
Approximating Polyhedra with Spheres for
Time-Critical Collision Detection

PHILIP M. HUBBARD

Cornell University

.

This article presentsa method for approximatingpolyhedralobjects to support a time-critical
collision-detectionalgorithm. The approximationsare hierarchies of spheres, and they allow
the time-critical algorithm to progressivelyrefine the accuracy of its detection, stopping as
needed to maintain the real-time performanceessential for interactive applications.The key
to this approachis a preprocessthat automaticallybuilds tightly fitting hierarchies for rigid
and articulatedobjects.The preprocessuses medial-axis surfaces, which are skeletal represen-
tations of objects. These skeletonsguide an optimizationtechniquethat gives the hierarchies
accuracy properties appropriate for collision detection. In a sample application, hierarchies
built this way allow the time-criticalcollision-detectionalgorithmto have acceptableaccuracy,
improving significantly on that possible with hierarchies built by previous techniques. The
performanceof the time-critical algorithmin this application is consistently 10 to 100 times
better than a previous collision-detection algorithm, maintaining low latency and a nearIy
constant frame rate of 10 frames per second on a conventional graphics workstation. The
time-critical algorithm maintains its real-time performanceas objects become more compli-
cated, even as they exceed previouslyreported complexitylevels by a factor of more than 10.

Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: ComputationalGeometry
and Object-Modeling—geometricalgorithms, languages and systems; object hierarchy; physi-
cally-based modeling; 1.3.7 [Computer-Graphics]: Three-DimensionalGraphics and Real-
ism-unimation; uirtual reality

CreneralTerms: Algorithms,HumanFactors, Performance

Additional Key Words and Phrases: Approximation,collision detection, interactive systems,
medial-axissurfaces,spheres, time-criticalcomputing

_—.

1. INTRODUCTION

Performance is paramount for most interactive graphics applications such
as virtual reality systems and vehicle simulators. As Brooks [19881 dis-
cusses for the case of virtual reality, these applications will not be success-
ful unless they respond to users’ actions at real-time rates. In particular,

— .
Author’saddress:P.M. Hubbard,580 Frank H. T. RhodesHall, CornellUniversity, Ithaca,NY
14853-3801; email: pmh@graphics.cornell.edu.
Permissionto make digital/hard copy of part or all of this work for personalor classroomuse
is granted without fee provided that the copies are not made or distributed for profit or
commercialadvantage,the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
andIor a fee.
01996 ACM 0730-0301/96/0700-0179$03.50

ACMTransactionsonGraphics,Vol.15, No. 3, July 1996, Pages 179–210.

180 l P. M. Hubbard

Fig. 1. Desktop lamp (626 triangles) and three levels of detail using spheres.

frame rates must be high and nearly constant, and latency (“lag”) must be
low.

Realistic modeling, rendering, and animation are also important in these
applications. Collision detection and response, for example, prevent moving
objects from passing through each other, making the objects seem more
natural and believable. Despite recent advances, traditional collision-detec-
tion algorithms (“detection algorithms”) are not fast enough for most
interactive settings. Most interactive applications are thus forced to do
without collision detection.

The most promising way to make collision detection possible for more
interactive applications is to use time-critical computing. The essence of
this approach, which van Dam [19931 also calls negotiated graceful degru-
dution, is trading accuracy for speed. A time-critical detection algorithm
checks for collisions between successively tighter approximations to the
objects’ real surfaces. After any step of this progressive refinement, the
application can stop the algorithm if it exceeds its time budget.

By processing approximations to objects’ surfaces, a time-critical algo-
rithm can maintain consistent real-time performance as the surfaces be-
come more complicated. This approach does degrade the accuracy of detec-
tion, but small inaccuracies will be acceptable in many situations. Most
other detection algorithms produce their own form of inaccuracy, because
these algorithms sample time discretely. These algorithms do not, however,
adjust their accuracy to ensure real-time performance, so they do not
provide the advantages of a time-critical algorithm. Section 2 elaborates on
these points.

The key to time-critical collision detection is the method for automati-
cally approximating an object’s surface. This article presents a preprocess
that approximates rigid or articulated polyhedral objects with sets of
spheres. It produces multiple levels of detail arranged in a hierarchy, as
Figure 1 exemplifies. To place the spheres, the preprocess uses the medial-
axis surface, which represents an object in skeletal form. The medial-axis
surface guides an optimization process that matches the spheres to the
object’s shape. During a run of an application, these levels of detail take the
place of the object’s real surface for approximate but fast collision detection
and response. Note the difference between this approach and the tradi-
tional use of hierarchies to focus on collisions between the real surfaces.

