
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Hardware:
• Core counts are rising: scale-out is coming to

rival scale-up.
• Heterogeneity is increasing: applications are

adopting CPU and GPU / data-parallel regions.
 Programming parallel & heterogeneous is hard.
 (Also, multi-platform/configuration is important)

Software:
• Coherence matters: processing groupings of

coherent ‘work’ is efficient.
• Irregularity matters: interesting applications are

data-dependent and/or adaptive.
• Producer-consumer matters: interesting

applications generate intermediate ‘work’.
 Identify and exploit coherence at run-time.
 (Also, codify and offload best practices)

• Applications are graphs (or pipelines):
–Independent stages connected via queues

• Thread stages:
–Task-parallel, potentially stateful
–Singleton or automatically instanced
–Explicit GrReserve/GrCommit on queues
–Potentially implemented in custom hardware

• Shader stages:
–Data-parallel, independent stateless instances
–Automatically instanced
–Automatic pre-reserve/post-commit of input

and fixed outputs
–Run-time coalesced GrPush for variable /

conditional output.
• Queue Sets:

–A single logical queue with independently
indexed subqueues

–Parallelism with mutual exclusion: sequential
per-subqueue, but many subqueues at once

–Examples: Screen-space subdivision, per-key
reductions in MapReduce

Jeremy Sugerman (with Kayvon Fatahalian, Solomon Boulos, David Lo, Daniel Sanchez, Richard Yoo,
Kurt Akeley, Christos Kozyrakis, Pat Hanrahan)

GRAMPS: A Programming Model for
Heterogenous, Commodity, Many-Core Systems

Scheduling Mantra: “Maintain high machine
utilization while keeping working sets small”:

Simple proves effective:
•App-specified queue capacities
•Static stage priorities
•Limited preemption points

Study 1: Rendering (CPU-Like, GPU-Like):

•3 scenes x { Rasterization, Ray Tracer, Hybrid }
•95+% Utilization for all but fairy-rast (~80%).
•Small queues (working sets):

< 600KB CPU-like, < 1.5MB GPU-like

Study 2: General Purpose (Native):

•Plenty of parallelism, good scalability
•Working sets are no worse (often better) than
task-stealing
•Minimal scheduling overheads

Motivation

The GRAMPS Programming Model

Example GRAMPS Applications

Example GRAMPS Run-Times / Hardware Configurations

Results and Analysis

1. Sugerman J., Fatahalian K., Boulos S., Akeley
K., and Hanrahan P. “GRAMPS: A Programming
Model for Graphics Pipelines”, ACM TOG,
January 2009

2. Kozyrakis C., Lo D., Sanchez D., Sugerman J.,
Yoo R., “Comparing Parallel Programming
Models using GRAMPS”, submitted for
publication, 2010

References

Two simulated future rendering platforms:

One current (x86) general purpose platform:

CPU-Like: 8 Fat Cores, Rast GPU-Like: 1 Fat Core, 4 Micro Cores, Rast, Sched

Native: 2 Quad-Core Core i7’s

Mergesort
(Cilk-like)

SRAD
(CUDA)

MapReduce

Ray TracerRasterization
Pipeline

FM Radio
(StreamIt)

Sphere Physics

