
Announcements

� Assignment 3 online: when should it be due?
� Monday, March 29.

� Changed earlier today (new clarifications), so re-
download.

� Java tips:
� catch (Exception ex) {} is a very bad idea.
� Close all streams you open.
� Thread termination and JVM.
� instanceof.
� Shifting and bit operations.



Chapter 7:  Process Synchronization

� Background.
� The Critical-Section Problem.
� Synchronization Hardware.
� Semaphores.
� Classical Problems of Synchronization.
� Monitors.
� Java Monitors.
� Critical Regions.



Background

� Concurrent access to shared data may result in data 
inconsistency.

� Maintaining data consistency requires mechanisms to 
ensure the orderly execution of cooperating processes.

� Shared-memory solution to bounded-butter problem in 
book allows at most n – 1 items in buffer at the same 
time.

� Our solution for n items was correct but needed two 
counters pcount and ccount.  Can we use just one 
counter?



Bounded Buffer 
� Shared data:

#define B_SIZE 5

char buffer[B_SIZE];

int count=0;

� Producer:
int in=0;

while (1) {

/* produce an item in char nextProduced */

while (count==B_SIZE)

/* wait while buffer full */;

buffer[in]=nextProduced;

in=(in+1)%B_SIZE; count++; }

� Consumer:
int out=0;

while (1) {

while (count==0)

/* wait while buffer empty */;

nextConsumed=buffer[out];

out=(out+1)%B_SIZE; count--;

/* consume the item in char nextConsumed */ }



Bounded Buffer (Cont.)
� The statements

count++;
count--;

must be performed atomically, meaning that the process cannot 
be interrupted partway through their execution.

� But they may not be atomic on some CPUs:

� count++ may be implemented as:

register1=count LOAD R1,@count

register1=register1+1 INC R1

count=register1 STORE @count,R1

� count-- may be implemented as:

register2=count LOAD R2,@count

register2=register2-1 DEC R2

count=register2 STORE @count,R2



Bounded Buffer (Cont.)
� If both the producer and consumer attempt to update the buffer 

concurrently, the CPU instructions may get interleaved.
� Interleaving depends upon how the producer and consumer 

processes are scheduled.
� Assume count is initially 5. One interleaving of statements is:

producer: register1=count (register1 =5)
producer: register1=register1+1 (register1 =6)
consumer: register2=count (register2 =5)
consumer: register2=register2–1 (register2 =4)
producer: count=register1 (count =6)
consumer: count=register2 (count =4)

� The value of count may be 4 (or 6 if you swap the last two 
lines), where the correct result should be 5.



Race Condition

� Race condition: The situation where several processes 
access and manipulate shared data concurrently. The final 
value of the shared data depends upon which process 
finishes last.

� To prevent race conditions, concurrent processes must be 
synchronized.

� Extremely hard to write correct multi-threaded code:
� Must think of all possible combinations in execution paths.
� Or come up with formal proof of correctness (see textbook).
� Or run a lot of tests hoping a bug will show up (nondeterminism).
� Only experience helps.
� Hence such a skill is highly valued by employers.



Java volatile
� Shared variables not always kept in sync:

class Test {

static int i=0, j=0;

static void incr() { i++; j++; }

static void print() { System.out.println(“i:”+i+” j:”+j); } }

� Thread T0 calls incr() repeatedly.
� Thread T1 calls print() repeatedly.
� Assume T0, T1 scheduled as if incr(), print() had been mutually 

exclusive.
� Output may read i:1 j:2 because threads can keep local copies of 

shared variables and sync up the master copies at will (almost...). So j
can be updated before i by T0.

� volatile declaration: update shared variables in the same order the 
local copies were updated:
static volatile int i=0, j=0;

� Details: Java Language Specification 8.3.1.4, 17.



The Critical-Section Problem

� Two or more processes all competing to use some 
shared data.

� Each process has a code segment, called critical section, 
in which the shared data is accessed.

� Problem: ensure that when one process is executing in its 
critical section, no other process is allowed to execute in 
its critical section.



Solution Requirements

1. Mutual Exclusion:  if process Pi is executing in its critical 
section, then no other processes can be executing in their 
critical sections.

