Announcements

Assignment 2 is online; due Monday 3/22.
No office hours on Thursday:

= Ask assignment 2 questions during Friday office hours.
= Or call on Sunday at home from 5p-7p at 829 5639.

Final examination is open book.
Questions from last lecture?
Revisit Segmentation with Paging.

Chapter 10: Virtual Memory

Background.

Demand Paging.

Page Replacement.
Allocation of Frames.
Thrashing/Working Set.
Other Considerations.

Background

m Virtual memory: separation of user logical memory from
physical memory.

= |ntuition:

=) CPU cache existence transparent to programmer; we think
all operations go to RAM, but they don't.

= Similarly, pretend all operations go to disk. RAM then
becomes transparent cache for disk.

= Practical difference: hardware manages CPU cache, OS
manages RAM caching of disk.

= Only part of the program needs to be in memory for execution.

= Logical address space can therefore be much larger than
physical address space.

= More efficient process creation: give process minimal memory to
get started.

m Virtual memory can be implemented via:
= Demand segmentation (0S/2).
= Demand paging (this lecture).

Virtual Memory Larger Than Physical Memory

N\

memory
map

(page table)
pagen hysical i
for demand paging) Hisiioey disk

(cache for disk)

virtual
memory

T virtual memory size limited by disk capacity only T

Demand Paging

m Bring a page into memory only when it is needed:
= Like lazy swapper only at level of pages not whole processes
(pager).
Less I/O needed: unused pages not moved.
= Less memory needed: unused pages not in memory.

= Faster response: process starts as soon as minimal pages are
in memory.

More users/processes: less memaory per process, more
Processes.

= When is a page needed? When process refers to it.
®m In general, process reference is one of three types:
= Invalid reference (seg fault) = abort/signal the process.
= Reference to page in memory = access memory.
= Reference to page on disk only = bring to memory.

'H

Valid-Invalid Bit

m Page table entry bit states whether page is in memory:
= 1:in-memory; 0: not-in-memory.
= Also called valid-invalid bit, but it’s logically separate bit than

the one marking page table entries that are in use vs.
unused ones (invalid references).

= Can be same hardware bit meaning “trap into OS”, and then
OS looks up at parallel page table to distinguish used vs.
unused from memory vs. disk.

m |Initially bit set to 0 on all entries (user program is on disk).

m During address translation, if bit is

= 1. access memory.

= 0: page fault (bring from disk); simplified algorithm:
5 Get available free frame.
=1 Copy/swap page into frame.
-] Update page table (set valid bit).
-/ Update free frame list.
=] Restart instruction.

Page Table With Pages Are Not in Main Memory

m Page starts on disk.
m (Copied (not moved) to memory, only if needed.

valid—invalid
bit

S Y
4 v

frame

Process logical
memory ends here.

6

Unused pages
(invalid references);
hence neither on

disk nor in memory. logical page table
memory 11

i
v
i
i
v
i

~N OO O kA W N = O

L= Rl

12

13

14

15

physical memory

Instruction Restart

m Restart sometimes not easy:

= ADD A, B, C: just repeat until both operands can be read

and result can be stored.

= Block move: single instruction copies lots of data that span

page boundary; blocks overlap.

source [I I

dest | [N |

I

fault

Cannot restart since

we'dcopy [|
not [into first

position

= Auto increment/decrement location: MOV (R2)+,-(R3).

Like * (R2++)=* (-—R3) in C.

Should not repeat R2++ and ——R3 if *R3 fails.
m Conclusion: hardware architecture should be helpful

(RISC).

Steps in Handling a Page Fault

page is on
backing store

operating
system

(2)

reference

restart page table
instruction

free frame

O O

reset page bring in
table missing page

physical
memory

More Benefits

m Copy-on-Write (COW):
= Allows both parent and child processes to initially share the same
pages in memory.
= Child process starts much faster (fast fork ()).

= |If either process modifies a shared page, only then is the page
copied.

= Benefit of general paging, not just Virtual Memory.
N Memory mapped file I/O:

- File is initially read using demand paging. A page-sized portion of
the file is read from the file system into a physical page.
Subsequent reads/writes to/from the file are treated as ordinary
memory accesses.

= Simpler file access by routing file 1/0 through memory rather than
read (), write () system calls. Many OSs transparently replace
those system calls with memory-mapped 1/O.

= No system call overhead for each byte read/written.
= Processes that use the same file share the pages.

Memory Mapped Files

process B
virtual memory

disk file

physical memory

o]
o]
=
[
(]
-

process A
virtual memory

No Free Frame?

Page replacement: find some victim page in memory, but not
actively in use, and swap it out.

= Need copy back to disk only if dirty, i.e. changed since last swap-in.
= Want algorithm which will minimize number of page faults.
Page Fault Rate p (p=0 no page faults; p=1 always fault).
Effective Access Time (EAT) =
Includes all memory,
(1 — p) X memory access + p X TLB accesses
+ [possibly swap page out]
+ swap page in)
Assume:
- Memory access time = 1 ms.
= Swap Page Time = 10 sec = 10,000 ms.

= 50% of the time the page dirty, hence expected swap out time is
5,000 ms.

