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ABSTRACT

We compared the existing techniques for estimating normals at the
lattice sites of a Body Centric Cubic (BCC) grid. We also inves-
tigated newer approaches for estimating the normals that takes the
special geometric arrangement of the BCC lattice into consideration
and compared the results with other existing techniques. A ray-
caster engine has been developed in this project which can trace ray
on any arbitrary grid and also on analytic functions and dump data
that can be used by other softwares to do statistical calculations.
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1 INTRODUCTION

Recent studies on Body Centric Cubic (BCC) lattices have shown
significant improvement in reconstruction quality compared to
Catersian Cubic (CC). Not only data is reconstructed better but the
method proposed by Entezari and Torsten [1] is almost twice faster
than the best known method for CC, i.e. Tri-Cubic BSpline. It has
also been shown that only 70% of the samples required by that of
CC are sufficient to produce a similar quality of reconstruction in
the BCC method. This intuitively led us to beleive that normal esti-
mation on BCC grid and continuous reconstruction of the normals
using techniques proposed by [1] would yield better results. Also it
is conjectured that normal estimation on the lattice points of BCC
grid has the higher potential of being more accurate than CC due to
the fact that eight first-order neighbours (Figure 1) are closer in eu-
clidean sense compared to the six axis-aligned neighbours on CC.
If the conjecture is proven true and a method is developed to esti-
mate more accurate normals on BCC then it will have a significant
role in solving PDEs apart from higher quality of surface shading
in volume visualization. In this paper, we compared older meth-
ods for estimating normals on BCC grid with that of CC and also
investigated a newer approach which attempted to incorporate the
firt-order neighbours and finally compared the results of the newer
technique with the older ones.

2 RELATED WORKS

In all of the previous works, including Entezari [1] and Usman [4]
normals at the BCC lattice points were estimated using the six axis-
alinged second-order neighbours. The other eight first-order neigh-
bours, which are rather closer in euclidean sense, were never taken
into account. Hence the full potential of the BCC structure was
never exploited.

3 APPROACH

Since the investigation was mostly about comparing older tech-
niques of normal estimation and finding out newer techinques, we
developed a versatile ray caster engine that can render a volume
with phong shading and shadows on any arbitrary data grids, e.g.
CC and BCC. It can also render a 3D analytic function without any
underlying grid and provides mechanism to extract various data.
This data can then be fed into other softwares like Matlab to per-
form statistical measurements and produce error images. Figure 2
shows the basic system model of the Ray-Caster engine.

Figure 1: Red is the sample for which we want to estimate the normal
for. Blue neighbours are the first-order neighbours while green neigh-
bours are the second-order neighbours. Note that first-order neigh-
bours have the bigger voronoi face which means they are closer to
the red sample.

Figure 2: System model of the Ray-Caster engine

3.1 Data collection methodology

The Ray-Caster engine operates in two basic modes: Render mode
and Compare mode. For this study we focused mainly on the “Com-
pare” mode.

The main objective of the “Compare” mode is to compare the re-
construction quality of different grids with an analytic function for
which we chose the widely used Marschner-Lobb function [2]. We
chose α = 0.25 and fM = 6.0 for the Marschner-Lobb function and
Figure 3 shows an iso-surface of 0.5 of the said unsampled function.
In this mode, ray is casted into the analytic function and whenever
an iso-surface is hit, all the other grid in the system are evaluated
exactly at the same 3D point for both data value and normal. This
design was adopted instead of ray-casting seperately on grids to
make sure we are comparing between the analytic function and all
the other grids exactly at the same 3D points. The actual function
value and normal and all the other evluated data value with normals
corresponding to the same 3D point were then dumped into a text
file. Matlab was then used to read that text file, compute various
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error measures and produce error images.

Figure 3: An iso-surface of 0.5 of the unsampled Marscher-Lobb
function with α = 0.25 and fM = 6.0

Apart from full-blown ray-casting we were also interested to
know how good the normals were estimated at only the lattice sites.
This inquery is particularly important to investigate the potential
of a certain normal estimation technique for solving PDEs. There-
fore our Ray-Caster was also designed to dump normal data on the
lattice sites only too.

