Homework #2: Divide-and-Conquer Algorithms, Recurrence Relations
Due Date: Tuesday, 23 April 2002

Reading: Chapters 3 and 4, Sections 6.1–3, 8.3–4 in CLR, Chapters 3, and 4, Sections 5.1–3, 7.3–4, Appendix C.1–3 in CLRS.

Recall that exercises are for you to work out on your own; problems are to be handed in.

Exercise 2-1. Do Exercise 31.2–4 on page 744 of CLR, 28.2–4 on page 741 of CLRS.

Exercise 2-2. Do Exercise 3.2–1 on page 52 of CLR, A.2–1 on page 1067 of CLRS.

Exercise 2-3. Use both substitution and iteration to solve the recurrence

\[T(n) = T(n - a) + T(a) + n, \]

where \(a \geq 1 \) is constant.

Exercise 2-4. Stable sorting

A sorting algorithm is described as stable if equal elements are in the same relative order in the sorted sequence as in the original sequence. Which of insertion sort, quicksort, and mergesort are stable and which are unstable? Give a simple fix to make the unstable sorts stable.

Problem 1. Integer multiplication [30 points]

Let \(u \) and \(v \) be two \(n \) bit numbers where for simplicity \(n \) is a power of 2. The traditional multiplication algorithm requires \(O(n^2) \) operations. A divide–and–conquer based algorithm splits the numbers into two equal parts, computing the product as

\[uv = (a2^{n/2} + b)(c2^{n/2} + d) = ac2^n + (ad + bc)2^{n/2} + bd \]

The multiplications \(ac, ad, bc, \) and \(bd \) are done using the algorithm recursively. Determine this algorithm's running time. What is the running time if \(ad + bc \) is computed as \((a + b)(c + d) - ac - bd\)?

Problem 2. Do Problem 4–4 on page 73 of CLR, 4–4, parts a, d, e, g, h, j, on page 86 in CLRS. [40 points]
Problem 3. Stack depth for Quicksort [30 points]

The QUICKSORT algorithm contains two recursive calls to itself. After the call to PARTITION, the left subarray is recursively sorted and then the right subarray is recursively sorted. The second recursive call in QUICKSORT is not really necessary; it can be avoided by using an iterative control structure. This technique, called tail recursion, is provided automatically by good compilers. Consider the following version of quicksort, which simulates tail recursion.

QUICKSORT′(A, p, r)
1 while p < r
2 do ▷ Partition and sort left subarray
3 q ← PARTITION(A, p, r)
4 QUICKSORT′(A, p, q)
5 p ← q + 1

(a) Argue that QUICKSORT′(A, 1, length[A]) correctly sorts the array A.

Compilers usually execute recursive procedures by using a stack that contains pertinent information, including the parameter values, for each recursive call. The information for the most recent call is at the top of the stack, and the information for the initial call is at the bottom. When a procedure is invoked, its information is pushed onto the stack; when it terminates, its information is popped. Since we assume that array parameters are actually represented by pointers, the information for each procedure call on the stack requires $O(1)$ stack space. The stack depth is the maximum amount of stack space used at any time during a computation.

(b) Describe a scenario in which the stack depth of QUICKSORT′ is $Θ(n)$ on an n-element input array.

(c) Modify the code for QUICKSORT′ so that the worst-case stack depth is $Θ(\lg n)$. Maintain the $O(n \lg n)$ expected running time of the algorithm.