Announcements

m Assignment 3 online: when should it be due?
= Monday, March 29.
m Changed earlier today (new clarifications), so re-
download.
m Java tips:
= catch (Exception ex) {} is averybad idea.
Close all streams you open.
= Thread termination and JVM.
= instanceof.
= Shifting and bit operations.

Chapter 7: Process Synchronization

Background.

The Critical-Section Problem.
Synchronization Hardware.
Semaphores.

Classical Problems of Synchronization.
Monitors.

Java Monitors.

Critical Regions.

Background

Concurrent access to shared data may result in data
inconsistency.

Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes.

Shared-memory solution to bounded-butter problem in
book allows at most n— 1 items in buffer at the same
time.

Qur solution for n items was correct but needed two
counters pcount and ccount. Can we use just one

counter?

Bounded Buffer
B Shared data:

#define B_SIZE 5
char buffer[B_SIZE];
int count=0;

m Producer:
int in=0;
while (1) {
/* produce an item in char nextProduced */
while (count==B_SIZE)

/* walit while buffer full */;
buffer[in]=nextProduced;
in=(in+1)%B_SIZE; count++; }

m Consumer:
int out=0;
while (1) {

while (count==0)

/* walit while buffer empty */;
nextConsumed=buffer[out];
out=(out+1l)%$B_SIZE; count——;

/* consume the item in char nextConsumed */

Bounded Buffer (Cont.)

B The statements
count++;
count——;

must be performed afomically, meaning that the process cannot
be interrupted partway through their execution.

m But they may not be atomic on some CPUs:

= count++ may be implemented as:

registerl=count LOAD R1, @count
registerl=registerl+l INC R1
count=registerl STORE (@count,R1

= count-- may be implemented as:

register2=count LOAD R2, @count
reglsterZ2=register2-1 DEC R2
count=register? STORE (@count,R2

Bounded Buffer (Cont.)

If both the producer and consumer attempt to update the buffer
concurrently, the CPU instructions may get interleaved.

Interleaving depends upon how the producer and consumer
processes are scheduled.

Assume count is initially 5. One interleaving of statements is:

producer: registerl=count (registerl =b)
producer: registerl=registerl+l (registerl =6)
consumer: register2=count (register2 =5)
consumer: register2=register2-1 (register2 =4)
producer: count=registerl (count =6)

consumer: count=register?2 (count =4)

The value of count may be 4 (or 6 if you swap the last two
lines), where the correct result should be 5.

Race Condition

m Race condition: The situation where several processes
access and manipulate shared data concurrently. The final
value of the shared data depends upon which process
finishes last.

m To prevent race conditions, concurrent processes must be
synchronized.

m Extremely hard to write correct multi-threaded code:
= Must think of all possible combinations in execution paths.
= Or come up with formal proof of correctness (see textbook).
= Or run a lot of tests hoping a bug will show up (hondeterminism).
= Only experience helps.
= Hence such a skill is highly valued by employers.

Java volatile

m Shared variables not always kept in sync:

class Test {
static int i=0, 3j=0;
static void incr () { i++; Jj++; }

static void print() { System.out.println (“i:”+i+"” J:”"+73); } }

= Thread TO calls incr () repeatedly.
= Thread T1 calls print () repeatedly.

= Assume TO, T1 scheduled as if incr (), print () had been mutually
exclusive.

= Qutput mayread i:1 j:2 because threads can keep local copies of
shared variables and sync up the master copies at will (almost...). So 7
can be updated before i by TO.

m volatile declaration: update shared variables in the same order the
local copies were updated:

static volatile int i=0, 7j=0;

m Details: Java Language Specification 8.3.1.4, 17.

The Critical-Section Problem

m Two or more processes all competing to use some
shared data.

m Each process has a code segment, called critical section,
in which the shared data is accessed.

m Problem: ensure that when one process is executing in its
critical section, no other process is allowed to execute in
its critical section.

1.

Solution Requirements

Mutual Exclusion: if process P;is executing in its critical
section, then no other processes can be executing in their
critical sections.

Only one dog can eat the bone at a time.

Progress: if no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely.

If no dog is eating and many are hungry, a hungry one should get the bone.