4 IMPLEMENTATION

The software was implemented as a command line tool using
C/C++ where one thread would be rendering the image and another
thread would be showing a preview of the image “so far rendered.”
The previwer was implemented using OpenGL, however the basic
image rendering takes places in the CPU in a non-realtime fashion.
Iso-surfaces are shaded using Phong shading model [3] and the final
images are output as BMP files along with various data in text files
as mentioned in the Section 3.1. Figure 4 shows one screen-shot of
the Ray-Caster. The software has be developed in a cross-platform
complaint manner and so far it has been tested to have run well in
both Windows and Linux.

Figure 4: Screeen-shot of the Ray-Caster in action

5 FORMULATION

For CC grid we mainly considered TriCubic-BSpline for reconsc-
truction because that is the best known method so far. For BCC grid
we considered the Quintic-BoxSpline method as proposed by [1].

Normals are estimated at the lattice sites once and then the above
interpolation methods are applied on per-component basis (x,y and
z seperately) for the corresponding grid to calculate non-lattice site
normals. For CC grid, we estimated the normal at the lattice site
using central differencing along three axes, i.e. using six samples
whereas for BCC grid, we estimated normals using the methods
listed below and then we compared the effectiveness of each with
CC and the Marschner-Lobb analytic function as mentioned in Sec-
tion 3.1.

Figure 5: BCC Lattice. Red sample is the sample we want to com-
pute normal for. Green samples are the second-order neighbours
and Blue samples are the first-order neighbours

Refering to Figure 5, we define

P = {Pi|Pi =

Sample value at the first-order neighbour sites}

Q = {Qi|Qi =

Sample value at the second-order neighbour sites}

(1)

hx = Half of the length of the lattice along X-Axis

hy = Half of the length of the lattice along Y-Axis

hz = Half of the length of the lattice along Z-Axis

(2)

BCC lattice site normals were estimated by:

Second-Order Central Differencing (SOCD) This is similar to
the axis aligned central differencing of the CC grid except
that second-order neighbours (Figure 1) are taken into account
because they are axis-aligned. SOCD estimation for a given
sample point (Red sample in Figure 5) is given by

∂ f

∂x
≈

Q1 −Q3

4hx

∂ f

∂y
≈

Q5 −Q4

4hy

∂ f

∂ z
≈

Q0 −Q2

4hz

(3)
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Box Central Differencing (BCD) In this method the eight first-
order neighbours (Figure 1) were taken into consideration.
However, first-order neighbours are not axis-aligned. This
creates some complications which is resolved using Taylor
series expansion. A detail discussion on this topic is made
in Appendix A. BCD is given by the following:

∂ f

∂x
≈

(P2 −P3)+(P6 −P7)+(P1 −P0)+(P5 −P4)

8hx

∂ f

∂y
≈

(P3 −P0)+(P2 −P1)+(P6 −P5)+(P7 −P4)

8hy

∂ f

∂ z
≈

(P2 −P6)+(P1 −P5)+(P0 −P4)+(P3 −P7)

8hz

(4)

A simple interpretation of the above formula is: each of the
differentials is merely an average of all the four differentials
along a particular axis. For example:

∂ f

∂x
≈

(P2 −P3)+(P6 −P7)+(P1 −P0)+(P5 −P4)

8hx

=

(P2−P3)
2hx

+
(P6−P7)

2hx
+

(P1−P0)
2hx

+
(P5−P4)

2hx

4

(5)

Interpolated Central Differencing (ICD) One point in the center
of each of the six faces of the BCC lattice is computed using
Quintic-BoxSpline. This basically is similar to computing the
FCC lattice points on the six faces of the BCC lattice and then
using them as pseudo-samples for doing central-differencing
along each of the axes. This is similar to generating higher
resolution cartesian grid within the BCC grid and then esti-
mating the normal. Let

I = {Ii|Ii =

Interpolated value at the mid-point

between the center, Red sample, and Qi}

(6)

It is easy to see that Ii are the points at the centre of each face
of the lattice. Now ICD is given by the following:

∂ f

∂x
≈

I1 − I3

2hx

∂ f

∂y
≈

I5 − I4

2hy

∂ f

∂ z
≈

I0 − I2

2hz

(7)

The main motivation of including ICD is to check if we
could have achieved similar or maybe better result than BCD
method by taking only 6 samples.

