Chapter 14: Mass-Storage Systems

m Disk Structure.
m Disk Scheduling.
m RAID.

Disk Structure

m Disk drives are addressed as large 1-dimensional arrays
of logical blocks, where the logical block is the smallest
unit of transfer.

m The 1-dimensional array of logical blocks is mapped into
the sectors of the disk sequentially.
= Sector 0 is the first sector of the first track on the outermost
cylinder.

= Mapping proceeds in order through that track, then the rest
of the tracks in that cylinder, and then through the rest of the
cylinders from outermost to innermost.

Disk Structure (Cont.)

track ¢ «— spindle

— arm assembly

cylinder ¢ —»1 read-write
I
head
50

platter

—

rotation

Disk Drive Management

B Disk drive management goal: fast access time and high
disk bandwidth.
m Major components of access time:

= Seek time is the time for the disk motors to move the heads
to the cylinder containing the desired sector.

Rotational latency is the additional time waiting for the disk
to rotate the desired sector under the disk head.

= Seek time far larger than rotational latency.
Seek time proportional to seek distance.
= Disk scheduling minimizes seek time.
m Disk bandwidth: the total number of bytes transferred,

divided by the total time between the first request for
service and the completion of the last transfer.

~ Better seek time per request improves bandwidth.
= Beyond this, parallelism improves bandwidth.

@

Disk Scheduling

How should we schedule the servicing of disk 1/O requests?

lllustrate with queue of disk requests for blocks on listed
cylinders (min cylinder: 0; max: 199):
98, 183, 37, 122, 14, 124, 65, 67
Initially, the disk head is at cylinder 33.
First come, first served: total head movement is 640 cylinders.

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

37 536567 98 122124 183 199
Ll I

—

Shortest-Seek-Time-First (SSTF)

Selects the request with the minimum seek time from the
current head position.

May cause starvation of some requests.
In example, total head movement is 236 cylinders.

Like SJF but not optimal (we use different measure here): if
we go from 53 to 14, and service 65, 67 later, total is 208.

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

37 536567 98 122124 183 199
I 1l I 1l

SCAN

Head starts at one end of the disk, and moves toward the other
end, servicing requests until it gets there. Then, the head starts
moving in the opposite direction and servicing continues.

Sometimes called the elevator algorithm.
Easier on the hardware (less wear).
In example, total head movement is 236 cylinders.

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

37 536567 98 122124
| L 11 | LI

C-SCAN

m Head starts at first end of the disk, and moves toward the
other end, servicing requests until it gets to the other end
of the disk. Then, the head returns to first end, without
servicing requests on the return trip.

m Provides a more uniform wait time than SCAN: if going
right and head is at cylinder 1 when request for cylinder 0
arrives, we’'ll travel 399 cylinders before we service it.

m “C” comes from thinking of cylinders as if in circular list.

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

37 536567 98 122124
L1l | LI

C-LOOK

m Like C-SCAN, but head only goes as far as the last
request in each direction.
m LOOK s like SCAN: service both ways, but turn if nothing
appears if we look ahead.
queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

37 536567 98 122124 183 199

N

Selecting a Disk-Scheduling Algorithm

Either SSTF (most common) or LOOK is a reasonable
choice for a default system algorithm.

SCAN and C-SCAN perform better for systems that place
a heavy load on the disk (they are more fair).

Performance depends on the number and types of
requests. So the disk-scheduling algorithm should be
written as a separate module of the operating system,
allowing it to be replaced with a different algorithm if
necessary, possibly while system is running.

Requests for disk service can be influenced by the file-
allocation method.

RAID Structure

RAID: Redundant Array of Inexpensive/Independent
Disks.

With multiple disks, how can we store our data onto
them? Want to balance:

= Performance: fast /0.
= Reliability: avoid data loss if (part of) a drive fails.

|deal balance depends on system need. Hence many
RAID levels.

Software RAID (Windows 2000): unusably slow.

Hardware RAID: <$300 for a 6-drive controller (must pay
extra for memory).

Assignment 4.

RAID Performance

m Given 3 identical disks, each with 3 blocks, provide abstraction of
single disk with 9 blocks.

~ Basic block organization:

Disk 0 Disk 1 Disk 2
Block 0 Block 3 Block 6
Block 1 Block 4 Block 7
Block 2 Block 5 Block 8
~ Striped block organization:
Disk O Disk 1 Disk 2
Stripe 0 — | Block 0 Block 1 Block 2
Stripe1 — | Block 3 Block 4 Block 5
Stripe2 — | Block 6 Block 7 Block 8

- If a file spans blocks 0-2, then the time to read file is

=) Basic: 3 x block 1/O time.
- Striped: block 1/O time since all disks do I/O simultaneously.

RAID Reliability

m Mirroring or shadowing: keep a duplicate of each block
somewhere else. Simplest is to copy each disk onto another.

m Farity: steal one block from each stripe. Store XOR (*) sum
of all other stripe blocks in it.

Disk 2:
Disk O Disk 1 Parities
Block 0 Block 1 Stripe 0
Block 2 Block 3 Stripe1
Block 4 Block 5 Stripe 2
A B P=AB P"A=B! PAB=Al
00 0 0 0
0 1 1 1 0
10 1 0 1
11 0 1 1

Hence if Disk 1 (B) fails, | can rebuild its blocks from
Disks 0 (A) and 2 (P). Similarly for Disk 2 failing.

RAID Reliability (Cont.)

m Parity updates:

= |f Block 0 changes (A becomes A’), how do | update parity?
= Slow:P =A’"B~C"D...
9 Fast:PP=A""BACA"D...

_AMNANA)ABACAD...

Read-modify-write:
2 reads, 2 writes

= A’M A NP. <«— Controller needs on-board memory to
perform this computation.

m So parity disk participates in every write! To reduce
overuse and premature failure, distribute parity:

Disk O

Parity O

Disk 1

Block 2

Block 0

Disk 2

Block 4

Parity 1

Block 1

Block 5

Block 3

Parity 2

RAID Levels
8 Ei 8 8 Striping only.

(a) RAID 0: non-redundant striping

For each primary disk, a secondary

G G G 8 disk is an exact copy of it (mirror).

(b) RAID 1: mirrored disks NO Stl’i pl ng)

DU EEE

(c) RAID 2: memory-style error-correcting codes

Replace parity with memory style
error-correcting codes: rarely used.

Parity with striping of bits, not blocks:
rarely used.

w1V

(d) RAID 3: bit-interleaved Parity

Striping and parity. Parity on one
8 8 8 8 E%i disk.

(e) RAID 4: block-interleaved parity

Striping and parity. Distributed

(f) RAID 5: block-Interleaved distributed parity parlty

Striping and parity-like Reed-

(2) RAID 6: P + Q redundancy Solomon codes: protect against
multiple disk failures. Uncommon.

RAID Levels (Cont.)

0+1: a stripe is mirrored, but
individual disks may be
different, e.g.

Disk OA Disk 1A Disk 2A
Block 0 Block 1 Block 2

Block 5 Block 4 Block 3
Block 6 Block 7 Block 8

Disk 0B Disk 1B Disk 2B
Block 0 Block 1 Block 2

Block 3 Block 4 Block 5
Block 6 Block 7 Block 8

OA is not duplicate of 0B. If OA
fails, OB cannot take its place:
1A, 2A become useless and no
longer enhance RAID reliability.

) RAID 1 + 0 with a single disk failure

