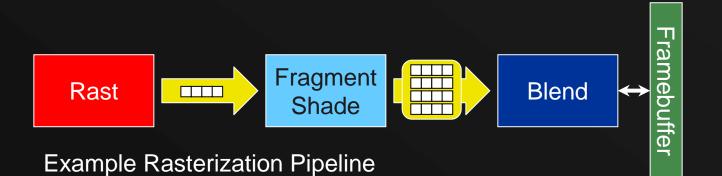
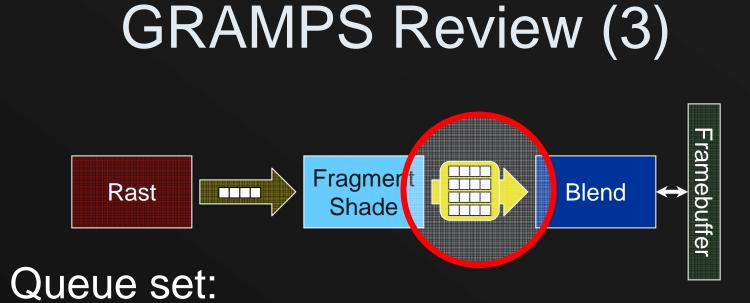

GRAMPS Beyond Rendering

Jeremy Sugerman 11 December 2009 PPL Retreat

The PPL Vision: GRAMPS

Introduction


- Past: GRAMPS for building renderers
- This Talk: GRAMPS in two new domains: map-reduce and rigid body physics
- Brief mention of other GRAMPS projects


GRAMPS Review (1)

- Programming model / API / run-time for heterogeneous many-core machines
- Applications are:
 - Graphs of multiple stages (cycles allowed)
 - Connected via queues
- Interesting workloads are irregular

GRAMPS Review (2)

- Shaders: data-parallel, plus push
- Threads/Fixed-function: stateful / tasks

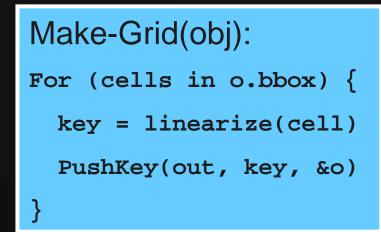
- single logical queue, independent subqueues
- Synchronization and parallel consumption
- Binning, screen-space subdivision, etc.

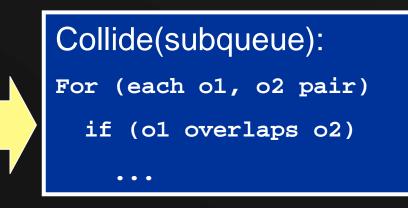
igodot

Map-Reduce

• Popular parallel idiom:

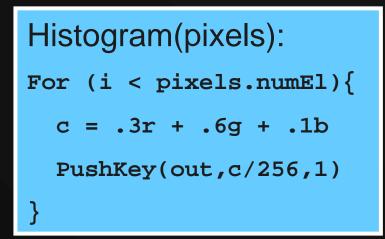
- Used at both cluster and multi-core scale
- Analytics, indexing, machine learning, ...


Map-Reduce: Combine


- Reduce often has high overhead:
 - Buffering of intermediate pairs (storage, stall)
 - Load imbalance across keys
 - Serialization within a key
- In practice, Reduce is often associative and commutative (and simple).
- **Combine** phase enables *incremental*, *parallel* reduction

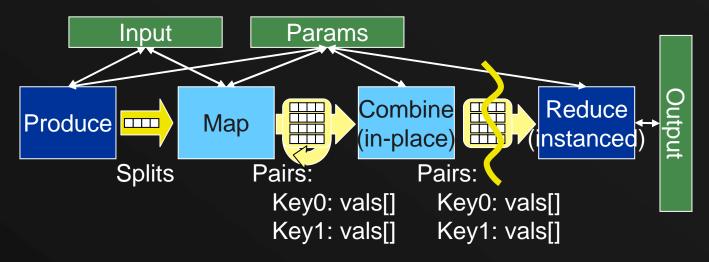
Preparing GRAMPS for Map-Reduce

Queue Sets, Instanced Threads


- Make queue sets more dynamic
 Create subqueues on demand
 - Sparsely indexed 'keyed' subqueues
 - ANY_SUBQUEUE flag for Reserve

Fan-in Shaders

- Use shaders for parallel partial reductions
 - Input: One packet, Output: One element
 - Can operate in-place or as a filter
 - Run-time coalesces mostly empty packets


