B-MAC
Tunable MAC protocol for wireless networks

Summary of paper “Versatile Low Power Media Access for Wireless Sensor Networks”

Presented by Kyle Heath
Outline

- Introduction to B-MAC
- Design of B-MAC
- B-MAC components
- Evaluation of B-MAC
- Summary
Introduction to B-MAC

- B-MAC = Berkley Media Access Control
- A simple carrier sense media access protocol
 - Link-access protocol only
- Exposes parameters to higher network layers
 - Tunable media access instead of a “black box”
B-MAC Design Objectives

- **Principles**
 - Reconfigurable MAC protocol
 - Flexible control
 - Hooks for sub-primitives
 - Backoff/Timeouts
 - Duty Cycle
 - Acknowledgements
 - Feedback to higher protocols
 - Minimal implementation
 - Minimal state

- **Primary Goals**
 - Low Power Operation
 - Effective Collision Avoidance
 - Simple/Predicable Operation
 - Small Code Size
 - Tolerant to Changing RF/Networking Conditions
 - Scalable to Large Number of Nodes
B-MAC Features

- Reconfiguration and control of link layer protocol parameters
 - Acknowledgements, Backoff/Timeouts, Power Management, Hidden Terminal Management (RTS/CTS)

- Ability to choose tradeoffs – “knobs”
 - Fairness, Latency, Energy Consumption, Reliability

- Power consumption estimation through analytical and empirical models
 - Feedback to network protocols
 - Lifetime estimation

- Mechanisms to achieve network protocols’ goals
Other MAC protocols

- **S-MAC**
 Ye, Heidemann, and Estrin, INFOCOM 2002
 - Synchronized protocol with periodic listen periods
 - “Black Box” design
 - Designed for a general set of workloads
 - User sets radio duty cycle
 - SMAC takes care of the rest so you don’t have to
 - Integrates higher layer functionality into link protocol

- **T-MAC**
 van Dam and Langendoen, Sensys 2003
 - Reduces power consumption by returning to sleep if no traffic is detected at the beginning of a listen period

Diagram:

- **Schedule 1**
 - Node 1: sync, listen, sleep, sync, listen, sleep
 - Node 2: sync, listen, sleep, sync, listen, sleep

- **Schedule 2**
 - Wei Ye, USC/ISI
B-MAC Components

- **Channel arbitration**
 - Clear Channel Assessment (CCA)
 - back offs
- **Reliability**
 - Link layer acknowledgements
- **Power efficient communication**
 - Low Power Listening (LPL)

Note: services like organization, synchronization, and routing are left to higher levels.
Clear Channel Assessment

Automatic estimation of noise floor

Simple threshold reduces throughput

If no outliers after 5 samples, channel is considered busy

Figure 2: Clear Channel Assessment (CCA) effectiveness for a typical wireless channel. The top graph is a trace of the received signal strength indicator (RSSI) from a CC1000 transceiver. A packet arrives between 22 and 54ms. The middle graph shows the output of a thresholding CCA algorithm. 1 indicates the channel is clear; 0 indicates it is busy. The bottom graph shows the output of an outlier detection algorithm.
Clear Channel Assessment

- Configurable “knobs”
 - Enable/Disable CCA
 - Configure initial and congestion back off times

- Adjusts protocol’s
 - Fairness
 - Available throughput
Low Power Listening (LPL)

- Higher level communication scheduling
 - Energy Cost = RX + TX + Listen
 - Start by minimizing the listen cost
- Example of a typical low level protocol mechanism
- Periodically
 - wake up, sample channel, sleep
- Properties
 - Wakeup time fixed
 - “Check Time” between wakeups variable
 - Preamble length matches wakeup interval
- Overhear all data packets in cell
 - Duty cycle depends on number of neighbors and cell traffic
Effect of LPL Check Interval

- Single hop data reporting application
- Higher sampling rate
 - Higher traffic in a cell
 - Higher duty cycle
- Optimize the check time to the traffic
 - Application knows sample rate (packet generation rate)
Implementation Size

- Higher level service built on top of B-MAC in order to compare with S-MAC
 - Reliable transport (Acks)
 - Hidden Terminal support (RTS-CTS)
- Implementation smaller than S-MAC

