
A CO-FACTOR MATRIX OF THE HESSIAN

Given a 3D scalar function f : R3 → R we will use the notation fxy to

denote the partial derivative ∂
∂x

∂ f
∂y

and the notation fxx to denote the

second derivative along x, i.e.
∂ 2 f

∂x2 and so forth. Using these notations
a Hessian matrix H can be written as the following:

H =





fxx fxy fxz

fxy fyy fyz

fxz fyz fzz





The co-factor of the Hessian, denoted by Hc, is another matrix where
every element is replaced by the co-factor of the corresponding ele-
ment in H, and the simplification is given below:

Hc =





fyy fzz − fyz fyz fyz fxz − fxy fzz fxy fyz − fyy fxz

fxz fyz − fxy fzz fxx fzz − fxz fxz fxy fxz − fxx fyz

fxy fyz − fxz fyy fxy fxz − fxx fyz fxx fyy − fxy fxy





B GAUSSIAN AND MEAN CURVATURE

Gaussian Curvature G is given by the following

G =
1

‖∇ f‖4

[

f 2
x

(

fyy fzz − f 2
yz

)

+2 fy fz
(

fxz fxy − fxx fyz

)

+

f 2
y

(

fxx fzz − f 2
xz

)

+2 fx fz
(

fyz fxy − fyy fxz

)

+

f 2
z

(

fxx fyy − f 2
xy

)

+2 fx fy
(

fxz fyz − fzz fxy

)

]

and the Mean Curvature K is given by

K =
1

2‖∇ f‖3

[

2 fy fz fyz − f 2
x

(

fyy + fzz

)

+

2 fx fz fxz − f 2
y ( fxx + fzz)+

2 fx fy fxy − f 2
z

(

fxx + fyy

)

]

where the gradient magnitude is ‖∇ f‖=
√

f 2
x + f 2

y + f 2
z .

C EMPIRICAL ANALYSIS OF STABILITY AND CONVERGENCE

For this analysis we only varied ∆t for each diffusion experiment keep-
ing all the other parameters the same. Let L2(i, j) denote the l2 norm
between the volumes f (x, i) and f (x, j) at iterations i and j respec-
tively during the evolution. This is given by the following:

L2(i, j) =

√

∑
x∈R3

(

f (x, i)− f (x, j)
)2

(1)

The Root Mean Squared Difference RMSD between two volumes at
iterations i and j, which is just the scaled l2 norm, can now be given
by:

RMSD(i, j) =
L2(i, j)√

V
(2)

where V is the total number of voxels and is a constant for a given
dataset. Considering the volume f (x,n) as a V dimensional point in

R
V , the RMSD can be thought of as the Euclidean distance between

the volume at iterations i and j but only scaled by a constant 1/
√

V .
We define a quantity D(n), that measures the RMSD of the volume

at iteration n ∈ {0 . . .N} from the original volume, i.e. f (x,0) as given
below:

D(n) = RMSD(n,0) =
L2(n,0)√

V
(3)

Finally we define the rate of change of the Euclidean distance, scaled

by the constant 1/
√

V , with respect to time t between two successive
volumes at iterations n−1 and n by the following:

S(n) =
RMSD(n,n−1)

∆t
=

L2(n,n−1)

∆t
√

V
(4)

Note that the quantity S(n) is nothing but a numerical approximation

of the instantaneous speed, scaled by the 1/
√

V , of the evolution of

the volume f (x,n) ∈ R
V at iteration n.

Now, for every ∆t we ran N iterations of diffusion on a dataset and
measured D(n) and S(n). The quantity D(n) will show how a volume
evolves with respect to the original volume in an l2 norm sense and as
well provide evidence of de-noising, which we will show later. On the
other hand S(n)→ 0 as n → ∞ will provide evidence of convergence
of our proposed PDE.

We used a simulated structural MR data, obtained from the Brain-
Web database (http://mouldy.bic.mni.mcgill.ca/brainweb/) for
this study. This data is noise free yet realistic with many details
and variation. Therefore, it is a good candidate for our test scenario.
The structural MR data contains 256 gray levels and has a size of
181×217×181.

