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Hardware:
• Core counts are rising: scale-out is coming to 

rival scale-up.
• Heterogeneity is increasing: applications are 

adopting CPU and GPU / data-parallel regions.
 Programming parallel & heterogeneous is hard.
  (Also, multi-platform/configuration is important)

Software:
• Coherence matters: processing groupings of 

coherent ‘work’ is efficient.
• Irregularity matters: interesting applications are 

data-dependent and/or adaptive.
• Producer-consumer matters: interesting 

applications generate intermediate ‘work’.
 Identify and exploit coherence at run-time.
  (Also, codify and offload best practices)

• Applications are graphs (or pipelines):
–Independent stages connected via queues

• Thread stages:
–Task-parallel, potentially stateful
–Singleton or automatically instanced
–Explicit GrReserve/GrCommit on queues
–Potentially implemented in custom hardware

• Shader stages:
–Data-parallel, independent stateless instances
–Automatically instanced
–Automatic pre-reserve/post-commit of input 

and fixed outputs
–Run-time coalesced GrPush for variable / 

conditional output.
• Queue Sets:

–A single logical queue with independently 
indexed subqueues

–Parallelism with mutual exclusion: sequential 
per-subqueue, but many subqueues at once

–Examples: Screen-space subdivision, per-key 
reductions in MapReduce
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Scheduling Mantra: “Maintain high machine 
utilization while keeping working sets small”:

Simple proves effective:
•App-specified queue capacities
•Static stage priorities
•Limited preemption points

Study 1: Rendering (CPU-Like, GPU-Like):

•3 scenes x { Rasterization, Ray Tracer, Hybrid }
•95+% Utilization for all but fairy-rast (~80%).
•Small queues (working sets):

< 600KB CPU-like, < 1.5MB GPU-like

Study 2: General Purpose (Native):

•Plenty of parallelism, good scalability
•Working sets are no worse (often better) than 
task-stealing
•Minimal scheduling overheads
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Two simulated future rendering platforms:

One current (x86) general purpose platform:

CPU-Like: 8 Fat Cores, Rast GPU-Like: 1 Fat Core, 4 Micro Cores, Rast, Sched

Native: 2 Quad-Core Core i7’s
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