
Chapter 19: Security

� The Security Problem.
� Password-Based Authentication.
� Sample Threats.
� Threat Monitoring.
� Firewalls.
� Authentication.
� Encryption.

The Security Problem

� Security must consider external environment of the
system, and protect it from:
� Unauthorized access.
� Malicious modification or destruction.
� Prevention of legitimate use.

� Easier to protect against accidental than malicious
misuse.

Finding a Password

� If you know the user, try spouse’s name or date of birth.
� Brute force: try all possible combinations of letters and numbers.
� Dictionary attack: try all words in a dictionary, alone or in

combination.
� Shoulder surfing: look at the keyboard while user types

password.
� Keystroke recorder: Internet cafe computers record all

keystrokes.
� Network sniffing: computers normally discard network packets

that are not addressed to them. But all packets on a LAN are
electrical signals on the same wire. Hence any computer can
listen to all traffic.

� Time-based attack: measure and analyze time it takes to reject
a guess, and deduce how close to the true password the guess
is; then try again.

� Steal password file while using system as a guest.

Protecting Passwords

� Use hard-to-guess passwords: long, non-words, initials,
punctuation.

� Force short random delay after each unsuccessful
authorization attempt.

� Encrypt network traffic.
� Store passwords in encrypted form (Unix crypt()).
� Make password file accessible only to administrator and

special login program (running under administrator
domain).

� Use one-time passwords: computer presents random
challenge c, user computes and submits f(c), computer
computes f(c) and compares. Only user and computer
know function f.

� Multiple-factor authentication: f is very complex, and
varies with time. User uses calculator to compute f(c),
and calculator requires a PIN (Personal Identification
Number) to do computation.

Sample Threats
� Trojan horse:

� Bob composes a new attractive plugin for a text editor.
� Sue, who works under Bob, uses the new plugin, and it works well...
� ... except that it quitely copies every file Sue edits into a directory

Bob owns.
� When Sue edits a confidential letter to the CEO about Bob’s bad

management, Bob reads it before Sue sends it. Bob fires Sue.
� Trojan horse variation:

� Bob writes a program that displays a full-screen dialog that looks
identical to the Windows login screen.

� Bob runs the program and leaves the Internet cafe without logging
out.

� Sue types her username and password in Bob’s program.
� Bob stores that information away, then his program executes a

logout, and so Sue gets the (true) Windows login screen back.
� Sue assumes she mistyped her password the first time, tries again,

and logs in.
� Internet Trojan horse:

� Bob buys the domain name www.citibanc.com, and sets up a
web page that looks like Citibank’s home page.

� Sue mistypes the URL, logs onto Bob’s page.
� Bob steals Sue’s password, then redirects to the true Citibank site.

Sample Threats (Cont.)
� Trap door:

� Bob is hired by the Bank of Vietnam to write their account
management software.

� Bob writes it, and it works great, except that it has two trap
doors:

1. Bob’s code optionally rounds amounts downwards, i.e.
$1.995 becomes $1.99. The extra $0.005 is deposited
to Bob’s personal account.

2. Bob’s code includes a segment where he checks for a
specific username and password against hard-coded
constants instead of the regular password file. Bob
logs in using that account to activate the previous code
segment only on the day the bank calculates interest
payments.

� Imagine if Bob had written a compiler that added a trap
door to every compiled program!

Sample Threats (Cont.)

� Stack and buffer overflow:
� The Windows RPC server listens for requests by running

the listen() procedure.
� listen() receives a request to run an RPC call.
� listen() calls a getUserAndPassword() procedure to

receive the authorization information.
� The caller sends a string longer than the string buffer

allocated by getUserAndPassword().
� Windows doesn’t check the string length, and so the return

address from the call into getUserAndPassword() and
back to listen() is overwritten with part of the string.

� The string wasn’t random: the overflow part pointed to itself
as the return address and...

� the rest of it was a malicious program.

Sample Threats (Cont.)

� Worm:
� Grappling hook program sent to Bob’s computer from Sue’s via

RPC stack overflow (or one of many other techniques, in general).
� The hook is very small, and all it does is upload the main worm

program from Sue’s computer.
� The main worm

� connects to other computers via RPC to distribute the
grappling hook, and then

� deletes the Windows folder on Bob’s hard drive.
� Denial of Service (DOS):

� SCO (a US company) is funded by Microsoft to file lawsuits against
companies that use Linux.

� SCO angered some Linux fans, who release a DOS attack against
its web site.

� Fans write simple scripts that pretend to be browsers wanting to
connect to SCO’s web site...

� but terminate the connection right after they make a request, and...
� immediately issue another request, and another, and so on.
� SCO’s web site had been inaccessible for months.

Sample Threats (Cont.)

� Virus:
� Like trap door, a virus is part of a useful program.
� But a single virus can attach itself to many different

programs: its operation is irrelevant from that of the infected
program.

� It simply inserts itself in the middle of regular program code.
� When executed, it copies itself to other programs, and/or

causes damage (choice usually based on number of times
executed, or specific date, e.g. Michelangelo virus).