Then EAT ~(1—p)x 1+ p(15000) = 1 + 15000 p ms.
Need very low fault rate p.

Need For Page Replacement

User/Process 1 just executed instruction which needs
page M. But there is no free frame available.

valid—invalid
bit

frame
\

3
4
5

logical memory page table
for user 1 for user 1

valid—invalid
frame bit]

\ J physical
6| v memory

2
E 7

v

logical memory page table
for user 2 for user 2

Page Replacement

frame\' / valid—invalid bit

. swap out
Used to contain — vietim
f, now it has (o)| to invalid @ page
disk block 0. (7)| v ~ :
g™ Disk block O
) @ f | victim
Qsed to contain reset page
disk block n, no I table for @ w
it has f. A new page swap uﬁ\il‘i::::::w
desired i
page in .
Disk block n

physical
memor

Also common to have separate columns for frame, disk block:
if a page needs to be swapped out, no disk allocation overhead.
Just reuse the block it came from.

Page Replacement Algorithms

m Want lowest page-fault rate:
= @Good algorithm.
= More frames.

(2]
=
>
©
S
o)
o)
<
o
o
o
i
©
o
£
>
<

number of frames

® Deterministic modeling: evaluate algorithm by running it on a
particular sequence of memory references and computing the
number of page faults on that string.

First-In-First-Out (FIFO)

reference string

7 0 1

page frames

FIFO (Cont.)

m Reference string: 1,2,3,4,1,2,5,1,2,3,4,5.

3 frames 4 frames
111] 4 5 111] 5 4
2|2 1 3 2 |2 1 5
3 |3 2 4 3 |3 2
9 page faults 4 | 4 3 10 page faults

m Belady’'s Anomaly: more frames = more page faults.

[22)
=
=
<
=
(ab]
fap]
<
o
R
(en]
P
(<k]
R
=
=
=

number of frames

Optimal

reference string

7 0 1 2

page frames

Optimal (Cont.)

B Replace page that will not be used for the longest time.
m 4 frames example: 1,2,3,4,1,2,5,1, 2, 3, 4, 5.

6 page faults

A~ W DN

m How do you know which page will not be used? You don't.
Algorithm is useful as yardstick (to evaluate others).

Least Recently Used (LRU)

reference string
o 1 2

page frames

LRU (Cont.)

m Reference string: 1,2,3,4,1,2,5,1,2,3,4,5.

1

2
3
4

5

m Counter implementation:
= Every page table entry has a counter field.
= When page is referenced (through this entry), copy the clock

(or global counter) into the counter.

8 page faults

= When looking for victim, choose entry with earliest counter.

Search needed.

LRU (Cont.)

Stack implementation:
= Keep a stack of page table entries in a double linked list.
= Page referenced:
-1 Move entry to the top.

= Requires 6 pointers == to be changed: my 2, the 2 that
used to point to me, the 2 that now point to me.

= No search for replacement.

reference string

4 o) 7

<+
List head

LRU Approximation

m Reference bit:

= With each page associate a bit, initially O.

= When page is referenced, set bit to 1.
Replace page with bit=0, if one exists.

= |f all pages bit=1, which was LRU? Who sets bit to 0?

- Keep history bits (shift left at regular timer interrupt).

m Second chance algorithm:

= Key part of assignment 2.
Need reference bit.
= A.k.a. clock replacement (but no clock involved).

Organize pages in circular queue; queue pointer points to
next victim (like FIFO)...

= ... but if pointed page has reference bit=1. then:
= Set reference bit to O.
- Leave page in memory.
- Try next page, subject to same rules.

Second-Chance (Clock)

reference pages reference pages
bits bits

0

Tip: the search for a victim
always starts right after the
last victim chosen. It does
not always start at the
beginning of the queue.

¥

N

circular queue of pages circular queue of pages

(a) (b)

Global vs. Local Allocation

m Global replacement: process selects a replacement
frame from the set of all frames; one process can take a
frame from another.

m Local replacement: each process selects from only its
own set of allocated frames. How do we allocate frames?

= Assignment 2.

Allocation of Frames

Each process needs minimum number of pages in
memory (i.e. frames allocated to process).
Example: IBM 370 — 6 pages to handle a single SS
MOVE instruction:

= Instruction is 6 bytes long, might span 2 pages.

= Source data can span 2 pages (even just 2 adjacent bytes
but on different pages).

= Destination data can span 2 pages.
Two major allocation schemes.
= Fixed allocation (static and local):
- Equal allocation.
-] Proportional allocation (see next slide).
= Priority allocation (dynamic and global):

= If high priority process generates a page fault, select
victim from a lower priority process.

Proportional Allocation

m Bigger process = more pages, or
m Higher priority process = more pages.

m =64
s, =size of process p, 5, =10
S = Zprocesses Sl S2 - 127
m = total number of frames S =137
1
: S, a, = —Ox 64 =5
a;, = allocation for p, =—Xm 137
3 127
a, =——X64 =59

137

Thrashing

m |f a process does not have “enough” pages, the page-fault rate is
very high. This leads to:

= Low CPU utilization (lots of time spent doing 1/O).

