then resumes, it
must reload its working set. Rather than do many
separate I/Os for each page as it faults, bring in full
working set before restarting.

� Page size selection:
� Internal fragmentation: want smaller pages.
� Table size: want large pages.
� I/O overhead (transfer time): large pages reduce number of

pages loaded, which reduces seek time. But...
� Locality (working set) wants smaller pages to focus only on

memory actually used. Hence less total I/O because we are
not wasting memory to store data we don’t actually use; less
page faults, less data transferred.

Other Considerations (Cont.)

� TLB Reach: the amount of memory accessible via TLB.
� Equal to (TLB Size) X (Page Size).

� Ideally, the working set of each process is stored in the
TLB. Otherwise low TLB hit ratio f; EAT increases (see
last lecture).

� Increasing reach:
� Increase TLB size: high cost.
� Increase page size: different apps are allowed to have

different page sizes.

Other Considerations (Cont.)
� Program structure:

� int A[][] = new int[1024][1024];
� Assume only 1 frame available (for data; ignore code page).
� If page size 4KB, then each row is stored in one page:

� Program 1 for (j = 0; j < A.length; j++)
for (i = 0; i < A.length; i++)

A[i,j] = 0;
1024 x 1024 page faults.

� Program 2 for (i = 0; i < A.length; i++)
for (j = 0; j < A.length; j++)

A[i,j] = 0;

1024 page faults.
� Compiler usually does loop reordering.

A[0][0]...A[0][1023] A[1][0]...A[1][1023] A[1023][0]...A[1023][1023]...

Other Considerations (Cont.)

� I/O Interlock: pages must sometimes be locked into
memory.
� Same issue as with process relocation (last lecture).
� Pages containing buffers for pending I/O must not be

chosen for eviction by a page replacement algorithm, or...
� ... do all I/O in OS buffers and then copy (costly).