6 RESULTS

All the experiments were performed using Marschner-Lobb func-
tion with FM = 6.0 and α = 0.25 with the iso-surface of 0.5. Qual-
ity metric of the normal reconstruction is defined as the angle (in
degrees) between the actual analytic normal and the reconstructed
normal. To have an overall picture of the total error made in nor-
mals, we defined an energy function as follows.

E =
180

π
∑
k

(cos−1(
〈

Ñ,N
〉

))2 (8)

Where,

Ñ = Normalized reconstructed normal
N = Normalized analytic normal

Typically, the best method would produce the smallest E. We
also calculated the RMS of the angles and again the best method
should produce the smallest RMS. Table 1 summarizes our find-
ings. Clearly BCC-BCD method approximates the normals better
than other methods. It is quite interesting to note that BC-BCD
method is significantly better than than BCC-ICD method which
uses axis-aligned central differencing and with the neighbouring
samples being exactly same distance away along the axes as BCC-
BCD. In this experiment we rendered Marschner-Lobb isosurface
with shading on an output image resolution of 1024x758.

CC-CD BCC-SOCD BCC-ICD BCC-BCD

E (×108) 11.8949 11.2586 8.16344 4.85875

RMS Angle Error (degrees) 54.2459 48.8836 41.6253 32.1132

Table 1: Comparison of normal estimation on BCC and CC using
different methods

This fact is also noticible perceptually in the rendered im-
ages. Figure 6 shows the different images produced by different
methods. If we look at the shading of the original Marschnar-
Lobb, Figure 6(a), and specially note the distribution of the
“specular highlights” we will immediately see that BCC-BCD
method,Figure 6(d), produces the closest approximation.

(a), ML

(b), BCC-SOCD (c), BCC-ICD (d), BCC-BCD

(e), CC-CD

First Row: (a) Unsampled Marscher-Lobb (ML).

Second Row: Normals estimated on BCC grid.

(b) Second-Order Central Differencing (BCC-SOCD)

(c) Interpolated Central Differencing (BCC-ICD)

(d) Box Central Differencing (BCC-BCD)

Third Row: (e) Normals estimated on CC grid using Central Differencing (CC-CD)

Figure 6: Comparison of data and normal reconstruction of various
grids

Finally, we were also interested to know the extent of errors in
the normal estimation each method had only at the grid points. For
that, we ran a simple experiment to estimate and compare normals
only at the grid points. Table 2 shows our findings.
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(b), BCC-SOCD (c), BCC-ICD (d), BCC-BCD

(e), CC-CD

First Row: (a) Unsampled Marscher-Lobb (ML).

Second Row: Normals estimated on BCC grid.

(b) Second-Order Central Differencing (BCC-SOCD)

(c) Interpolated Central Differencing (BCC-ICD)

(d) Box Central Differencing (BCC-BCD)

Third Row: (e) Normals estimated on CC grid using Central Differencing (CC-CD)

Figure 7: Comparison of data and normal reconstruction with error
images of various grids

CC-CD BCC-SOCD BCC-ICD BCC-BCD

E (×108) 0.880199 1.11468 0.73573 0.517233

RMS Angle Error (degrees) 35.7367 40.216 32.6726 27.3947

Table 2: Comparison of normal estimation only at the grid points on
BCC and CC using different methods

Clearly Table 2 is consistent with the fact that BCC-BCD ap-
proximates normals better than other methods.

