Lecture #1: Tuesday, 2 April 2002
Topics: Course Outline

Course Outline

The chapter and section references below are for the first edition of CLR.

April

Tue 2 Administrivia. Introduction: models of computation, \(O\)-notation.
 Reading: Section 1.1, Chapter 2.

Thu 4 Insertion sort and mergesort, divide and conquer, recurrences.
 Reading: Sections 1.2-3. Section 4.1

Tue 9 Quicksort, Strassens’ algorithm, more on summations and recurrences.
 Reading: Sections 8.1-2, 31.2. Sections 4.2-3, (Chapter 3 should be read
 as needed during the quarter.)

Thu 11 Randomized algorithms: randomized quicksort, probability.
 Reading: Sections 6.1-3, 8.3-4, (Chapter 5 should be read as needed
 during the quarter.)

Tue 16 Sorting: median, order statistics.
 Reading: Chapter 10.

Thu 18 Sorting: heapsort, priority queues, set manipulation.
 Reading: Chapter 7.

Tue 23 Sorting: lower bounds, counting sort, radix sort.
 Reading: Chapter 9.

Thu 25 Data structures: hashing, collision resolution, chaining, universal hashing,
 open addressing.
 Reading: Chapter 12.

Tue 30 Data structures: binary search trees, tree walks, relation to quicksort.
 Reading: Chapter 13.
May

Thu 2 Data structures: red-black trees, rotations, insertion, deletion.
Reading: Chapter 14.

Tue 7 Mid-term examination, in class, closed book.

Thu 9 Augmenting data structures: dynamic order statistics, interval trees.
Programming Problem handed out.
Reading: Chapter 15.

Tue 14 Dynamic programming: optimal binary search trees, longest common subsequence.
Reading: Chapter 16.

Thu 16 Greedy algorithms: activity selection. Introduction to graph algorithms: representation, breadth-first search.
Reading: Section 17.1-3, 23.1-2.

Tue 21 Graph algorithms: minimum-spanning tree algorithms, Prim’s algorithm, Kruskal’s algorithm.
Reading: Chapter 24.

Thu 23 Graph algorithms: depth-first search, topological sort.
Reading: Section 23.3-4.

Tue 28 Graph algorithms: Single-source shortest paths, Dijkstra’s algorithm, Bellman-Ford algorithm, difference constraints.
Reading: Chapter 25.

Thu 30 Graph algorithms: all-pairs shortest paths, matrix multiplication, Floyd-Warshall algorithm.
Reading: Chapter 26.

June

Tue 4 Flow networks; the Ford-Fulkerson Algorithm; Bipartite matching.
Reading: Chapter 27.
Programming Problem due.
All homeworks due by this date.

Thu 6 Special end-of-class lecture. Course evaluation.
Reading: None.
The chapter and section references below are for the *second edition* of CLRS.

April

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Topic</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tue</td>
<td>2</td>
<td>Administrivia. Introduction: models of computation, O-notation.</td>
<td>Section 1.1, Chapter 3.</td>
</tr>
<tr>
<td>Thu</td>
<td>4</td>
<td>Insertion sort and mergesort, divide and conquer, recurrences.</td>
<td>Sections 1.2. Chapter 2. Section 4.1</td>
</tr>
<tr>
<td>Tue</td>
<td>9</td>
<td>Quicksort, Strassens’ algorithm, more on summations and recurrences.</td>
<td>Sections 7.1-2, 31.2. Sections 4.2-3, (Chapter 3 should be read as needed during the quarter.)</td>
</tr>
<tr>
<td>Thu</td>
<td>11</td>
<td>Randomized algorithms: randomized quicksort, probability.</td>
<td>Chapter 5, 7.3-4, (Chapter 5 should be read as needed during the quarter.)</td>
</tr>
<tr>
<td>Tue</td>
<td>16</td>
<td>Sorting: median, order statistics.</td>
<td>Chapter 9.</td>
</tr>
<tr>
<td>Thu</td>
<td>18</td>
<td>Sorting: heapsort, priority queues, set manipulation.</td>
<td>Chapter 6.</td>
</tr>
<tr>
<td>Tue</td>
<td>23</td>
<td>Sorting: lower bounds, counting sort, radix sort.</td>
<td>Chapter 8.</td>
</tr>
<tr>
<td>Thu</td>
<td>25</td>
<td>Data structures: hashing, collision resolution, chaining, universal hashing, open addressing.</td>
<td>Chapter 11.</td>
</tr>
<tr>
<td>Tue</td>
<td>30</td>
<td>Data structures: binary search trees, tree walks, relation to quicksort.</td>
<td>Chapter 12.</td>
</tr>
</tbody>
</table>

May

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Topic</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thu</td>
<td>2</td>
<td>Data structures: red-black trees, rotations, insertion, deletion.</td>
<td>Chapter 13.</td>
</tr>
<tr>
<td>Tue</td>
<td>7</td>
<td>Mid-term examination, in class, closed book.</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Day</td>
<td>Topic</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-------</td>
<td></td>
</tr>
</tbody>
</table>
| Tue 14 | Dynamic programming: optimal binary search trees, longest common subsequence.
Reading: Chapter 15. |
| Thu 16 | Greedy algorithms: activity selection. Introduction to graph algorithms: representation, breadth-first search.
| Tue 21 | Graph algorithms: minimum-spanning tree algorithms, Prim’s algorithm, Kruskal’s algorithm.
Reading: Chapter 23. |
| Thu 23 | Graph algorithms: depth-first search, topological sort.
Reading: Section 22.3-4. |
| Tue 28 | Graph algorithms: Single-source shortest paths, Dijkstra’s algorithm, Bellman-Ford algorithm, difference constraints.
Reading: Chapter 24. |
| Thu 30 | Graph algorithms: all-pairs shortest paths, matrix multiplication, Floyd-Warshall algorithm.
Reading: Chapter 25. |

June

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Topic</th>
</tr>
</thead>
</table>
| Tue 4 | Flow networks; the Ford-Fulkerson Algorithm; Bipartite matching.
Reading: Chapter 26.
Programming Problem due.
All homeworks due by this date. |
| Thu 6 | Special end-of-class lecture. Course evaluation.
Reading: None. |