2. Progress:  if no process is executing in its critical section and 
there exist some processes that wish to enter their critical 
section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely.

3. Bounded Waiting/No Starvation:  a bound must exist on the 
number of times that other processes may enter their critical 
sections after a process has made a request to enter its 
critical section and before that request is granted:
� Assume that each process executes at a nonzero speed.
� No assumption concerning relative speed of the processes.

Only one dog can eat the bone at a time.

If no dog is eating and many are hungry, a hungry one should get the bone.

If there are many hungry dogs, they all get to eat eventually.



Initial Attempts to Solve Problem

� Only 2  processes, P0 and P1.
� Processes may share some common variables to 

synchronize their actions.
� General structure of every process Pi:

while (1) {

/* entry section */
/* critical section */

/* exit section */

/* remainder section */ }

� We’ll refer to the other process as Pj (j=1-i).



Algorithm 1

� Shared variables: 
� int turn=0;

� turn==i� Pi can enter its critical section.

� Process Pi:

while (1) {

while (turn!=i) /* do nothing */;

/* critical section */

turn=1-i;

/* remainder section */ }

� Satisfies mutual exclusion, but not progress: if Po is fast 
and wants to go again, it cannot even if P1 is just 
spending a long time its is remainder section.



Algorithm 2

� Shared variables: 
� boolean flag[2]; flag[0]=flag[1]=false;

� flag[i]==true� Pi wants to enter its critical section.

� Process Pi:

while (1) {

flag[i]=true;

while (flag[1-i]);

/* critical section */

flag[i]=false;

/* remainder section */ }

� Satisfies mutual exclusion, but not progress; if both execute 
flag[i]=true before either starts waiting in their while
loops, then neither ever moves forward! Processes are too 
polite: “No, you go first.”



Algorithm 3

� Combined shared variables of algorithms 1 and 2.
� Process Pi:

while (1) {

flag[i]=true;

turn=1-i;

while (flag[1-i] && turn==1-i);

/* critical section */

flag[i]=false;

/* remainder section */ }

� Meets all three requirements; solves the critical-section 
problem for two processes.



Bakery Algorithm 
� Critical section for n processes.
� Shared variables: 

� boolean c[n]; /* All false. */

� int t[n]; /* All 0s. */

� Process Pi:
while (1) {

c[i]=true;

t[i]=1+max(t[0],...,t[n-1]);

c[i]=false;

for (j=0;j<n;j++) {
while (c[j]);
while (t[j]!=0 && (t[j],j)<(t[i],i)); }

/* critical section */

t[i]=0;

/* remainder section */ }

t[j]<t[i] || (t[j]==t[i] && j<i)

Obtain ticket number; will get
no smaller than another process
but might get the same.

i waits for j to go through if j has smaller
ticket number; or if same ticket, and j<i.

Choosing a
ticket number.

Done
choosing.

Wait for i
to choose.

j wants to enter (or already is
inside) its critical section, and
so it has nonzero ticket.



Bakery Algorithm (Cont.)
� Why doesn’t this work? (Eliminated c[]).

while (1) {

t[i]=1+max(t[0],...,t[n-1]);

for (j=0;j<n;j++) {
while (t[j]!=0 && (t[j],j)<(t[i],i)); }

/* critical section */

t[i]=0;

/* remainder section */ }

� Answer:
� P0 reads t[0], t[1].
� P1 reads t[0], t[1].
� P1 writes t[1]=1.
� P1 enters critical section because

� t[0]!=0 is false (first for-loop iteration), and
� (t[1],1)<(t[1],1) is false (second for-loop iteration).

� P0 writes t[0]=1.
� P0 enters critical section because

� (t[0],0)<(t[0],0) is false (first for-loop iteration), and
� (t[1],1)<(t[0],0) is false (second for-loop iteration).



Bakery Algorithm (Cont.) 
� Why doesn’t this work? (Replaced while with if and while.)

while (1) {

c[i]=true;

t[i]=1+max(t[0],...,t[n-1]);

c[i]=false;

for (j=0;j<n;j++) {
while (c[j]);
if (t[j]!=0 && (t[j],j)<(t[i],i))

while(t[j]!=0); }
/* critical section */

t[i]=0;

/* remainder section */ }

� Intent: P1 realizes that it has a lower ticket than P0 (if) and waits 
while P0 remains in its critical section.