Bounded Waiting/No Starvation: a bound must exist on the
number of times that other processes may enter their critical
sections after a process has made a request to enter its
critical section and before that request is granted:

® Assume that each process executes at a nonzero speed.
® No assumption concerning relative speed of the processes.

If there are many hungry dogs, they all get to eat eventually.

Initial Attempts to Solve Problem

Only 2 processes, P, and P,.

Processes may share some common variables to
synchronize their actions.

General structure of every process P;.

while (1) |

/* |entry section|*/

/* critical section */

/* |lexit section |*/

/* remainder section */ }

We'll refer to the other process as P, (j=1-i).

Algorithm 1

B Shared variables:

= int turn=0;
= turn==1i = P, can enter its critical section.

m Process P;

while (1) {
while (turn!=i)
/* critical section */

/* do nothing */;

turn=1-1i;
/* remainder section */ }

m Satisfies mutual exclusion, but not progress: if P, is fast
and wants to go again, it cannot even if P, is just
spending a long time its is remainder section.

Algorithm 2

m Shared variables:
“ boolean flag[2]; flag[0]=flag[l]l=false;
= flag[i]==true = P;wants to enter its critical section.

m Process P;

while (1) {
flag[i]=true;
while (flag[l-1]);
/* critical section */
flag[i]=false;

/* remainder section */ }

m Satisfies mutual exclusion, but not progress; if both execute
flag[i]=true before either starts waiting in their while

loops, then neither ever moves forward! Processes are too
polite: “No, you go first.”

Algorithm 3

m Combined shared variables of algorithms 1 and 2.
m Process P;

while (1) {
flag[i]=true;
turn=1-1i;
while (flag[l-i] && turn==1-1i);
/* critical section */
flag[i]=false;
/* remainder section */ }

m Meets all three requirements; solves the critical-section
problem for two processes.

Choosing a

Bakery Algorithm

m Critical section for n processes.
m Shared variables:
“ boolean c[n]; /* All false. */

= int t[n]; /* All Os. */
Obtain ticket number; will get

® Process Pi: no smaller than another process
while (1) { but might get the same.
— >] — o
ticket number. clil=true;
1]=1+ y e ey -11); , _
D e max (£10] tln=il) Jwants to enter (or already is
ct?:oesing —» c[1]=false; inside) its critical section, and
_ _ for (3=0;7<n; j++) { so it has nonzero ticket.
Wait for i . .
to choose. > while (c[3J]);
/* critical section */

t[1]=0;
/* remainder section */ }

tljl<tl(i] || (t[jl==t[i] && J<i)

i waits for jto go through if j has smaller
ticket number; or if same ticket, and j<i.

Bakery Algorithm (Cont.)
m Why doesn'’t this work? (Eliminated c[]).
while (1) {
t[i]=1+max(t[07], .

..,t[n=-11);
for

(J=0; J<n; J++) |

while (t[J]1!=0 && (t[Jj1,3)<(tlil,i)); }
/* critical section */

t[1]=0;
/* remainder section */ }

m Answer:
= P,reads t[0], t[1].
= P,reads t[01, t[1].
= P writes t [1]=1.
= P, enters critical section because
1 t[0]!=0 is false (first for-loop iteration), and

(t[1]1,1)<(t[1]1,1) is false (second for-loop iteration).
= P,writes t [0]=1.

= P, enters critical section because

(t[0],0)<(t[0],0) is false (first for-loop iteration), and
1 (t[1]1,1)<(t[0],0) is false (second for-loop iteration).

Bakery Algorithm (Cont.)

m Why doesn’t this work? (Replaced while with i f and while.)
while (1) {

cl[i]l=true;
t[i]=1+max (t[0],...,t[n-11);
cl[i]l=false;
for (3=0; j<n; j++) {
while (c[J]);
if (£[3]1!'=0 && (t[31,3)<(t[il,1))
while (t[j]!=0);)
/* critical section */
t[1]=0;
/* remalinder section */ }
m [ntent: P, realizes that it has a lower ticket than P, (if) and waits
while P,remains in its critical section.

m Answer: P, can finish, go back, and get a higher ticket number.
Now P, is stuck and so is P, who still thinks that P,'s nonzero ticket
number implies P, is in its critical section.