In the first phase of the experiment we kept all the parameters the
same as Section 6 of the paper and only varied ∆t. Therefore, the
other parameters were: λ = 2, σ = 1, ρ = 1 (in voxel units) and voxel
spacing was assumed to be 1 in all directions and scalar values, which
ranged between (0,255). The 3D volumes were not scaled and a sim-
ple central differencing 2-EF filter-set was applied for all the derivative
estimations.

For each ∆t we ran N = 25 iterations. Figure 2 plots D(n) and S(n)
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Fig. 2: Plot of (a) D(n) and (b) S(n) for each ∆t (indicated by the legend),

with the noise-free MRI data.

for different values of ∆t as indicated by the legend. With the noise-
free MRI data, Figure 2b shows that for ∆t ≤ 0.4 the PDE behaves
well. However for ∆t ≥ 0.5, the speed S(n) drops less quickly until
∆t ≥ 0.55 when the PDE becomes unstable. However, the plot for
D(n) (Figure 2a) does not reveal anomalies until ∆t ≥ 0.6.

In the second phase of the experiment we added Gaussian noise
with zero mean and a variance of 0.01 (in a normalized scale) to the
synthetic MR data to add random high frequency variation to pose
a more challenging test for our proposed diffusion PDE in terms of
stability. This noisy volume has an SNR of 11.3056 dB. All other pa-



(a) Original (b) KM method: k = 40 (c) KM method: k = 80 (d) Our method: σ = 1 (e) Our method: σ = 10

Fig. 1: The 2D slice (z = 65) of the Sheep’s Heart dataset, after diffusing with the KM method and our method as used in Figure 4 of the paper. We

have also marked the same iso-surface of 153, as used in Figure 4 of the paper, with blue lines.

rameters were kept the same. For this experiment D(n) was measured
from the original noise-free MRI data. In Figure 3a, the slope of D(n)
is negative initially because the D(n) was measured from the original
noise-free MRI data and diffusion would bring the noisy data closer to
the original in an l2 sense with each iteration, i.e. the l2 norm would
progressively get reduced. This is an indication of de-noising taking
place. This time however, both Figure 3a and Figure 3b indicate that
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Fig. 3: Plot of (a) D(n) and (b) S(n) for each ∆t (indicated by the legend),

with the MRI data corrupted with the Gaussian noise.

for ∆t ≥ 0.55 the PDE becomes unstable. It is noteworthy that even a
bad SNR of 11.3056 dB did not drastically change the stability from
the one we found with the noise-free MRI data.

Finally, in the third phase, we used a 40×40×40 data volume of a
random signal uniformly distributed for values in (0,255). This poses
an even more challenging test of stability and convergence. Figure 4b
shows that even in the case of this random noisy volume the stability of
the PDE did not change for ∆t < 0.55. For 0.4 < ∆t < 0.55, although
the PDE eventually converged, Figure 4a reveals some oscillation in
D(n) in the first few iterations.

In all three experiments, the plot of S(n) showed that the PDE con-
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Fig. 4: Plot of (a) D(n) and (b) S(n) for each ∆t (indicated by the leg-

end), with a random data volume (40×40×40) uniformly distributed for

(0,255).

verged for ∆t ≤ 0.4 with ∆t = 0.4 yielding the fastest convergence. On
the other hand, the plot of D(n) in all three experiments revealed that
for ∆t ≤ 0.4 the PDE evolves without any oscillation. This led us to
believe that for the parameter settings used in the paper, augmented
with ρ = 1, our proposed PDE is stable for ∆t ≤ 0.4 for most practical
purposes.

D 2D SLICE OF SHEEP’S HEART WITH ISO-SURFACE MARK-

ING

Figure 1 shows 2D slices of the Sheep’s Heart dataset after diffusing it
with our method and the KM method as described in the paper. These
slices were taken from the 3D volumes as shown in Figure 4 of the
paper and the same iso-surface of 153 is marked with blue lines. Fig-
ure 1 demonstrates that our method is more robust with its parameter
σ compared to the gradient based KM method. A closer inspection
into the “inside” of the iso-surface reveals that our method preserves
structures better.