� Answer: P0 can finish, go back, and get a higher ticket number. 
Now P0 is stuck and so is P1 who still thinks that P0‘s nonzero ticket 
number implies P0 is in its critical section.



Synchronization Hardware

� Test and modify the content of a word atomically (i.e. 
without CPU ever preempting process in the middle).

� How? Disable interrupts or use special hardware.
boolean testAndSet(boolean *target) {

boolean result=*target;

*target=true;

return result; }

� Shared data: 
boolean lock=false;

� Process Pi :
while (1) {

while (testAndSet(&lock));

/* critical section */

lock=false;

/* remainder section */ }

Bounded wait
not satisfied!

If lock is true then nobody is
in the critical section and this process
can go ahead. Atomically set lock to
prevent two processes from seeing
false at the same time.



Synchronization Hardware (Cont.)
� Atomically swap two variables.

void swap(boolean *a, boolean *b) {

boolean temp=*a; *a=*b; *b=temp; }

� Shared data: 

boolean lock=false;

� Process Pi :

while (1) {

boolean key=true;

while (key)

swap(&lock,&key);

/* critical section */

lock=false;

/* remainder section */ }

Bounded wait
not satisfied!

key acts like return value of testAndSet()
as well as the true constant in its body.



Synchronization Hardware (Cont.)

� Starvation fix: shared data: 
boolean waiting[n]; /* All false. */

boolean lock=false;

� Process Pi :

while (1) {

waiting[i]=true;

boolean key=true;

while (waiting[i] && key) key=testAndSet(&lock);

waiting[i]=false; 

/* critical section */

j=(i+1)%n;

while ((j!=i) && !waiting[j])) j=(j+1)%n;

if (j=!i) waiting[j]=false;

else lock=false;

/* remainder section */ }

Find first waiting process
after Pi in circular
order (if any).

If one is found, unblock it and give it the
responsibility of unlocking (give it the key).

Wait until either lock is
available or some other process
who held the lock passes it on to Pi
by setting its waiting[i] to false.

Otherwise, nobody has been
waiting, so release the lock for
whoever tries to enter next.



Semaphores
� Semaphore S: an integer variable that can only be accessed via 

two partially indivisible operations. Shown as Java pseudo-class:
class Semaphore {

int mS=1;

wait() { 

while (mS<=0); 

mS--; }

signal() {

mS++; } }

� Shared data: Semaphore S;

� Process Pi :
while (1) {

S.wait();

/* critical section */

S.signal();

/* remainder section */ }

Busy-waiting (a.k.a. spin-lock).
Useful for short waits in multiple
CPU systems (no context-switch).
Wasteful in single CPU systems.

Bounded wait
not satisfied!

Can’t modify
at the same
time.

Once one process
is done waiting, it alone
can proceed to finish.

Other values
useful too.



Semaphore Implementation

� Assume two OS system calls:
� block() suspends the thread that invokes it.
� wakeup(T) resumes the execution of a blocked thread T.

� Definition without busy-waiting:
class Semaphore {

int mS=1;

LinkedList mL=new LinkedList();

synchronized wait() { 

mS--;

if (mS<0) then {

mL.addLast(Thread.currentThread());

block(); } 

synchronized signal() {

mS++;

if (mS<=0)

wakeup(mL.removeFirst()); } }

Calling thread goes off the
CPU and into waiting (not ready)
queue. No busy-waiting.
Assume block() releases
Java monitor.

Queue of blocked processes.
Usually FIFO to prevent starvation.
But can be priority queue too.



Semaphore as a General Synchronization Tool

� Execute B in Pj only after A executed in Pi .
� Use semaphore flag initialized to 0.
� Code:

Pi Pj

� �

A wait(flag)

signal(flag) B



Deadlock and Starvation

� Deadlock: two or more processes are waiting indefinitely for an 
event that can be caused by only one of the waiting processes.

� Let S and Q be two semaphores initialized to 1.

