
Software Caching for Cell Based Ray Tracing

J. Sugerman T. Foley S. Yoshioka P. Hanrahan
Symposium on Interactive Ray Tracing 2006

Generate Eye Rays

Intersect Scene
 -Traverse K-d tree
 -Intersect leaves

Shade Hits
 - Shadow Rays
 - Secondary Rays
 - Local Lighting

Sched-
ule

Background
 The Cell Broadband Engine [1,2,3] is a novel processor
that offers massively more FLOPS than conventional
CPUs, but with a more complicated programming
model. Performance comes through utilizing the SPUs,
eight four-wide SIMD units with no caches, fancy tech-
niques for ILP like branch prediction, and no direct
access to system memory for code or data.

 Our work implements a ray tracer for Cell focused on
evaluating ray - scene intersection for different kinds of
rays.

System Structure

◦ Only the scene intersector uses the SPUs
◦ Programmed as eight core chip multiprocessor
◦ Multithreaded basic packet tracer, one thread per SPU
◦ PPU distributes work (512 ray mega-packets)
◦ Shading rays are generated and submitted in subse-
quent passes.

K-d tree traversal data is stored in LS except for triangle
and node data, which use software caches.
◦ Distinct caches for nodes (128K) and triangles (32K)
◦ 4-way set associative, round-robin replacement
◦ 256-byte line (32 nodes or 4 triangles)
◦ Cache miss triggers synchronous DMA
◦ Cache hit path is only 15 SPU intrinsics per packet

Results

◦ 2.4 GHz Cell blade prototype, 1024x1024 images
◦ Packet efficiency, not hit rate, turns out to vary be-
tween ray types.
◦ Scales nicely: 7.2x - 7.6x from 1SPU to 8 SPUs.

Cornell Box
Bunny
Robots
Kitchen

1 SPU
Primary

10.83
2.85
2.79
2.70

8 SPU
1st Bounce

71.76
5.60*
10.38
12.17

8 SPU
2nd Bounce

73.49
1.47*
6.78
7.61

8 SPU
Shadow

48.48
5.41*
17.38
17.15

8 SPU
Primary

80.83
20.58
21.07
20.16

Cache Analysis
Fixed 32KB triangle cache with varying node cache:

◦ Nodes cache really well:
 ◦ Scenes have 5.3 - 10.4 MB of tree nodes
 ◦ Hit rate over 50% with 1KB cache
 ◦ 96% - 98% with 32KB, 97% - 99% with 128KB
◦ Expect performance roughly linear with hit rate
◦ For a given packet, caching only serves as prefetching
◦ Inter-packet coherence responsible for hit rate
◦ Cache must be large enough to keep the upper tree
nodes resident across packets.

◦ Triangle caching is a different story
◦ Most impact is bulk fetching the triangles in a leaf.
◦ Secondary benefit with a larger cache and inter-packet
coherence.
◦ In practice, high hit rates require large caches
◦ But, hit rates only influence performance a little
◦ Our scenes vary less than 5% with 1KB vs. 32KB cache

0.6 0.8 1.0

Hit Rate
10

20

12

14

16

18

20

M
Ra

ys
/s Bunny

Robots
Kitchen

1 32 64 128

Node Cache Size (KB)
10

20

12

14

16

18

20

M
Ra

ys
/s

Cell Development Experience

◦ Porting SIMD CPU code was a few days’ work
 ◦ Naively DMA + stall every tree, triangle fetch
 ◦ No digressions from CMP “create threads and launch”
◦ Software caching was both simple and effective
 ◦ Straightforward to understand, implement
 ◦ Cheap and amortized over multiple primitives
 ◦ Cached data was read-only
 ◦ Also reduced bus bandwidth, so enabled scaling
◦ Best CPU ray tracers are already designed to exploit
caches for performance
◦ Cycle-for-cycle our SPU code matches our single-
threaded x86 code.
◦ Easier to stamp out more, faster SPUs than x86es.

Future Work
◦ Diffuse bounces
◦ Smaller cache lines and non-power of two sizes
◦ Methods for building mega-packets of secondary rays
◦ Combine caching and incremental building
◦ Efficient models for local shading on SPUs

References
[1] Brian Flachs et al. A streaming processing unit for a CELL processor. In Proceedings of the IEEE Interna-

tional Solid-State Circuits Conference, 2005.
[2] Dac Pham et al. The design and implementation of a first-generation CELL processor. In Proceedings of t-

he IEEE International Solid-State Circuits Conference, 2005.
[3] Michael Gschwind, Peter Hofstee, Brian Flachs, Martin Hopkins,

Yukio Watanabe, and Takeshi Yamazaki. A novel SIMD architecture for the CELL heterogeneous chip-
multiprocessor. In Hot Chips 17, 2005.

[4] Tim Purcell. Ray Tracing on a Stream Processor. Ph.D. thesis, Stanford Unviersity, March 2004.
[5] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-level ray tracing algorithm. ACM Trans. Graph.,

24(3):1176–1185, 2005.
[6] Gordon Stoll. Optimization techniques. In Introduction to Real-Time Ray Tracing -

SIGGRAPH 2005 Course 38. 2005.
[7] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination. Ph.D thesis, Saarland University, 2004.
[8] Sven Woop, Jorg Schmittler, and Philipp Slusallek. RPU: a programmable ray processing unit for real

time ray tracing. ACM Trans. Graph. , 24(3):434–444, 2005.