<table>
<thead>
<tr>
<th>Protocol</th>
<th>ROM</th>
<th>RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-MAC</td>
<td>3046</td>
<td>166</td>
</tr>
<tr>
<td>B-MAC w/ ACK</td>
<td>3340</td>
<td>168</td>
</tr>
<tr>
<td>B-MAC w/ LPL</td>
<td>4092</td>
<td>170</td>
</tr>
<tr>
<td>B-MAC w/ LPL & ACK</td>
<td>4386</td>
<td>172</td>
</tr>
<tr>
<td>B-MAC w/ LPL & ACK + RTS-CTS</td>
<td>4616</td>
<td>277</td>
</tr>
<tr>
<td>S-MAC</td>
<td>6274</td>
<td>516</td>
</tr>
</tbody>
</table>

Table 1: A comparison of the size of B-MAC and S-MAC in bytes. Both protocols are implemented in TinyOS.
Fragmentation Support
Factored vs Layered Protocol

- S-MAC
 - RTS-CTS Fragmentation Support
- B-MAC
 - Network protocol sends initial data packet with number of fragments pending
 - Disable backoff & LPL for rest of fragments
- Measure energy consumption at C (bottleneck node)
- Minimizing power relies on controlling link layer primitives

Sometimes the black box is worse than the naïve approach
Tradeoffs: Latency for Energy
Factored vs Traditional Protocol

- Assume a multihop packet is generated every 10 sec
 - No queuing delay allowed
- Delay the packet
 - S-MAC sleeps longer between listen period
 - B-MAC increases the check interval and preamble length

Effect of latency on mean energy consumption

B-MAC Default Configuration
S-MAC Default Configuration
Tradeoffs: Throughput for Energy
Factored vs Layered Protocol

- 10 node single hop network
 - Increase transmission rate
 - Deliver each packet within 10 sec
 - Measure average power consumption per node

- As throughput increases
 - B-MAC reduces check interval as traffic increases
 - S-MAC uses optimal duty cycle
 - Protocol overhead causes energy to increase linearly
Lifetime Model

\[
\min (E) = E_{rx} + E_{tx} + E_{listen} + E_{sleep}
\]

- **Transmit**

\[
t_{tx} = r \times (L_{preamble} + L_{packet}) t_{txb}
\]

\[
E_{tx} = t_{tx} c_{txb} V
\]

- **Receive**

\[
t_{rx} = n r \times (L_{preamble} + L_{packet}) t_{rxb}
\]

\[
E_{rx} = t_{rx} c_{rxb} V
\]

Notation

<table>
<thead>
<tr>
<th>Notation</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>Sample Rate (packets/sec)</td>
</tr>
<tr>
<td>(n)</td>
<td>Neighborhood size</td>
</tr>
<tr>
<td>(L_{preamble})</td>
<td>Preamble length (bytes)</td>
</tr>
<tr>
<td>(L_{packet})</td>
<td>Packet length (bytes)</td>
</tr>
<tr>
<td>(c_{sleep})</td>
<td>Current : Sleep (mA)</td>
</tr>
<tr>
<td>(c_{rxb})</td>
<td>Current : Rx one byte</td>
</tr>
<tr>
<td>(c_{txb})</td>
<td>Current : Tx one byte</td>
</tr>
<tr>
<td>(C_{batt})</td>
<td>Capacity : Battery (mAh)</td>
</tr>
<tr>
<td>(V)</td>
<td>Voltage</td>
</tr>
<tr>
<td>(t_f)</td>
<td>Time : Radio sampling interval (s)</td>
</tr>
<tr>
<td>(t_{startup})</td>
<td>Time : Radio startup</td>
</tr>
<tr>
<td>(t_{rxb})</td>
<td>Time : Rx one byte</td>
</tr>
<tr>
<td>(t_{rx})</td>
<td>Time : Rx per second</td>
</tr>
<tr>
<td>(t_{txb})</td>
<td>Time : Tx one byte</td>
</tr>
<tr>
<td>(t_{tx})</td>
<td>Time : Tx per second</td>
</tr>
<tr>
<td>(t_f)</td>
<td>Time : Lifetime (s)</td>
</tr>
</tbody>
</table>
Lifetime Model

\[\min(E) = E_{rx} + E_{tx} + E_{listen} + E_{sleep} \]

- **LPL Sampling**

\[E_{sample} = 17.3\mu J \]

\[E_{listen} \leq E_{sample} \times \frac{1}{t_i} \]