P0 P1
wait(S) wait(Q)

wait(Q) wait(S)

� �

signal(S) signal(Q)

signal(Q) signal(S)

� Starvation: indefinite blocking.  A process may never be removed 
from the semaphore queue in which it is suspended.



Two Types of Semaphores

� Counting semaphore: integer value can range over an 
unrestricted domain.

� Binary semaphore: integer value can be at most 1 
(only 0 or 1 in first, busy-waiting definition); can be 
simpler to implement on some CPUs (hardware 
constraint).

� Can implement a counting semaphore using binary 
semaphores.



Implementing a Counting Semaphore

� Data structures:
binary-semaphore S1=1, S2=0;

int C= /* Initial value of counting semaphore. */ ;

� Operations:
wait() {

wait(S1);

C--;

if (C<0) {

signal(S1);

wait(S2); }

signal(S1); }

signal() {

wait(S1);

C++;

if (C<=0) signal(S2);

else signal(S1); }

• S1 protects C from concurrent 
modification.
• S2 blocks process that calls 
wait() with C<=0.

Must signal S1 before waiting
on S2, otherwise nobody can pass
through wait(S1) to signal(S2).

If we signal S2 instead of S1,
then this is because another process
is waiting on S2. That process will
take care of signalling S1 here:
Intuitively, we pass on the key because
we know somebody else is about to unlock.



Classical Problems of Synchronization

� Bounded-Buffer Problem.

� Readers and Writers Problem.

� Dining-Philosophers Problem.



Bounded-Buffer Problem

� Shared data:
semaphore full=0, empty=n, mutex=1;

� Producer:
int in=0;

while (1) {

/* produce an item in char nextProduced */

wait(empty);

wait(mutex);

buffer[in]=nextProduced; in=(in+1)%B_SIZE; 

signal(mutex);

signal(full); }

� Consumer:
int out=0;

while (1) {

wait(full);

wait(mutex);

nextConsumed=buffer[out]; out=(out+1)%B_SIZE; 

signal(mutex);

signal(empty);

/* consume the item in char nextConsumed */ }

Binary semaphore: only needed if buffer
access is more complex
than array access (e.g.
shared linked list).

Counting semaphores



Readers-Writers Problem

� Shared data:
semaphore mutex=1, writer=1;

int readCount=0;

� Writer: single one accessing shared file for output.
while (1) {

wait(writer);

/* perform writing */

signal(writer); }

� Reader: one or more can have shared read access to file.
while (1) {

wait(mutex);

readCount++;

if (readCount==1) wait(writer);

signal(mutex);

/* perform reading */

wait(mutex);

readCount--;

if (readCount==0) signal(writer);

signal(mutex); }

Protects readCount. Authorizes writer (if any; first
reader otherwise) to proceed.

First reader locks
out the writer by
taking over writer.
Other readers stuck here:
since first reader hasn’t
release mutex.

Last reader
unlocks writer.

Writer may
starve!



Dining-Philosophers Problem 

� Shared data:
semaphore chopstick[5]; /* All 1. */

� Philosopher i:
while (1) {

wait(chopstick[i]);

wait(chopstick[(i+1)%5]);

/* eat */

signal(chopstick[i]);

signal(chopstick[(i+1)%5]);

/* think */ }

Deadlock if each
philosopher gets one

chopstick!



Monitors
� Related, but not the same as Java monitors. Forget Java for now.
� High-level synchronization construct: at most one thread/process can 

be actively running any procedure within monitor. Rest are queued up.

monitor monitor-name

{

/* shared variables */

procedure body P1 (...) { ... }

procedure body Pn (...) { ... }

{ /* initialization code */ }

}



Monitor condition

� To allow a process to suspend 
itself while executing in the 
monitor, a condition variable 
must be declared, as

condition x;

� Condition variable operations:
� wait(): if process P calls 
x.wait(), P is suspended 
until another process Q... 

� signal(): ... runs 
x.signal() which 
resumes exactly one 
suspended process, if any; 
it is a no-op, otherwise.

� When P is suspended, other 
procedures can run insides 
monitor (like Q)...

� ... but when Q signals P, who 
goes next (remember: only one 
process can run inside monitor)? 
No right/wrong answer.