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.

Time-Critical Collision Detection . 181

The time-critical detection algorithm is kindred in spirit to recent time-
critical algorithms for other graphics problems; examples include rendering
algorithms for static walk-throughs by Funkhouser and Sequin [19931 and
Maciel and Shirley [1995], the IRIS Performer application framework of
Rolhf and Helman [1994], and the human-figure animation algorithm of
Granieri et al. [1995]. This paper extends our earlier paper [Hubbard
1993], which introduced the idea of time-critical collision detection but
presented a less sophisticated approach to hierarchies. Our companion
papers [Hubbard 1995a; 1995bJ—to our knowledge, the only other descrip-
tions of time-critical collision detection—complement the current article,
focusing more on the framework for the time-critical algorithm and less on
important details of building and using the sphere hierarchies. The novel
contributions of the current article are as follows:

—The preprocess that builds hierarchies of spheres specifically addresses
the goal of maximizing collision accuracy at each level of detail for a fixed
number of spheres. No previous work on hierarchies addresses this goal.
Empirical evidence suggests that the improvement in accuracy over
previous work is significant.

—Empirical tests demonstrate that the time-critical collision-detection
algorithm provides acceptable accuracy while keeping latency low and
the frame rate high and nearly constant. No previous work in collision
detection demonstrates real-time performance for so many nearly simul-
taneous collisions between objects with such complicated, highly noncon-
vex shapes. Specifically, the tests show a significant speedup over a
previous algorithm based on BSP trees, and an ability to maintain
real-time performance as objects become more complex.

We do not suggest that time-critical collision detection is appropriate in
every situation. The maximum possible accuracy will be needed for some
applications, such as a simulation that verifies the precise fit of parts in a
mechanical assembly, or one that predicts behavior dependent on sustained
contact between parts. Nevertheless, the time-critical algorithm should
increase the number of applications that can use collision detection.

The remainder of this article proceeds as follows. Section 2 motivates the
idea of trading accuracy for speed. Section 3 surveys the benefits of
previous work on collision detection, and explains why this work does not
make trading accuracy for speed unnecessary. Section 4 presents the
structure of the time-critical detection algorithm. Sections 5 through 9
describe how to build the hierarchies of spheres that approximate objects at
multiple levels of detail, and Section 10 shows some examples of these
hierarchies. Section 11 presents results from empirical tests of the detec-
tion algorithm. These results indicate that the algorithm can balance
performance and accuracy effectively. Section 12 summarizes the article
and discusses possible extensions.

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996

182 ● P. M. Hubbard

2. THE NEED FOR TIME-CRITICAL COLLISION DETECTION

The state of the art in collision detection is improving. Some detection
algorithms can provide real-time performance in some challenging test
cases, as Section 3 describes. The demands of interactive applications are
also increasing, however, and there are several arguments that only a
time-critical detection algorithm can meet these demands.

A detection algorithm must maintain real-time performance as an appli-
cation’s geometric characteristics change. Some changes occur as an appli-
cation runs: users perform actions that bring multiple objects together into
colliding and nearly colliding configurations, increasing the geometric
complexity in regions between objects. Other changes occur between runs:
designers upgrade the application by adding more objects with more detail,
increasing the geometric complexity of future runs. A time-critical algo-
rithm copes with these changes by approximating object surfaces. For
approximations with resolution independent of the real surfaces, perfor-
mance does not degrade as geometric complexity increases. Traditional
(non-time-critical) detection algorithms, on the other hand, process the real
surfaces of objects, so their processing times must necessarily increase with
geometric complexity. Such time growth is unacceptable for interactive
applications; increases in the complexity of the objects do not make users
care less about speed and responsiveness.

Because it uses approximation, a time-critical detection algorithm de-
creases accuracy. The simplest measure of a detection algorithm’s inaccu-
racy is the separation distance between two objects it considers to be
colliding. Accuracy is also affected by what the algorithm reports as the
relative orientation of the colliding surfaces. Collision response when the
separation distance is not exactly zero or the orientation is incorrect alters
the course of future frames. This cumulative inaccuracy will sometimes
cause intolerable qualitative changes, but there are reasons to believe that
it is often acceptable. With our time-critical algorithm, the inaccuracy at
the collision itself is usually small, as Section 11 demonstrates. For
colliding objects which are steered by users, the cumulative inaccuracy will
quickly disappear in many cases, because humans are skilled at correcting
subtle changes unconsciously (as when riding a bicycle). The effects on
unsteered objects may not be noticeable to users, as the correct behavior
after a collision between complicated shapes may be difficult to predict
(consider, for example, a trumpet hitting a trombone). Even if inaccuracies
are noticeable, the y may be better than the alternative, degraded perfor-
mance with improved accuracy. Hettinger and Riccio [1992] report that
users of vehicle simulators seem to suffer motion sickness more frequently
when latency is high. When poor performance does not cause “simulator
sickness, “ it can render interactive applications unresponsive and thus
ineffective; Pausch et al. [1992], for example, cite studies indicating that
latency decreases operator performance in vehicle simulators.