- **Sleep**

\[t_{listen} = t_{startup} \times \frac{1}{t_i} \]

\[t_{sleep} = 1 - t_{rx} - t_{tx} - t_{listen} \]

\[E_{sleep} = t_{sleep} \times c_{sleep} \]

<table>
<thead>
<tr>
<th>Notation</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>Sample Rate (packets/sec)</td>
</tr>
<tr>
<td>(n)</td>
<td>Neighborhood size</td>
</tr>
<tr>
<td>(L_{preamble})</td>
<td>Preamble length (bytes)</td>
</tr>
<tr>
<td>(L_{packet})</td>
<td>Packet length (bytes)</td>
</tr>
<tr>
<td>(c_{sleep})</td>
<td>Current : Sleep (mA)</td>
</tr>
<tr>
<td>(c_{rxb})</td>
<td>Current : Rx one byte</td>
</tr>
<tr>
<td>(c_{txb})</td>
<td>Current : Tx one byte</td>
</tr>
<tr>
<td>(C_{batt})</td>
<td>Capacity : Battery (mAh)</td>
</tr>
<tr>
<td>(V)</td>
<td>Voltage</td>
</tr>
<tr>
<td>(t_i)</td>
<td>Time : Radio sampling interval (s)</td>
</tr>
<tr>
<td>(t_{startup})</td>
<td>Time : Radio startup</td>
</tr>
<tr>
<td>(t_{rxb})</td>
<td>Time : Rx one byte</td>
</tr>
<tr>
<td>(t_{rx})</td>
<td>Time : Rx per second</td>
</tr>
<tr>
<td>(t_{txb})</td>
<td>Time : Tx one byte</td>
</tr>
<tr>
<td>(t_{tx})</td>
<td>Time : Tx per second</td>
</tr>
<tr>
<td>(t_f)</td>
<td>Time : Lifetime (s)</td>
</tr>
</tbody>
</table>
Lifetime Model

\[
\min(E) = E_{rx} + E_{tx} + E_{listen} + E_{sleep}
\]

- The total energy, \(E \), can be used to calculate the expected lifetime of the system

\[
t_l = \frac{C_{batt} \times V}{E} \times 60 \times 60
\]

<table>
<thead>
<tr>
<th>Notation</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>Sample Rate (packets/sec)</td>
</tr>
<tr>
<td>(n)</td>
<td>Neighborhood size</td>
</tr>
<tr>
<td>(L_{\text{preamble}})</td>
<td>Preamble length (bytes)</td>
</tr>
<tr>
<td>(L_{\text{packet}})</td>
<td>Packet length (bytes)</td>
</tr>
<tr>
<td>(c_{\text{sleep}})</td>
<td>Current : Sleep (mA)</td>
</tr>
<tr>
<td>(c_{\text{txb}})</td>
<td>Current : Tx one byte</td>
</tr>
<tr>
<td>(c_{\text{rxb}})</td>
<td>Current : Rx one byte</td>
</tr>
<tr>
<td>(C_{\text{batt}})</td>
<td>Capacity : Battery (mAh)</td>
</tr>
<tr>
<td>(V)</td>
<td>Voltage</td>
</tr>
<tr>
<td>(t_j)</td>
<td>Time : Radio sampling interval (s)</td>
</tr>
<tr>
<td>(t_{\text{startup}})</td>
<td>Time : Radio startup</td>
</tr>
<tr>
<td>(t_{\text{rxb}})</td>
<td>Time : Rx one byte</td>
</tr>
<tr>
<td>(t_{\text{tx}})</td>
<td>Time : Rx per second</td>
</tr>
<tr>
<td>(t_{\text{txb}})</td>
<td>Time : Tx one byte</td>
</tr>
<tr>
<td>(t_{\text{tx}})</td>
<td>Time : Tx per second</td>
</tr>
<tr>
<td>(t_j)</td>
<td>Time : Lifetime (s)</td>
</tr>
</tbody>
</table>
Effect of Neighborhood Size

- Neighborhood Size affects amount of traffic in a cell
 - Network protocols typically keep track of neighborhood size
 - Bigger Neighborhood \rightarrow More traffic
Conclusions

- Coordination with higher protocols is essential for long lived operation
- Traditional abstraction at the network layer doesn’t fit sensor networks—need a new abstraction at the link layer like B-MAC