Amortized analysis for two stacks [50 points]

Suppose there are two stacks called A and B, manipulated by the following operations:

- **push-A(d):** Pushes a datum d onto stack A. Real Cost = 1.
- **push-B(d):** Pushes a datum d onto stack B. Real Cost = 1.
- **multi-pop-A(k):** Removes $\min(k, \text{size}(A))$ elements from stack A.
 Real Cost = $\min(k, \text{size}(A))$.
- **multi-pop-B(k):** Removes $\min(k, \text{size}(B))$ elements from stack B.
 Real Cost = $\min(k, \text{size}(B))$.
- **transfer(k):** Repeatedly pops elements from stack A and pushes them onto stack B, until either k elements have been moved, or A is empty.
 Real Cost = number of elements moved. (Note that you can transfer only from A to B.)

(a) Give amortized costs to each operation using the accounting method. Using your amortized costs show an $O(n)$ worst case bound on the cost of n operations.

(b) Give a potential function such that the amortized cost of each of the operations is constant, and evaluate the constant for each of the operations.

(c) Using your potential function show an $O(n)$ worst case bound on the cost of n operations.
Problem 7-2. Bipartite graphs [50 points]

An undirected graph $G = (V, E)$ is called bipartite if the nodes can be partitioned into two subsets A and B in such a way that all edges go between A and B.

(a) Prove that a graph is bipartite iff it can be 2-colored, that is iff all nodes can be colored with two colors so that no two adjacent nodes have the same color.

(b) Give an efficient algorithm to decide whether a graph is bipartite. A by-product of your algorithm should be the partition of V into A and B.