7 CONCLUSION

In this project we have studied some existing techniques for esti-
mating normals at the lattice point of CC and BCC grids. We have
also proposed a novel approach towards estimating normals on a
BCC grid which exploits the nearer eight first order neighbours.
Mathematical analysis (see Appendix A) and our experiments ver-
ify that the newer Box Central Differencing (BCD) technique is
indeed superior. Not only this method has great potential for shad-
ing volumes better but also has potential along the lines of solving
PDEs.
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A APPENDIX

A.1 BCC Box Central Differencing (BCC-BCD)

To derive the BCC-BCD method we assume a trivariate function
f (u,v,w). The Taylor series expansion upto quadratic order of this
function about the point (x,y,z) is given by

f (u,v,w) = f (x,y,z)+(u− x)
∂ f

∂u
(x,y,z)+

(v− y)
∂ f

∂v
(x,y,z)+

(w− z)
∂ f

∂w
(x,y,z)+

1

2
(u− x)2 ∂ 2 f

∂u2
(x,y,z)+

(u− x)(v− y)
∂

∂v

∂ f

∂u
(x,y,z)+

(u− x)(w− z)
∂

∂w

∂ f

∂u
(x,y,z)+

(v− y)(w− z)
∂

∂w

∂ f

∂v
(x,y,z)+

1

2
(v− y)2 ∂ 2 f

∂v2
( f )(x,y,z)+

1

2
(w− z)2 ∂ 2 f

∂w2
(x,y,z)+ . . .

(9)

Now let us define the points P = {P0,P1,P2,P3,P4,P5,P6,P7} as
follows:

P0 = f (x−hx,y−hy,z+hz)

P1 = f (x+hx,y−hy,z+hz)

P2 = f (x+hx,y+hy,z+hz)

P3 = f (x−hx,y+hy,z+hz)

P4 = f (x−hx,y−hy,z−hz)

P5 = f (x+hx,y−hy,z−hz)

P6 = f (x+hx,y+hy,z−hz)

P7 = f (x−hx,y+hy,z−hz)

(10)

Note that the point set P is exactly the same P point set of Fig-
ure 5

Now let us write

S = AP0 +BP1 +CP2 +DP3 +EP4 +FP5 +GP6 +HP7 (11)

Where {A,B,C,D,E,F,G,H} are all constants

Writing Equation 9 up to cubic order and substituting Equa-
tion 10 into it we can rewrite S as
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S =(A+B+C +E +F +G+H +D) f (x,y,z)+

hx(−A+B+C−E +F +G−H −D)
∂ f

∂u
(x,y,z)+

hy(−A−B+C−E −F +G+H +D)
∂ f

∂v
(x,y,z)+

hz(A+B+C−E −F −G−H +D)
∂ f

∂w
(x,y,z)+

h2
x

2
(A+B+C +E +F +G+H +D)

∂ 2 f

∂u2
(x,y,z)+

h2
y

2
(A+B+C +E +F +G+H +D)

∂ 2 f

∂y2
(x,y,z)+

h2
z

2
(A+B+C +E +F +G+H +D)

∂ 2 f

∂w2
(x,y,z)+

h3
x

6
(−A+B+C−E +F +G−H −D)

∂ 3 f

∂u3
(x,y,z)+

d3
y

6
(−A−B+C−E −F +G+H +D)

∂ 3 f

∂v3
(x,y,z)+

h3
z

6
(A+B+C−E −F −G−H +D)

∂ 3 f

∂w3
(x,y,z)

hxhy(A−B+C +E −F +G−H −D)
∂

∂v

∂ f

∂u
(x,y,z)+

hxhz(−A+B+C +E −F −G+H −D)
∂

∂w

∂ f

∂u
(x,y,z)+

hyhz(−A−B+C +E +F −G−H +D)
∂

∂w

∂ f

∂v
(x,y,z)+

h2
xhy

2
(−A−B+C−E −F +G+H +D)

