Announcements

B Assignment 3 due.
m Invite friends, co-workers to your presentations.
m Course evaluations on Friday.

Chapter 18: Protection

Protection Goal.
Protection Domain.
Access Matrix.
Java Protection.

Protection Goal

Operating system consists of a collection of objects, hardware
and software.

Each object has a unique name and can be accessed through
a well-defined set of operations.

Protection goal: ensure that each object is accessed only by

those processes that are allowed to do so, and only in a
prescribed manner.

Protection not concerned with verifying identity of
= Objects (e.g. whether IP address is real or spoofed) or

= Processes (e.g. whether a process executing on behalf of Bob
was started by Bob, or Sue who broke into Bob’s office).

That is security (next chapter).

Protection Domain

m An access right is a pair consisting of
An object, e.g. a file.

A subset of all valid operations that can be performed on the
object, e.g. read, write, execute.

m A domain is a set of access rights.

m A process executes “within” a domain, which limits what
the process can do.

< OS, {read, write} >
< O,, {read, write} > < O, {print} >

< O,, {execute} >

O,, d
. < O,, {execute} > < Oy {read} > ‘

Access Matrix

m View protection as a matrix (access matrix):
Rows are domains D..
Columns are objects (files F; in the example, and printer).

Access(i, j) is the set of operations that a process executing
in D; can invoke on F,.

object

printer
domain

execute

read
write

Process Domain in UNIX

Each user associated with a domain:
= When user logs in, his/her domain is identified.

Each user group associated with a domain:
= A user can belong to many groups but only one is current at a time.
All users also belong to the world domain (others).
Process domain: process usually started by user in the context
of an interactive user session. Process domain is union of
= World domain (operations anybody can do),
= Session user’s current group domain (users of the group can do),
= Session user domain (only the user can do).

Many refinements, such as:

= For user to execute privileged operation (e.g. modify the printer’s
spool queue directory) in a safe manner (e.g. when printing a job),
some processes must be executed under supervisor (root) domain.

= Each program file has a user owner (possibly different than user
executing program) and a permission bit called setuid.

- If setuid==0, then process runs as above. If setuid==1, then
process domain is that of user owner, not executing user.

Access Matrix: Add Domains

®m Domains can be treated as objects:

We can now control whether a process can switch domains (e.g.
setuid): switch right.

A process that runs in a domain can change the full matrix row for
any other domain if it has the control right.

laser
printer
Process
runs in D, —
switc
and switch | control
changes D,. oot
write
object laser
\ 4

. printer
domain

execute

read
write

Access Matrix: Add Refined Control

Copy right (*): right to copy a
specific right from one domain onto
another.

Owner right: right to modify all
rights of a specific object.

object object
F. F.

F. 1 3

- 3 domain
domain

execute

write*

owner
execute

write

read*
owner
write*

execute read” execute

execute execute
Process runs in D, Processes run in
(a)l

(@] and copies read D, , D,and change
rights for F,, F,, F,.

¥ right for F, into D,.

object

domain

Fy

Fy

object

domain

F

Fs

execute

write*

owner
execute

execute

execute

execute

b

Access Matrix Usage

B Access matrix design separates mechanism from policy.

m Mechanism:
= OS stores matrix.
OS defines operations to change matrix.

= OS protects matrix storage and enforces changes only via
prescribed operations.

= OS forces processes to obey matrix.
m Policy:
= User(s) decide what matrix contains, i.e.
= what system objects are protected,
= what domains exist, and
- what rights are assigned to each combination.

'H

Access Matrix Implementation

Store each column with each object. This is the Access-
control list (ACL) for that object. Example:

Domain 1: Read, Write.

Domain 2: Read.

Store each row with each domain. This is the Capability List
of the domain. Example:

Object 1: Read.
Object 4: Read, Write, Execute.

Combination:

= Explicit:
= Process P starts with an empty capability list.
= When P attempts to use object O, we consult ACL.
=1 Add capability entry in P's list: (O,<Read,Write>).
5] Future access to O consults list only. List is cache.

= Implicit:
= File open () returns file handle to process after ACL check.
- All file operations use this handle.

Access Matrix: Revoking Rights

m Access List. Delete access rights from access list. Simple
and immediate.

m Capability List (alone, or in part): scheme required to
locate capability throughout system before capability can
be revoked.

= Reacquisition: process must reacquire capability at regular
intervals (e.g. re-check ACL in combination system).

= Back-pointers from objects to their capabilities (e.g. from
files to processes that are using them; invalidate file handle
if file ACL changed to prevent further access).

= And others.

Java Protection

m Protection is handled by the Java Virtual Machine (JVM).

m When JVM loads a class, it assigns it a protection domain; all
instances operate within this domain. Each domain is a set of
permissions. Example:

grant codeBase "file:/S${java.home}/lib/" {
permission java.io.FilePermission "/home/-", "read"; }

All JDK code can read files from directory /home and its
subdirectories.

m The above snippet is from the Java security policy file.

® Run-time checks: a thread can execute an operation iff

= It is executing a method of a class which has the necessary
permissions, and

= The same applies for the method’s caller, and its caller, all the way
to the bottom of the stack (stack inspection).
B So if unsafe applet calls system code to open file, open () will
fail because applet doesn’t have such permission.

Java Protection: doPrivileged

What if applet wants to show dialog box? Internally, JDK
must load font file but applet cannot open files. Solution is
voilid showDialogBox () {

AccessController.doPrivileged
(new PrivilegedAction () {

public Object run() {
/* load font */ } })

}

Change to run-time checks: we stop stack inspection when
we encounter a privileged block.

Invoking stack inspection (inside open ()):
AccessController.checkPermission
(new FilePermission (name, access));
Either throws (no permission) or returns silently.
Fully extensible: new permissions, explicit checks, etc.

Java Protection Example

Will succeed because doPrivileged ends stack inspection,
and until doPrivileged all callers have permission.

protection untrusted

domain: applet URL loader networking

socket

permission' *.lucent.com:80, connect any

class: qui: get(URL u): open(Addr a):

» get(url); doPrivileged { +———- » checkPermission(a, connect);
» open(addr); open(‘proxy.lucent.com:80’); connect (a);

}

<request u from proxy>

I
Will fail:because checkPermission will realize applet doesn’t have

required permission.