Synchronization Hardware

B Test and modify the content of a word atomically (i.e.
without CPU ever preempting process in the middle).

m How? Disable interrupts or use special hardware.
boolean testAndSet (boolean *target) {
boolean result=*target;

*target=true;

return result; } If lock is true then nobody is
in the critical section and this process
B Shared data: can go ahead. Afomically set 1ock to
prevent two processes from seeing
boolean lock=false; false at the same time.
m Process P;:

while (1) {
while (testAndSet (&lock)); Bounded wait
/* critical section */ not satisfied!

lock=false;

/* remainder section */ }

Synchronization Hardware (Cont.)

Atomically swap two variables.

volid swap (boolean *a, boolean *b) {
boolean temp=*a; *a=*b; *b=temp; }

Shared data:

boolean lock=false;

key acts like return value of testAndsSet ()
Process Pi : as well as the true constant in its body.

while (1) {
boolean key=true;
while (key)

swap (&lock, &key) ; _
/* critical section */ Bounded wait

lock=false; not satisfied!

/* remainder section */ }

Synchronization Hardware (Cont.)

m Starvation fix: shared data:
boolean waiting[n]; /* All false. */

boolean lock=false;
m Process Pi: Wait until either 1ock is
available or some other process

while (1) { who held the lock passes it on to P,

. . by setting its waiting[i] to false.
walting[i]=true;

boolean key=true;

while |[(waiting[i] && key)| key=testAndSet (&lock) ;
waiting[i]=false;

Find first waiting process

after P; in circular
order (if any).

/* critical section */

4= (i+1) %n;

while ((j!=i) && !waiting[3j])) J=(3j+1)%n;

if (3=t1) |waiting([J]=false;|e __ |foneis found, unblock it and give it the

else |lock=false;| responsibility of unlocking (give it the key).
/* remainder section */ }

Otherwise, nobody has been
waiting, so release the lock for
whoever tries to enter next.

Semaphores

m Semaphore S: an integer variable that can only be accessed via
two partially indivisible operations. Shown as Java pseudo-class:

class Semaphore {

Other values int mS> ;
useful too. wait () {

mS<=0) ; '“aa
\ Once one process

(
mS——; } \
. 1 is done waiting, it alone
signal () A \ can proceed to finish.
mS++; } |} \

B Shared data: Semaphore S; Can’t modify
at the same

H - time.
Process P’] Busy-waiting (a.k.a. spin-lock).
while (1) { Useful for short waits in multiple
:) CPU systems (no context-switch).
S.wait () ; Wasteful in single CPU systems.

/* critical section */

S.signal () ;
/* remainder section */ } Bounded wait

not satisfied!

Semaphore Implementation

m Assume two OS system calls:
= block () suspends the thread that invokes it.
= wakeup (T) resumes the execution of a blocked thread T.

m Definition without busy-waiting:

class Semaphore {

int mS=1; Queue of blocked processes.

LinkedList mL=new LinkedList (); <— Usually FIFO to prevent starvation.

synchronized wait () f{ But can be priority queue too.
mS——;

if (mS<0) then {
mL.addLast (Thread.currentThread()) ;

block (); } < Calling thread goes off the

CPU and into waiting (not ready)

synchronized signal () f queue. No busy-waiting.
mS++; Assume block () releases
if (mS<=0) Java monitor.

wakeup (mL.removeFirst()); } }

Semaphore as a General Synchronization Tool

m Execute Bin P, only after A executed in P,.
m Use semaphore f1lag initialized to O.
m Code:
P g
A wait (flag)
signal (flag) B

Deadlock and Starvation

m Deadlock: two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes.

m Let sandQ be two semaphores initialized to 1.

P, P,
walt (S) ><: walit (Q)
wait (Q) walt (S)

signal (S) signal (Q)

signal (Q) signal (S)

m Starvation: indefinite blocking. A process may never be removed
from the semaphore queue in which it is suspended.

Two Types of Semaphores

m Counting semaphore: integer value can range over an
unrestricted domain.