Sum(packet):
<pre>For (i < packet.numEl)</pre>
<pre>sum += packet.v[i]</pre>
<pre>packet.v[0] = sum</pre>
<pre>packet.numEl = 1</pre>

Fan-in + In-place is a builtin

• Alternatives:

- Regular shader accumulating with atomics
- GPGPU multi-pass shader reduction
- Manually replicated thread stages
- Fan-in with same queue as input and output
- Reality: Messy, micro-managed, slow
 - Run-time should hide complexity, not export it

GRAMPS Map-Reduce

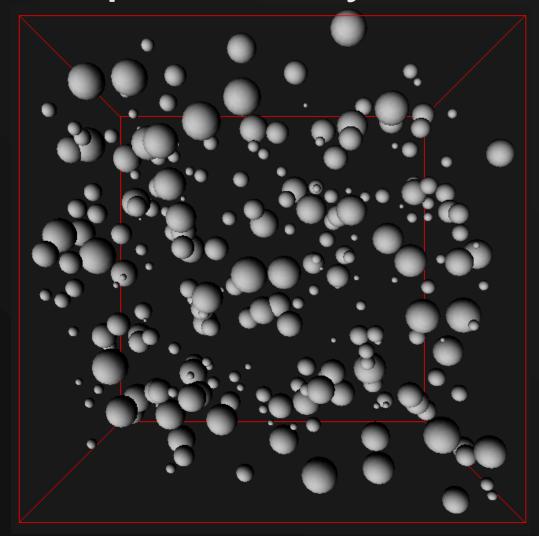
- Three Apps (based on Phoenix):
 - Histogram, Linear Regression, PCA
- Run-time Provides:
 - API, GRAMPS bindings, elems per packet

Map-Reduce App Results

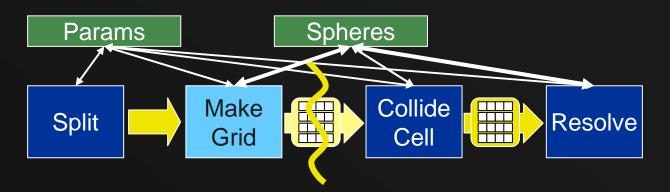
	Occupancy	Footprint	Footprint
	(CPU-Like)	(Avg.)	(Peak)
Histogram-512	97.2%	2300 KB	4700 KB
(combine)	96.2%	10 KB	20 KB
LR-32768	65.5%	100 KB	205 KB
(combine)	97.0%	1 KB	1.5 KB
PCA-128	99.2%	.5 KB	1 KB

Reduce vs Combine: Histogram

Combine Reduce . พ.ศ. 2017 - พิศ. 2017 มีสามาร์ (ค.ศ. 2016) 1976 - 1977 - 2018 มีประกาณส์สาวาทระหายไปประกาณ (ค.ศ. 2017) - 2018 (فالسنيسية وبالاسامة المتطوان والمتقال واجار والتعارية والمقارب والمقاصين والمقاصين والانتقاع ومسترية . 1914 - من المراجع الذين 1 (بالالاترين بر بورالكا<mark>ني</mark>كرين الاترينية والمراجع ومروجع ورجاع من من من الالا<mark>كرا</mark>ل باريل st-prod0 st-map0 hist-prod0 hist-map0