� Programs and data not well separated any longer:
� Word macros, Excel custom formulas are VB programs

executed when document/spreadsheet is loaded.
� Email attachments (e.g. the love bug virus).
� Web pages (e.g. javascript that replaces hosts file,

resolving www.yahoo.com to an ad site).

Threat Monitoring
� Maintain audit log: record the time, user, and type of all

accesses to an object; useful for recovery from a violation and
developing better security measures.

� Check for suspicious patterns of activity in audit log, e.g.
several incorrect password attempts may signal password
guessing.

� Scan the system periodically for security holes; executed while
the computer is relatively unused. Check for:
� Short or easy-to-guess passwords.
� Unauthorized setuid programs.
� Unauthorized programs in system directories.
� Unexpected long-running processes.
� Improper directory protections.
� Improper protections on system data files.
� Dangerous entries in the program search path (Trojan horse).
� Changes to system programs: compute checksum of each system

program executable when installing them, and store the checksums
off-line. Recompute and check against originals.

Firewalls
� Regular firewall is screen to prevent flames from an engine fire to

reach the car’s passengers.
� LAN firewall: router that inspects and may reject network packets:

� Placed between trusted T and untrusted U hosts.
� It allows network messages to travel from T to U without restrictions.
� Messages from U to T go through only if they are replies to earlier

messages sent from T to U.
� DMZ (Demilitarized Zone):

� All messages from U to T that are not replies go to DMZ computers.
� DMZ contains web server, VPN server (which accesses T computers

securely on behalf of authorized U hosts), etc.

Authentication

� Sue receives a message from Bob. How does Sue know
whether Bob indeed sent it?

� Message Authentication Code (MAC):
� Bob and Sue meet secretly and choose function f(m) to map

every text message m into a number f(m). f(m) is collision-
resistant, like a hash, to map different messages into
different numbers.

� Bob sends his message m along with a number a=f(m). a is
the authenticator.

� Sue receives the message, computes b=f(m) on her own,
and makes sure a==b. If so, it’s indeed from Bob.

� In general, f(m) is one of a family of functions F(k,m) for a
specific number k, the key. Bob and Sue just share a
common secret key k.

� Digital Signatures:
� RSA (see next slide).

Authentication: RSA
� No secret meeting needed: Bob has two keys:

� Private key: Bob uses it to generate an authenticator a that
accompanies every message m he sends.

� Public key: Sue uses it along with a to check the authenticity of
m’s sender (i.e. to make sure it’s Bob).

� Specifics:
� Private key: an integer d.
� Authenticator generation (signature):

a=f(m)d mod pq
f(m) maps text messages to numbers and is collision-resistant.
p, q are two large primes.

� Public key: the pair (e,pq) where e is such that
ed mod (p-1)(q-1)==1.

� Verification:
ae mod pq==f(m).

� Everybody knows f(m), e, and pq but only Bob knows d. p and q
are not individually known, so it’s not easy to derive d from e.

RSA Example

� Private key: 3.
� Authenticator generation (signature):

p=3, q=5, a=f(m)3 mod 15.

� Public key: the pair (11,15) because 33 mod 2x4==1.
� Verification:

a11 mod 15==f(m).

� Check:
� Assume f(m)=3.
� Signature: 33 mod 15=27 mod 15=12.
� Verification: 1211 mod 15=743008370688 mod 15==3.

Encryption
� Scramble clear text into cipher to send across an insecure line.
� A good encryption technique:

� Makes it simple for authorized users to encrypt and decrypt data.
� Depends not on the secrecy of the algorithm but on a parameter of

the algorithm called the encryption key.
� Makes it extremely difficult for an intruder who listens to encrypted

traffic to deduce the encryption key.

� Data Encryption Standard (DES) substitutes characters and
rearranges their order on the basis of an encryption key (56
bits) provided to authorized users via a secure mechanism.
Scheme only as secure as this mechanism.

� Current NIST standard: the Rijndael (“Rain Doll”) algorithm
(Federal Information Processing Standards Publication 197).

� RSA can be used for encryption if
� f(m) is the message itself,
� d is public (i.e. anybody can compute a) and,
� e is private (i.e. only intended recepient can reproduce f(m)).

Secure Sockets Layer (SSL)
� Certification authority (CA): company that issued a certificate for

Bob and stores Bob’s public key.
� Sue (her browser actually) has public key of CA.
� Sue connects to Bob’s web site:

� Bob sends Sue random number ns and his certificate C.
� Sue contacts CA, sends C, receives Bob’s public key and verifies

authenticity of CA reply via public key of CA.
� Sue sends Bob a random p, encrypted with Bob’s public key.
� Bob receives p and decrypts it using his private key.
� Bob and Sue both compute two DES keys and two MAC keys based

on ns and p, one pair for each direction of communication. DES and
MAC keys are session-specific because ns and p are random; keys
are secure because p was transmitted securely.

� To send a message, Bob/Sue computes the authenticator (using the
MAC key) and encrypts it along with the message using the DES key.

� To receive a message, Sue/Bob decrypts the incoming cipher using
the DES key, and checks the authenticator using the MAC key.

� DES and MAC used instead of RSA because they are faster to
encrypt/decrypt for every single message.