B Binary semaphore: integer value can be at most 1
(only 0 or 1 in first, busy-waiting definition); can be
simpler to implement on some CPUs (hardware
constraint).

m Can implement a counting semaphore using binary
semaphores.

Implementing a Counting Semaphore

* 51 protects C from concurrent

modification.
B Data structures: « 52 blocks process that calls

binary-semaphore S1=1, S2=0; wait () with c<=0.

int C= /* Initial value of counting semaphore. */ ;

m Operations:
wait () | Must signal s1 before waiting
on S2, otherwise nobody can pass

ait (S1);
e through wait (S1) to signal (S2).

C——;

if (C<0) |
signal (S1);
wait (S2); 1}

signal (S1); }<
signal () x////

wait (S1);
C++; If we signal s2 instead of s1,

if (C<=0) signal(s2); <— thenthisis because another process
is waiting on s2. That process will

take care of signalling S1 here:
Intuitively, we pass on the key because
we know somebody else is about to unlock.

else signal (S1); }

Classical Problems of Synchronization

®m Bounded-Buffer Problem.
B Readers and Writers Problem.

® Dining-Philosophers Problem.

B Shared data:

Bounded-Buffer Problem

Binary semaphore: only needed if buffer

- - v access is more complex
semaphore full=0, empty=n, mutex=1; than array access (e.g.
®m Producer: ¢ 4 shared linked list).
, , Counting semaphores
int in=0;
while (1) {

m Consumer:

/* produce an item in char nextProduced */
wait (empty) ;

walt (mutex) ;

buffer[in]=nextProduced; in=(in+1)%B_SIZE;
signal (mutex) ;

signal (full); }

int out=0;

while

(1) |

walt (full);

walt (mutex) ;

nextConsumed=buffer|[out]; out=(out+l)%$B_SIZE;
signal (mutex) ;

signal (empty) ;

/* consume the item in char nextConsumed */ }

Readers-Writers Problem

B Shared data:

semaphore mutex=1,

Authorizes writer (if any; first
v reader otherwise) to proceed.

Protects readCount.

¥

writer=1;

int readCount=0;

m Writer: single one accessing shared file for output.

while

(1) |

walt (writer) ;

Writer may
starve!

/* perform writing */

signal (writer); }

B Reader: one or more can have shared read access to file.

while

First reader locks

out the writer by

taking over writer.
Other readers stuck here:
since first reader hasn’t
release mutex.

Last reader

) —_—
unlocks writer.

(1) |

walt (mutex) ;
readCount++;
if

signal (mutex) ;

(readCount==1) wait (writer);
/* perform reading */

walt (mutex) ;

readCount——;

if (readCount==0) signal (writer);

signal (mutex); }

Dining-Philosophers Problem

B Shared data:

semaphore chopstick[5]; /* All 1. */

m Philosopher

while (1) {
wait (chopstick([i]);
wait (chopstick ([(i+1)%5]);
/* eat */
signal (chopstick([i]);
signal (chopstick [(i+1)%5]1);
/* think */ }

Deadlock if each
philosopher gets one
chopstick!

Monitors

m Related, but not the same as Java monitors. Forget Java for now.

m High-level synchronization construct: at most one thread/process can
be actively running any procedure within monitor. Rest are queued up.

monitor monitor—name
{
/* shared variables */

procedure body PI (...) { ... }

shared data

procedure body Pn (...) { ... }
{ /* initialization code */ }

}

o
operations

initialization
code

Monitor condition

m To allow a process to suspend
itself while executing in the
monitor, a condition variable

must be declared, as
condition x;

= Condition variable operations:

5 wait ():if process P calls
x.wait (), P is suspended
until another process Q...

=l signal ():...runs
x.signal () which
resumes exactly one
suspended process, if any;
it is a no-op, otherwise.

- When P is suspended, other
procedures can run insides
monitor (like Q)...

