
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Sum() is now a Shader stage:

• An N:1 shader and a graph cycle reduce in
place, in parallel.

• 'Barrier' queue only gets NOMORE (when
Generate is done and Sum has reduced to a
single item).

• Reminder: Run-time for producer-consumer
parallelism based on stages and queues.

• “Shader” stage is the primary tool for data-
parallelism. It is effectively “Map”.

• Benefits: auto-instancing, auto queue mgmt,
implicit parallelism model, 'shader cores'

• Constraints: 1 input queue, 1 input element per
instance.

• Central to Map-Reduce (duh), data-parallel apps
• Strict form: sequentially and unlimited buffering

–E.g., find median, depth order transparency

• Associativity, commutativity enable parallel,
incremental reductions.
–In practice, many of the reductions actually

used (all Brook / GPGPU, most Map-Reduce)

• Reminder: Run-time for producer-consumer
parallelism based on stages and queues.

• “Shader” stage is the primary tool for data-
parallelism. It is effectively “Map”.

• Benefits: auto-instancing, auto queue mgmt,
implicit parallelism model, 'shader cores'

• Constraints: 1 input queue, 1 input element per
instance.

Jeremy Sugerman
PPL Retreat, 5 June 2009

Extending GRAMPS Shaders

GRAMPS

Intermediate
Tuples

Map

O
u
tp

u
t

Split Combine
(Optional) Sort

 Initial
Tuples

Intermediate
Tuples

Final
Tuples

Ray Tracer

Ray
Queue

Ray Hit
Queue Fragment

Queue

Camera Intersect

Shade FB Blend

Map-Reduce

Reductions

1 5 3 2 1 7 3 5

6 5 8 8

11 16

27

Logarithic Parallel Reduction

Reduce

 Thread Stage
 Shader Stage

 Queue
 Stage Output
 Push Output

(Currently) Requires Thread stages:

Note: Even the incremental version is still single threaded! (Until / unless manually parallelized)

Reductions in GRAMPS

Barrier / Sum

Generate:
0 .. MAX

Sum(Input)
(Reduce)

Validate /
Consume

 Data

Strict Reduction:
 sumThreadMain(GrEnv *env) {

 sum = 0;

 /* Block for entire input */
 GrReserve(inputQ, ­1);
 for (i = 0 to numPackets) {
 sum += input[i];
 }
 GrCommit(inputQ, numPackets);

 /* Write sum to buffer or output */

 }

Enabling GRAMPS Shaders for Partial Reductions

• Appeal:
–Stream and GPU languages allow reduce
–Important to utilize shader cores
–Remove / simplify programmer boiler plate
–Enable auto parallelism and instancing

• Obstacles
–Where to store partial / running result
–Handling multiple inputs (spanning packets)
–Detecting / signaling termination
–Avoiding a proliferation of stage types

Shader Environment Enhancements:
• Stage / kernel takes N inputs at a time (Must handle < N available)
• Invocation reduces N : 1 (Stored as an output key?)
• GRAMPS can (will) merge input across packets

 No guarantees on per packet shared headers!
Not a completely new type, not just GPGPU reduce

Reduction Using Extended Shaders

Sum() is now a Shader stage:

• An N:1 shader and a graph cycle reduce in
place, in parallel.

• 'Barrier' queue only gets NOMORE (when
Generate is done and Sum has reduced to a
single item).

Barrier

Generate:
0 .. MAX

Sum(Input)
(Reduce)

Validate /
Consume

 Data

Scheduling Reduction Shaders

• Highly correlated with execution graph cycles
–Scheduling heuristic for such cycles: pre-empt

upstream to contain working set
• Free space in the loopback caps parallelism

–Maximal parallelism requires 1/Nth free.
–A single free space is sufficient to guarantee

forward progress
Note: Logarithmic versus linear reduction has

become application transparent and entirely a
GRAMPS run-time / scheduler decision.

• Data-parallel reductions are an important case.
• Nice to include them by generalizing existing

Shader versus adding a distinct Reduce stage.
• In addition to reductions, non-recursive filtering

is also now possible. Remains to be seen how
interesting that is.

• “Next” data-parallel operations after map and
reduce? Are there more that run well on
commodity many-core hardware?

Concluding, Other Thoughts

Incremental / Partial Reduction:
 sumThreadMain(GrEnv *env) {

 sum = 0;

 /* Consume one packet at a time */
 while (GrReserve(inputQ, 1) != NOMORE){
 sum += input[0];
 GrCommit(inputQ, 1);
 }

 /* Write sum to buffer or output */

 }