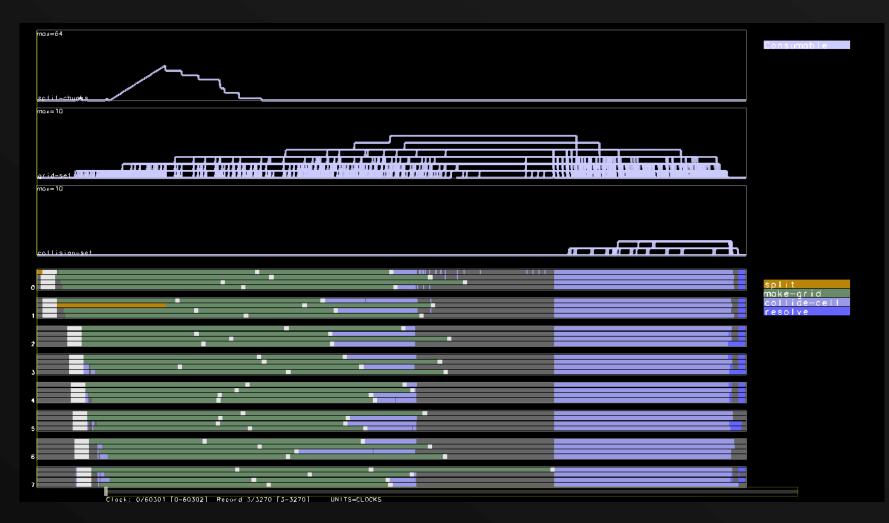

ock: 0/16123907 [0-18123908] Record 3/50302 [3-50302] UNITS-CLOCKS

15

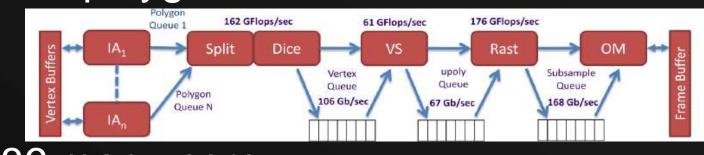

Two Pass: PCA (GPU-Like)

max=100	
	Consumable 👘
map-sireon)	
max=2	
borrierO	
mox=100	
mox=2	
borriert	
	pca-mean-prod0 pca-mean-map()
	pca-mean-prod0 pca-mean-map0 pca-cov-prod1
	pca-mean-prod0 pca-mean-map0 pca-cov-prod1 pca-cov-map1
	pca-mean-prod0 pca-mean-mop0 pca-cov-prod1 pca-cov-map1
	pca-mean-prod0 pca-mean-map0 pca-cov-prod1 pca-cov-map1
	pca-mean-prod0 pca-mean-map0 pca-cov-prod1 pca-cov-map1
	pca-mean-prodC pca-mean-mapO pca-cov-prod1 pca-cov-map1
	pca-mean-prodC pca-mean-mapO pca-cov-prod1 pca-cov-map1
	pca-mean-prod(pca-mean-mop) pca-cov-prod1 pca-cov-map1
	pca-mean-prod(pca-mean-map0 pca-cov-prod1 pca-cov-map1

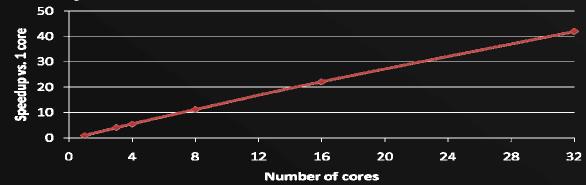
Sphere Physics



GRAMPS: Sphere Physics


- 1. Split Spheres into chunks of N
- 2. Emit(cell, sphereNum) for each sphere
- 3. Emit(s1, s2) for each intersection in cell
- 4. For each sphere, resolve and update

256 Spheres (CPU-Like)



Other People's Work

- Improved sim: model ILP and caches
- Micropolygon rasterization, fixed functions

• x86 many-core:

Thank You

• Questions?

Backup Slides

Optimizations for Map-Reduce


- Aggressive shader instancing
- Per-subqueue push coalescing
- Per-core scoreboard

GRAMPS Map-Reduce Apps

Based on Phoenix map-reduce apps:

- Histogram: Quantize input image into 256 buckets
- Linear Regression: For a set of (x,y) pairs, compute average x, x², y, y², and xy
- PCA: For a matrix M, compute the mean of each row and the covariance of all pairs of rows

Histogram 512x512

Histogram 512x512 (Combine)

Histogram 512x512 (GPU)

0	
pairs0	
	h

Linear Regression 32768

max= 100	Con sumab Le
	Consumable
neg=streem0	
mox= 10000	
	LR-prod0
	LR-map0 LR-red0
Clack: 0/431579 [0-431580] Record 3/8362 [3-8362] UNITS=CLOCKS	

PCA 128x128 (CPU)

na = 100	Consumable
p-sicean)	
x=2	
ncrier0	
nx=100	
adheartalas that Arth shall the advised also added as a second and the half at a second addition of the half advised a	
rrier1	
	pca-mean- pca-mean-
	pca-cov-p pca-cov-m
	-

Sphere Physics

A (simplified) proxy for rigid body physics: Generate N spheres, initial velocity

while(true) {

- Find all pairs of intersecting spheres
- Compute Δv to resolve collision (conserve energy, momentum)
- Compute updated result velocity and position

Future Work

- Tuning:
 - Push, combine coalesce efficiency
 - Map-Reduce chunk sizes for split, reduce
- Extensions to enable more shader usage in Sphere Physics?
- Flesh out how/where to apply application enhancements, optimizations