~ ... but when Q signals P, who
goes next (remember: only one
process can run inside monitor)?
No right/wrong answer.

shared data

ueues associated with {

X, y conditions

Yy

operations

initialization
code

Dining Philosophers Example

Usage: Philosopher i
while (1) {

monitor dp {
enum {thinking, hungry, eating} statel[5];

condition self[5]; iiCkui(i>;
* ea *
//Ialéo.methods below putdown (i)
vold 1nit () { /* think */ }
for (int 1=0;1<571++) Deadlock impossible!
statel[i]=thinking; }) Starvation possible!
void pickup (int 1) { void putdown (int i) {

state[i]=hungry; state[i]=thinking; /is done eating. Does

test (1) ; test ((i+4)%5) ; |«— either neighbor of i want
if (state[i]!=eating) test ((i+1)%5); to use the chopsticks she

self[i].wait (); } just finished using?

Test whether philosopher
I x~ ican start eating.

private void test (int i) {

if |((state[(1+4)%5] !=eating) &&
(state[i]==hungry) &&
(state[(1+1)%5] !'=eating)) {
state[i]=eating;
self[i] .signal();| } }

If 7s neighbors aren’t
<+— eating, and / wants

to eat, then /can

use their chopsticks.

Philosopher i got hungry
but couldn’t get both chopsticks
at once, so she has to wait

until another philospher lets
her have her chopsticks. —

Monitor Implementatlon with Semaphores

B Shared data:

2. Number of S’s that are
waiting on W’s.

—» int nextCount=0,

Only one process

runs inside monitor. |

1. Process S signals W. S has to wait wh|Ie
W unblocks, and until it leaves monitor. :

v

semaphore mutex=1,

r'e

next=0,

cCount=O;k

cSem=0;

AN

m External procedure proxy:

walt (mutex) ;

/* call procedure */

A pair for each
condition variable.

3. Coordinates S’s and
W’s of a specific condition.

4. Number of W’s waiting
on the same condition '
for S’s to unblock them.

if (nextCount>0) signal (next);
else signal (mutex);
-] A
N COndlthn - 5. Enable other processes to run within monitor.
If an S had to wait after signalling, then unblock it.
9 Handles @ wait () { Otherwise, let anybody enter monitor.
successive " cCount=0; ¢
wait ()s. if (nextCount>0) signal (next);
W else signal (mutex);
7. W’s get :
_> .
stuck here walt (cSem);

cCount——; }

|

6. Must enable others to
enter monitor or nobody
will be able to signal us!

signal () {

if

/

(cCount>0) {
nextCount++;

signal (cSem) ;

walt (next) ;

8. S unblocks a W and lets W run
while S blocks until W leaves

nextCount—-—; } }

Correct Monitor Use

®m Conditional-wait construct:
X.walt (c)
= Value of c is a priority number, stored with the name of the process
that is suspended.

= When x.signal () is executed, process with smallest priority
number is resumed next.

m Resource allocator:
monitor ResourceAllocation {

boolean busy=false;

condition Xx;

void acquire () {
if (busy) x.wait (System.currentTimeMillis());
busy=true; }

void release () {
busy=false;
Xx.signal(); } }

m Correctness of allocation technique requires:
= Users must always call acquire () once, then release () once.
= User should not access resource direcily.

Java synchronized

m Each object instance has a “monitor”:
= It is combination of general monitor + a single condition variable.
= Classes are objects (Class class). So each class has a monitor, too.

= Ownership of instance monitor: <«

Same - synchonized void f£() { /* owned */ } Different monitors.

monitor. -l void f () { synchronized (this) { /* owned */ } }
= Ownership of class monitor: <«

Same | static synchonized void f£() { /* owned */ }

monitor. =l void f() { synchronized (this.getClass()) {/* owned */ } }
= @General signal () isJava’s notify (). notifyAll () is a Java extension.
= To call general condition variable methods wait (), signal (), we must

be inside general monitor. In Java, to execute wait (), notify (),
notifyAll (), one must “own” the monitor.

m Avoids problem of entering critical section and forgetting to tell other
threads we left it: syntax enforces this if-enter-must-leave requirement.
B Also solves volatile problem : make incr (), print ()

synchronized. Java forced to sync up master copies on monitor
lock/unlock, and mutex is enforced.

Java synchronized (Cont.)