Dining Philosophers Example
monitor dp {

enum {thinking, hungry, eating} state[5];

condition self[5];

// also methods below

void init() {

for (int i=0;i<5;i++)

state[i]=thinking; } }

private void test(int i) {
if ((state[(i+4)%5]!=eating) &&

(state[i]==hungry) &&
(state[(i+1)%5]!=eating)) {

state[i]=eating;
self[i].signal(); } }

void putdown(int i) {
state[i]=thinking;
test((i+4)%5);
test((i+1)%5); }

void pickup(int i) {
state[i]=hungry;
test(i);
if (state[i]!=eating)
self[i].wait(); }

If i’s neighbors aren’t
eating, and i wants
to eat, then i can
use their chopsticks.

i is done eating. Does
either neighbor of i want
to use the chopsticks she
just finished using?

Deadlock impossible!
Starvation possible!

Test whether philosopher
i can start eating.

Philosopher i got hungry
but couldn’t get both chopsticks
at once, so she has to wait
until another philospher lets
her have her chopsticks.

Usage: Philosopher i:
while (1) {
pickup(i);
/* eat */
putdown(i);
/* think */ }



Monitor Implementation with Semaphores

� Shared data:
semaphore mutex=1, next=0, cSem=0;

int nextCount=0, cCount=0;

� External procedure proxy:
wait(mutex);

/* call procedure */

if (nextCount>0) signal(next);

else signal(mutex);

� Condition:

wait() {

cCount=0;

if (nextCount>0) signal(next);

else signal(mutex);

wait(cSem);

cCount--; }

signal() {

if (cCount>0) {

nextCount++;

signal(cSem);

wait(next);

nextCount--; } }

A pair for each
condition variable.

5. Enable other processes to run within monitor.
If an S had to wait after signalling, then unblock it.
Otherwise, let anybody enter monitor.

Only one process
runs inside monitor.

1. Process S signals W. S has to wait while
W unblocks, and until it leaves monitor.

2. Number of S’s that are
waiting on W’s.

3. Coordinates S’s and
W’s of a specific condition.

4. Number of W’s waiting
on the same condition
for S’s to unblock them.

6. Must enable others to
enter monitor or nobody
will be able to signal us!

8. S unblocks a W and lets W run
while S blocks until W leaves

7. W’s get
stuck here

9. Handles 
successive 
wait()s. 



Correct Monitor Use
� Conditional-wait construct:

x.wait(c)

� Value of c is a priority number, stored with the name of the process 
that is suspended.

� When x.signal() is executed, process with smallest priority 
number is resumed next.

� Resource allocator:
monitor ResourceAllocation {

boolean busy=false;

condition x;

void acquire() {

if (busy) x.wait(System.currentTimeMillis());

busy=true; }

void release() {

busy=false;

x.signal(); } }

� Correctness of allocation technique requires: 
� Users must always call acquire() once, then release() once.
� User should not access resource directly.



Java synchronized
� Each object instance has a “monitor”:

� It is combination of general monitor + a single condition variable.
� Classes are objects (Class class). So each class has a monitor, too.
� Ownership of instance monitor:

� synchonized void f() { /* owned */ }

� void f() { synchronized (this) { /* owned */ } }

� Ownership of class monitor:
� static synchonized void f() { /* owned */ }

� void f() { synchronized (this.getClass()) {/* owned */ } }

� General signal() is Java’s notify(). notifyAll() is a Java extension.
� To call general condition variable methods wait(), signal(), we must 

be inside general monitor. In Java, to execute wait(), notify(), 
notifyAll(), one must “own” the monitor.

� Avoids problem of entering critical section and forgetting to tell other 
threads we left it: syntax enforces this if-enter-must-leave requirement.

� Also solves volatile problem : make incr(), print()
synchronized. Java forced to sync up master copies on monitor 
lock/unlock, and mutex is enforced.

Same
monitor.

Same
monitor.

Different monitors.



Java synchronized (Cont.)
� Common mistake:

mWaiting=false;

... 

synchronized boolean waitIfFirst() throws InterruptedException {

if (mWaiting) return false; // Somebody else is already waiting.

mWaiting=true;

synchronized (mEvent) { mEvent.wait(); }

mWaiting=false;

return true; } // Wait took place.