∂

∂v

∂ 2 f

∂u2
(x,y,z)+

h2
xhz

2
(A+B+C−E −F −G−H +D)

∂

∂w

∂ 2 f

∂u2
(x,y,z)+

hxh2
y

2
(−A+B+C−E +F +G−H −D)

∂ 2

∂v2

∂ f

∂u
(x,y,z)+

hxh2
z

2
(−A+B+C−E +F +G−H −D)

∂ 2

∂w2

∂ f

∂u
(x,y,z)+

h2
yhz

2
(A+B+C−E −F −G−H +D)

∂

∂w

∂ 2 f

∂v2
(x,y,z)+

hyh2
z

2
(−A−B+C−E −F +G+H +D)

∂ 2

∂w2

∂ f

∂v
(x,y,z)+

hxhyhz(A−B+C−E +F −G+H −D)
∂

∂w

∂

∂v

∂ f

∂u
(x,y,z)+

(12)

Now, let us try to isolate
∂ f
∂u

out of the above equation and for
that let us take the following:

A+B+C +E +F +G+H +D = 0, with f (x,y,z)

−A+B+C−E +F +G−H −D = 1, with
∂ f
∂u

−A−B+C−E −F +G+H +D = 0, with
∂ f
∂v

A+B+C−E −F −G−H +D = 0, with
∂ f
∂w

A−B+C +E −F +G−H −D = 0, with ∂
∂v

∂ f
∂u

−A+B+C +E −F −G+H −D = 0, with ∂
∂w

∂ f
∂u

−A−B+C +E +F −G−H +D = 0, with ∂
∂w

∂ f
∂v

A−B+C−E +F −G+H −D = 0, with ∂
∂w

∂
∂v

∂ f
∂u

(13)

This forms a system of linear equations and the solution of the
above system is

{

A = −
1

8
,B =

1

8
,C =

1

8
,D = −

1

8
,

E = −
1

8
,F =

1

8
,G =

1

8
,H = −

1

8

}

(14)

If we plug in the above solution to S, we have

S =
1

2
hxh2

y

∂ 2

∂v2

∂ f

∂u
(x,y,z)+

1

2
hxh2

z

∂ 2

∂w2

∂ f

∂u
(x,y,z)+

hx
∂ f

∂u
(x,y,z)+

1

6
h3

x

∂ 3 f

∂u3
(x,y,z) (15)

Dividing both sides by hx gives

Ñx =
S

hx
=

∂ f

∂u
(x,y,z)+

1

2
h2

y

∂ 2

∂v2

∂ f

∂u
(x,y,z)+

1

2
h2

z

∂ 2

∂w2

∂ f

∂u
(x,y,z)+

1

6
h2

x

∂ 3 f

∂u3
(x,y,z) (16)

If f (u,v,w) has a maximum order of two, i.e. quadratic in nature
which in turns also means if f (u,v,w) can be characterized by the

linear combination of the shifted verson of (u + v + w)2 then Ñx =
∂ f
∂u

. This is because if

f (u,v,w) =∑
i

∑
j
∑
k

Wi jk{(u−ai)+(v−b j)+(w− ck)}
2

Where, Wi jk,ai,b j,ck are all constants

(17)

then it follows

∂ 2

∂v2

∂ f

∂u
(x,y,z) = 0

∂ 2

∂w2

∂ f

∂u
(x,y,z) = 0

∂ 3 f

∂u3
(x,y,z) = 0

But for fairly small hx we can always approximate

Ñx ≈
∂ f

∂u
(x,y,z) ≈

S

hx

=
(P2 −P3)+(P6 −P7)+(P1 −P0)+(P5 −P4)

8hx
(18)

Similarly Ny,Nz can also be found using the same pattern.
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B APPENDIX

C SOME RENDERED OUTPUT OF THE RAY-CASTER

(b), CC

(d), BCC-SOCD

(c), BCC-ICD

(e), BCC-BCD

Figure 8: Comparison of data and normal reconstruction on Carp
dataset
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