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Background
 The Cell Broadband Engine [1,2,3] is a novel processor 
that offers massively more FLOPS than conventional 
CPUs, but with a more complicated programming 
model.  Performance comes through utilizing the SPUs, 
eight four-wide SIMD units with no caches, fancy tech-
niques for ILP like branch prediction, and no direct 
access to system memory for code or data.

 Our work implements a ray tracer for Cell focused on 
evaluating ray - scene intersection for different kinds of 
rays.

System Structure

◦ Only the scene intersector uses the SPUs
◦ Programmed as eight core chip multiprocessor
◦ Multithreaded basic packet tracer, one thread per SPU
◦ PPU distributes work (512 ray mega-packets)
◦ Shading rays are generated and submitted in subse-
quent passes.

K-d tree traversal data is stored in LS except for triangle 
and node data, which use software caches.
◦ Distinct caches for nodes (128K) and triangles (32K)
◦ 4-way set associative, round-robin replacement
◦ 256-byte line (32 nodes or 4 triangles)
◦ Cache miss triggers synchronous DMA
◦ Cache hit path is only 15 SPU intrinsics per packet

Results

◦ 2.4 GHz Cell blade prototype, 1024x1024 images
◦ Packet efficiency, not hit rate, turns out to vary be-
tween ray types.
◦ Scales nicely: 7.2x - 7.6x from 1SPU to 8 SPUs.
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Cache Analysis
Fixed 32KB triangle cache with varying node cache:

◦ Nodes cache really well:
   ◦ Scenes have 5.3 - 10.4 MB of tree nodes
   ◦ Hit rate over 50% with 1KB cache
   ◦ 96% - 98% with 32KB, 97% - 99% with 128KB 
◦ Expect performance roughly linear with hit rate 
◦ For a given packet, caching only serves as prefetching
◦ Inter-packet coherence responsible for hit rate
◦ Cache must be large enough to keep the upper tree 
nodes resident across packets.

◦ Triangle caching is a different story
◦ Most impact is bulk fetching the triangles in a leaf.
◦ Secondary benefit with a larger cache and inter-packet 
coherence.
◦ In practice, high hit rates require large caches
◦ But, hit rates only influence performance a little
◦ Our scenes vary less than 5% with 1KB vs. 32KB cache
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Cell Development Experience

◦ Porting SIMD CPU code was a few days’ work
   ◦ Naively DMA + stall every tree, triangle fetch
   ◦ No digressions from CMP “create threads and launch”
◦ Software caching was both simple and effective
   ◦ Straightforward to understand, implement
   ◦ Cheap and amortized over multiple primitives
   ◦ Cached data was read-only
   ◦ Also reduced bus bandwidth, so enabled scaling
◦ Best CPU ray tracers are already designed to exploit 
caches for performance
◦ Cycle-for-cycle our SPU code matches our single-
threaded x86 code.
◦ Easier to stamp out more, faster SPUs than x86es.

Future Work
◦ Diffuse bounces
◦ Smaller cache lines and non-power of two sizes
◦ Methods for building mega-packets of secondary rays
◦ Combine caching and incremental building
◦ Efficient models for local shading on SPUs 
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