B Common mistake:

mWaiting=false;

synchronized boolean waitIfFirst () throws InterruptedException {
if (mWaiting) return false; // Somebody else is already waiting.
mWaiting=true;
synchronized (mEvent) { mEvent.wait(); }
mWaiting=false;
return true; } // Wait took place.

= Intent: the first thread that calls waitIfFirst () must wait for an
event; all others should just return without waiting. Method
synchronized protects mwWwaiting.

= Problem: when one thread starts waiting, it waits on mEvent’s
monitor, not that of this so it still has the monitor of this. Hence all
other threads block when they call waitIfFirst ().

m Even in Java, multi-threading is tough:
= Semaphore implementation is 60 lines of pure, hard-to-follow code.

= Wrote 8000-line package to make it easier for average Stanford
student. And, yes, first revision had bugs.

Critical Regions

Another high-level synchronization construct.
A shared variable v of type T, is declared as:
v: shared T

Variable v appears only inside statements of the form:

region v when B, S.;
where S, is any other statement and B, is a boolean expression.
While expression B, or statement s, are being executed, no other
process can enter B, or S, to access variable v; in fact, it may not

enter any such B, or S, protected by a region v. So code blocks
referring to the same variable v exclude each other in time.

When a process tries to execute the region statement, it first
blocks until it gains exclusive access to v, and then evalutes B.:

= |f B, is true, statement s, is executed, and then exclusive access is
relinquished.

= If it is false, the process is blocked but it first reliquishes exclusive
access; the process is also re-granted exclusive access to retest B.
whenever another process successfully executes any s. (because its
execution may have modified the value of v and therefore B.).

Bounded Buffer Example
B Shared data:

#define B_SIZE 5
char buffer[B_SIZE];

count: shared int =0;

m Producer:
int in=0;
while (1) {
/* produce an item in char nextProduced */
region count when (count<B_SIZE) {
buffer[in]=nextProduced;
in=(in+1) %B_SIZE;

count++; }

B Consumer:

int out=0;
while (1) {
region count when (count>0) {
nextConsumed=buffer[out];
out=(out+1) 3B_SIZE;
count——; }

/* consume the item in char nextConsumed */ }

ONONG)

OO O

O O

Implementation Critical Region

walt (mutex) ;
while (!B) {
firstCount++;

if (secondCount>0) signal (secondDelay) ;

else signal (mutex);
wait (firstDelay) ;
firstCount——;
secondCount++;

O Lines relevant as long as B s true.

o Extra lines relevant as long as a
single process finds B false.

Remaining lines become relevant

else signal (secondDelay) ;

walt (secondbelay) ;
secondCount——; }
S;

B false, and they all have to retest
B one at a time.

if (firstCount>0) signal (firstDelay);

else if (secondCount>0)
else signal (mutex);

signal (secondDelay) ;

Implementation (Cont.)

m |f a single process P evalutes B to false, it receives ownership
(responsibility to signal) of mutex because the first process to finish
S unblocked P instead of signalling mutex. mutex blocks other
processes from evaluating B until P has had a chance to do so.

m |n general:
1. All processes that evaluate B to false block at firstDelay.

2. A process that evaluates B to true runs s and eventually unblocks
another process P that was waiting on firstDelay.

3. P starts a cascade, letting all other processes waiting on firstDelay
to go through. All these processes, P included, then block on
secondDelay. But the last process through firstbelay signals Q,

which is one of those blocked processes. Q can now move past
secondDelay.

4. Q evaluates B again. If B is true, Q runs s and eventually signals
another process to move past secondbDelay. If B is false, Q goes
around the loop and blocks at £irstDelay again; but in doing so, it
signals another process to move past secondbelay. And so on until
either every process is blocked at firstDelay again (step 1) or one
process evaluates B to true, runs s, and concludes by unblocking one
of the processes waiting on firstDelay (step 2).

Implementation (Cont.)

Mutually exclusive access to the critical section is
provided by mutex.

If a process cannot enter the critical section because the
B is false, it initially waits on the firstDelay
semaphore; moved to the secondbDelay semaphore
before it is allowed to reevaluate B.

Keep track of the number of processes waiting on
firstDelay and secondDelay, With firstCount

and secondCount respectively.

