
Chapter 14: Mass-Storage Systems

� Disk Structure.
� Disk Scheduling.
� RAID.

Disk Structure

� Disk drives are addressed as large 1-dimensional arrays
of logical blocks, where the logical block is the smallest
unit of transfer.

� The 1-dimensional array of logical blocks is mapped into
the sectors of the disk sequentially.
� Sector 0 is the first sector of the first track on the outermost

cylinder.
� Mapping proceeds in order through that track, then the rest

of the tracks in that cylinder, and then through the rest of the
cylinders from outermost to innermost.

Disk Structure (Cont.)

0

1

10

50

500

550

Disk Drive Management

� Disk drive management goal: fast access time and high
disk bandwidth.

� Major components of access time:
� Seek time is the time for the disk motors to move the heads

to the cylinder containing the desired sector.
� Rotational latency is the additional time waiting for the disk

to rotate the desired sector under the disk head.
� Seek time far larger than rotational latency.
� Seek time proportional to seek distance.
� Disk scheduling minimizes seek time.

� Disk bandwidth: the total number of bytes transferred,
divided by the total time between the first request for
service and the completion of the last transfer.
� Better seek time per request improves bandwidth.
� Beyond this, parallelism improves bandwidth.

Disk Scheduling
� How should we schedule the servicing of disk I/O requests?
� Illustrate with queue of disk requests for blocks on listed

cylinders (min cylinder: 0; max: 199):
98, 183, 37, 122, 14, 124, 65, 67

Initially, the disk head is at cylinder 53.
� First come, first served: total head movement is 640 cylinders.

Shortest-Seek-Time-First (SSTF)
� Selects the request with the minimum seek time from the

current head position.
� May cause starvation of some requests.
� In example, total head movement is 236 cylinders.
� Like SJF but not optimal (we use different measure here): if

we go from 53 to 14, and service 65, 67 later, total is 208.

SCAN
� Head starts at one end of the disk, and moves toward the other

end, servicing requests until it gets there. Then, the head starts
moving in the opposite direction and servicing continues.

� Sometimes called the elevator algorithm.
� Easier on the hardware (less wear).
� In example, total head movement is 236 cylinders.

C-SCAN
� Head starts at first end of the disk, and moves toward the

other end, servicing requests until it gets to the other end
of the disk. Then, the head returns to first end, without
servicing requests on the return trip.

� Provides a more uniform wait time than SCAN: if going
right and head is at cylinder 1 when request for cylinder 0
arrives, we’ll travel 399 cylinders before we service it.

� “C” comes from thinking of cylinders as if in circular list.

C-LOOK

� Like C-SCAN, but head only goes as far as the last
request in each direction.

� LOOK is like SCAN: service both ways, but turn if nothing
appears if we look ahead.

Selecting a Disk-Scheduling Algorithm

� Either SSTF (most common) or LOOK is a reasonable
choice for a default system algorithm.

� SCAN and C-SCAN perform better for systems that place
a heavy load on the disk (they are more fair).

� Performance depends on the number and types of
requests. So the disk-scheduling algorithm should be
written as a separate module of the operating system,
allowing it to be replaced with a different algorithm if
necessary, possibly while system is running.

� Requests for disk service can be influenced by the file-
allocation method.

RAID Structure

� RAID: Redundant Array of Inexpensive/Independent
Disks.

� With multiple disks, how can we store our data onto
them? Want to balance:
� Performance: fast I/O.
� Reliability: avoid data loss if (part of) a drive fails.

� Ideal balance depends on system need. Hence many
RAID levels.

� Software RAID (Windows 2000): unusably slow.
� Hardware RAID: <$300 for a 6-drive controller (must pay

extra for memory).
� Assignment 4.

RAID Performance
� Given 3 identical disks, each with 3 blocks, provide abstraction of

single disk with 9 blocks.
� Basic block organization:

� Striped block organization:

� If a file spans blocks 0-2, then the time to read file is
� Basic: 3 x block I/O time.
� Striped: block I/O time since all disks do I/O simultaneously.

Block 0

Block 1

Block 3

Block 4

Disk 0 Disk 1

Block 6

Block 7

Disk 2

Block 2 Block 5 Block 8

Block 0

Block 3

Block 1

Block 4

Disk 0 Disk 1

Block 2

Block 5

Disk 2

Block 6 Block 7 Block 8

Stripe 0

Stripe 1

Stripe 2

RAID Reliability

� Mirroring or shadowing: keep a duplicate of each block
somewhere else. Simplest is to copy each disk onto another.

� Parity: steal one block from each stripe. Store XOR (^) sum
of all other stripe blocks in it.

Block 0

Block 2

Block 1

Block 3

Disk 0 Disk 1

Stripe 0

Stripe1

Disk 2:
Parities

Block 4 Block 5 Stripe 2

A B P=A^B P^A=B! P^B=A!
0 0 0 0 0
0 1 1 1 0
1 0 1 0 1
1 1 0 1 1

Hence if Disk 1 (B) fails, I can rebuild its blocks from
Disks 0 (A) and 2 (P). Similarly for Disk 2 failing.

RAID Reliability (Cont.)

� Parity updates:
� If Block 0 changes (A becomes A’), how do I update parity?

� Slow: P’ = A’ ^ B ^ C ^ D...
� Fast: P’ = A’ ^ B ^ C ^ D...

= A’ ^ (A ^ A) ^ B ^ C ^ D...
= A’ ^ A ^ P.

� So parity disk participates in every write! To reduce
overuse and premature failure, distribute parity:

Read-modify-write:
2 reads, 2 writes

Parity 0

Block 2

Block 0

Parity 1

Disk 0 Disk 1

Block 1

Block 3

Disk 2

Block 4 Block 5 Parity 2

Controller needs on-board memory to
perform this computation.

RAID Levels
Striping only.

For each primary disk, a secondary
disk is an exact copy of it (mirror).
No striping.

Striping and parity. Parity on one
disk.

Replace parity with memory style
error-correcting codes: rarely used.

Parity with striping of bits, not blocks:
rarely used.

Striping and parity. Distributed
parity.

Striping and parity-like Reed-
Solomon codes: protect against
multiple disk failures. Uncommon.

RAID Levels (Cont.)

0+1: a stripe is mirrored, but
individual disks may be
different, e.g.

Block 0

Block 5

Block 1

Block 4

Disk 0A Disk 1A
Block 2

Block 3

Disk 2A

Block 6 Block 7 Block 8

Block 0

Block 3

Block 1

Block 4

Disk 0B Disk 1B
Block 2

Block 5

Disk 2B

Block 6 Block 7 Block 8

0A is not duplicate of 0B. If 0A
fails, 0B cannot take its place:
1A, 2A become useless and no
longer enhance RAID reliability.