= Operating system thinks that it needs to increase the degree of
multiprogramming hence...

| thrashing

= It creates more processes...
=] so processes get less memory...
- so page-fault rate increases!

= Medium-term scheduler should swap out processes.

m Thrashing: system more busy swapping pages in and out than
letting processes use CPU.

®m How many pages are “enough”? Depends on program. See later
slide with integer array example.

Locality In A Memory-Reference Pattern

m Paging works due to locality
model:
= Locality is small subset of pages
in active use.
= Process migrates from one
locality to another.
m Why does thrashing occur?

Y locality size > memory size.
processes

memory address

page numbers

i i} I i!H\'

34 [i ’i'ii LR] H‘ -
Y |II TR IIIIIII IIIill L O et A "f o
|
32 . — %“W e T
I-!“:“!I._. .,u""'l : I | || ‘}.IH: |;|- II| n' | |I| ! |
!||| |] [|||Il|||||||||l||||II it
i : .I..I | | | 1 |
b L il ’ ' "“ :II : l“. || \I |1|1 ‘H |H|I| " i
30 i|I||:II-I'|'j".||l L " LA A
||||m| |||||“|I|”||| | I il””.”| |||ul| il Al
28
2 ‘ +
n
I -
il il 11 wudal
24 B L T
A J\ il ___||!!..|."!1 L
A I~ ; L
I'.'“: I i;||ﬁ”|““.-|||||an||I:“|:||-I|‘I||III||‘ [l I I||II|I H ‘!‘ il
R N I
gy ||II|I||||"|IIIII|1|| I1{||1|||I||H|l ll ‘I W, | | ' '
MW tll!llllltlllh | A 55_ s
m T

20 TR L S

execution time ———

Working-Set Model

m A =working-set window: a fixed number of page references.
m WSS, (working set size of process P) =
total number of pages referenced in the most recent A.
= If Atoo small, it will not encompass entire locality.
= If Atoo large, it will encompass several localities.
= If A = oo, it will encompass entire program.
m D=Y WSS, = total demand frames.

processes

m If D> total memory frames = thrashing, hence suspend one or
more processes or increase allocation of single thrasher.

page reference table
. ..2615777751623412344434344413234443444...

A _1 A

t
WS(t,) = {1 ,2,5,6,7}1 WS(t,) = (3,4}

Keeping Track of the Working Set

m Working set related to LRU: pages in working set are
those in on-going/recent use.

m Approximate with reference bit and history bits. If a page
has non-zero history counter, then page is in working set.

Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt

v v v v v
1,1,1,1,1,1,1,1,1,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3

/ v

History History History

1] 11t | BMemes q fqq00 | 2P 4 10000

2 10000 [C——> 2 [0011 |C—> 2| 1111

Reference 3 | 0000 3 | 0011 3 | 1111
o 2,3 not y_et All pages Page 1 left

in working set. in working set. working set.

Page-Fault Frequency Scheme

increase number
of frames

upper bound

@
2
o
=
pn
©
%
o
o)
@
Q

lower bound

decrease number
of frames

m Establish “acceptable” page-fault rate:
If actual rate too low, process loses frame.
If actual rate too high, process gains frame.

Other Considerations

m Prepaging: when process suspends then resumes, it
must reload its working set. Rather than do many
separate 1/Os for each page as it faults, bring in full
working set before restarting.

m Page size selection:
= Internal fragmentation: want smaller pages.
= Table size: want large pages.

= |/O overhead (transfer time): large pages reduce number of
pages loaded, which reduces seek time. But...

= Locality (working set) wants smaller pages to focus only on
memory actually used. Hence less total I/O because we are
not wasting memory to store data we don'’t actually use; less
page faults, less data transferred.

Other Considerations (Cont.)

m TLB Reach:the amount of memory accessible via TLB.

= Equal to (TLB Size) X (Page Size).

m |deally, the working set of each process is stored in the
TLB. Otherwise low TLB hit ratio f; EAT increases (see
last lecture).

m Increasing reach:

= Increase TLB size: high cost.

= Increase page size: different apps are allowed to have
different page sizes.

Other Considerations (Cont.)

m Program structure:
= int A[][] = new int[1024][1024];
= Assume only 1 frame available (for data; ignore code page).
= If page size 4KB, then each row is stored in one page:

A[0][0]...A[0][1023] | A[1][0]...A[1][1023] | ... |A[1023][0]...A[1023][1023]
= Program 1 for (j = 05 j < A.length; j++)
for (i=0;1 < A.length; i++)
Ali,j] = 0;

1024 x 1024 page faults.

= Program 2 for (i = 0; i < A.length; i++)
for (j = 0; j < A.length; j++)
Ali,j] = 0;

1024 page faults.
= Compiler usually does loop reordering.

Other Considerations (Cont.)

m //O Interlock: pages must sometimes be locked into
memory.

= Same issue as with process relocation (last lecture).

= Pages containing buffers for pending I/O must not be
chosen for eviction by a page replacement algorithm, or...

= ...do all /0 in OS buffers and then copy (costly).

/T

magnetic-tape
drive