� Intent: the first thread that calls waitIfFirst() must wait for an 
event; all others should just return without waiting. Method 
synchronized protects mWaiting.

� Problem: when one thread starts waiting, it waits on mEvent’s
monitor, not that of this so it still has the monitor of this. Hence all 
other threads block when they call waitIfFirst().

� Even in Java, multi-threading is tough:
� Semaphore implementation is 60 lines of pure, hard-to-follow code.
� Wrote 8000-line package to make it easier for average Stanford 

student. And, yes, first revision had bugs.



Critical Regions
� Another high-level synchronization construct.
� A shared variable v of type T, is declared as:

v: shared T

� Variable v appears only inside statements of the form:
region v when Bi Si;

where Si is any other statement and  Bi is a boolean expression.
� While expression Bi or statement Si are being executed, no other 

process can enter Bi or Si to access variable v; in fact, it may not 
enter any such Bj or Sj protected by a region v. So code blocks 
referring to the same variable v exclude each other in time.

� When a process tries to execute the region statement, it first 
blocks until it gains exclusive access to v, and then evalutes Bi:
� If Bi is true, statement Si is executed, and then exclusive access is 

relinquished.
� If it is false, the process is blocked but it first reliquishes exclusive 

access; the process is also re-granted exclusive access to retest Bi

whenever another process successfully executes any Sj (because its 
execution may have modified the value of v and therefore Bi).



Bounded Buffer Example
� Shared data:

#define B_SIZE 5

char buffer[B_SIZE];

count: shared int =0;

� Producer:
int in=0;

while (1) {

/* produce an item in char nextProduced */

region count when (count<B_SIZE) {

buffer[in]=nextProduced;

in=(in+1)%B_SIZE;

count++; }

� Consumer:
int out=0;

while (1) {

region count when (count>0) {

nextConsumed=buffer[out];

out=(out+1)%B_SIZE;

count--; }

/* consume the item in char nextConsumed */ }



Implementation Critical Region

wait(mutex);

while (!B) {

firstCount++;

if (secondCount>0) signal(secondDelay);

else signal(mutex);

wait(firstDelay);

firstCount--;

secondCount++;

if (firstCount>0) signal(firstDelay);

else signal(secondDelay);

wait(secondDelay);

secondCount--; }

S;

if (firstCount>0) signal(firstDelay);

else if (secondCount>0) signal(secondDelay);

else signal(mutex);

Lines relevant as long as B is true.

Extra lines relevant as long as a
single process finds B false.

Remaining lines become relevant
when more than one process finds
B false, and they all have to retest
B one at a time.



Implementation (Cont.)
� If a single process P evalutes B to false, it receives ownership 

(responsibility to signal) of mutex because the first process to finish 
S unblocked P instead of signalling mutex. mutex blocks other 
processes from evaluating B until P has had a chance to do so.

� In general:
1. All processes that evaluate B to false block at firstDelay.
2. A process that evaluates B to true runs S and eventually unblocks 

another process P that was waiting on firstDelay.
3. P starts a cascade, letting all other processes waiting on firstDelay

to go through. All these processes, P included, then block on 
secondDelay. But the last process through firstDelay signals Q, 
which is one of those blocked processes. Q can now move past 
secondDelay.

4. Q evaluates B again. If B is true, Q runs S and eventually signals 
another process to move past secondDelay. If B is false, Q goes 
around the loop and blocks at firstDelay again; but in doing so, it 
signals another process to move past secondDelay. And so on until 
either every process is blocked at firstDelay again (step 1) or one 
process evaluates B to true, runs S, and concludes by unblocking one 
of the processes waiting on firstDelay (step 2).



Implementation (Cont.)

� Mutually exclusive access to the critical section is 
provided by mutex.

� If a process cannot enter the critical section because the 
B is false, it initially waits on the firstDelay
semaphore; moved to the secondDelay semaphore 
before it is allowed to reevaluate B.

� Keep track of the number of processes waiting on 
firstDelay and secondDelay, with firstCount
and secondCount respectively.


