
Announcements

� Assignment 3 due.
� Invite friends, co-workers to your presentations.
� Course evaluations on Friday.

Chapter 18: Protection

� Protection Goal.
� Protection Domain.
� Access Matrix.
� Java Protection.

Protection Goal
� Operating system consists of a collection of objects, hardware

and software.
� Each object has a unique name and can be accessed through

a well-defined set of operations.
� Protection goal: ensure that each object is accessed only by

those processes that are allowed to do so, and only in a
prescribed manner.

� Protection not concerned with verifying identity of
� Objects (e.g. whether IP address is real or spoofed) or
� Processes (e.g. whether a process executing on behalf of Bob

was started by Bob, or Sue who broke into Bob’s office).

That is security (next chapter).

Protection Domain
� An access right is a pair consisting of

� An object, e.g. a file.
� A subset of all valid operations that can be performed on the

object, e.g. read, write, execute.

� A domain is a set of access rights.
� A process executes “within” a domain, which limits what

the process can do.

Access Matrix

� View protection as a matrix (access matrix):
� Rows are domains Di.
� Columns are objects (files Fj in the example, and printer).
� Access(i, j) is the set of operations that a process executing

in Di can invoke on Fj.

Process Domain in UNIX
� Each user associated with a domain:

� When user logs in, his/her domain is identified.

� Each user group associated with a domain:
� A user can belong to many groups but only one is current at a time.

� All users also belong to the world domain (others).
� Process domain: process usually started by user in the context

of an interactive user session. Process domain is union of
� World domain (operations anybody can do),
� Session user’s current group domain (users of the group can do),
� Session user domain (only the user can do).

� Many refinements, such as:
� For user to execute privileged operation (e.g. modify the printer’s

spool queue directory) in a safe manner (e.g. when printing a job),
some processes must be executed under supervisor (root) domain.

� Each program file has a user owner (possibly different than user
executing program) and a permission bit called setuid.

� If setuid==0, then process runs as above. If setuid==1, then
process domain is that of user owner, not executing user.

Access Matrix: Add Domains
� Domains can be treated as objects:

� We can now control whether a process can switch domains (e.g.
setuid): switch right.

� A process that runs in a domain can change the full matrix row for
any other domain if it has the control right.

Process
runs in D2

and
changes D4.

Access Matrix: Add Refined Control

Process runs in D2
and copies read

right for F2 into D3.

Processes run in
D1 , D2 and change
rights for F1, F2, F3.

Copy right (*): right to copy a
specific right from one domain onto
another.

Owner right: right to modify all
rights of a specific object.

Access Matrix Usage

� Access matrix design separates mechanism from policy.
� Mechanism:

� OS stores matrix.
� OS defines operations to change matrix.
� OS protects matrix storage and enforces changes only via

prescribed operations.
� OS forces processes to obey matrix.

� Policy:
� User(s) decide what matrix contains, i.e.

� what system objects are protected,
� what domains exist, and
� what rights are assigned to each combination.

Access Matrix Implementation
� Store each column with each object. This is the Access-

control list (ACL) for that object. Example:
Domain 1: Read, Write.
Domain 2: Read.

� Store each row with each domain. This is the Capability List
of the domain. Example:
Object 1: Read.
Object 4: Read, Write, Execute.

� Combination:
� Explicit:

� Process P starts with an empty capability list.
� When P attempts to use object O, we consult ACL.
� Add capability entry in P’s list: (O,<Read,Write>).
� Future access to O consults list only. List is cache.

� Implicit:
� File open() returns file handle to process after ACL check.
� All file operations use this handle.

Access Matrix: Revoking Rights

� Access List: Delete access rights from access list. Simple
and immediate.

� Capability List (alone, or in part): scheme required to
locate capability throughout system before capability can
be revoked.
� Reacquisition: process must reacquire capability at regular

intervals (e.g. re-check ACL in combination system).
� Back-pointers from objects to their capabilities (e.g. from

files to processes that are using them; invalidate file handle
if file ACL changed to prevent further access).

� And others.

Java Protection
� Protection is handled by the Java Virtual Machine (JVM).
� When JVM loads a class, it assigns it a protection domain; all

instances operate within this domain. Each domain is a set of
permissions. Example:

grant codeBase "file:/${java.home}/lib/" {

permission java.io.FilePermission "/home/-", "read" ����

All JDK code can read files from directory /home and its
subdirectories.

� The above snippet is from the Java security policy file.
� Run-time checks: a thread can execute an operation iff

� It is executing a method of a class which has the necessary
permissions, and

� The same applies for the method’s caller, and its caller, all the way
to the bottom of the stack (stack inspection).

� So if unsafe applet calls system code to open file, open() will
fail because applet doesn’t have such permission.

Java Protection: doPrivileged
� What if applet wants to show dialog box? Internally, JDK

must load font file but applet cannot open files. Solution is
void showDialogBox() {

...

AccessController.doPrivileged

(new PrivilegedAction() {

public Object run() {
/* load font */ } })

... }

� Change to run-time checks: we stop stack inspection when
we encounter a privileged block.

� Invoking stack inspection (inside open()):
AccessController.checkPermission

(new FilePermission(name,access));

Either throws (no permission) or returns silently.
� Fully extensible: new permissions, explicit checks, etc.

Java Protection Example

Will fail:because checkPermission will realize applet doesn’t have
required permission.

Will succeed because doPrivileged ends stack inspection,
and until doPrivileged all callers have permission.