Full accuracy is also uncommon in the alternatives to the time-critical
algorithm. Most traditional algorithms produce temporal inaccuracy by sam-

ACM TransactionsonGraphics,Vol.15,No.3,July 1996.

Time-Critical Collision Detection . 183

pling object positions discretely; although in theory the application can choose
the sampling rate, even the fastest of these algorithms can support real-time
performance only when limited to one sample per frame. Temporal inaccuracy
thus creates spatial inaccuracy equal to the distance an object travels between
frames. This effect is present even for slow-moving objects. A human figure
walking slowly at 2.5 miles per hour, for example, travels 4.4 inches per frame,
given 10 frames per second; inaccuracy of 4.4 inches is significant on the scale
of the figure. Adaptive sampling could reduce temporal inaccuracy, but current
adaptive techniques generally cannot increase the sampling rate without
sacrificing real-time performance. In the presence of temporal inaccuracy, the
time a traditional algorithm spends checking for exact surface collisions at
each time sample may be wasted. A better approach is to seek only as much
collision accuracy as real-time constraints allow, which is the approach taken
by the time-critical algorithm.

Every application involves a variety of tasks other than collision detec-
tion. The application itself, or the people using it, should control how
processing time is distributed among the tasks to balance the overall speed
and effectiveness of the application. A detection algorithm should not have
the power to delay the rest of the application while it produces the accuracy
it alone deems important. The time-critical algorithm produces more or less
accuracy to fit the time it is given, so it gives an application flexibility to
handle competing demands.

3. REIATED WORK

The literature on collision detection is extensive. The published algorithms
incorporate many important techniques that improve performance. This
section argues, however, that these algorithms cannot meet the goals from
the previous section: maintaining the real-time performance required by
sophisticated interactive applications.

To put the previous work in perspective, it helps to consider an idealized
interactive application that calls a simple detection algorithm, as in Figure
2. This application generates frames on a simulation time scale, which may
not correspond to the wall-clock time we experience. The detection algo-
rithm is accurate to only Atd simulation time units, its minimum temporal
resolution.

The simple detection algorithm has several weaknesses, as we describe in
more detail elsewhere [Hubbard 1993; 1995 b]. The fixed time step on line 9
can cause inaccuracy or inefficiency, and the all-pairs loop on line 10 can
reduce performance. The intersection test on line 11 can also be a signifi-
cant performance bottleneck.

Several algorithms address these weaknesses by using geometry with an
extra dimension that explicitly represents simulation time. Samet and
Tamminen [1985] apply recursive subdivision to the four dimensions of
space and time. Canny [19861 derives quintic polynomials whose roots
represent the time and location of collisions. Cameron [19901 extends the
approach of Samet and Tamminen, adding a mechanism that prunes parts

ACM Transactions on Graphics, Vol. 1.5,No. 3, July 1996.

184 ● P. M. Hubbard

1 application
2 for t + to to tl in steps of Atr
3 get user input

4 update each object’s behavior as of t

5 while (collision.detection(t, collisions))

6 respond to collisions
7 render each object

8 collision.detection(tcu,,, collisions)

9 for td+- tprwto t..,, in St(?pS Of Atd

10 for each pair of objects (OI, 02)

11 if (01 intersects OZ as of td)
12 add (01, 02) to collisions
13 if (collisions)

14 ~pfev ~ td; r&Urn TRUE

15 tprev + td;return FALSE

Fig. 2. Idealized interactive application and simple detection algorithm.

of objects that cannot collide. Von Herzen et al. [1990] use Lipshitz
conditions to accelerate a form of binary search through space and time.
Duff [1992] applies interval analysis to generalize the idea of recursive
subdivision. Snyder et al. [19931 combine interval analysis with the New-
ton-Raphson root-finding technique, providing the most accurate detection
to date for collisions involving curved surfaces. All these techniques assume
knowledge of every object’s exact position throughout simulation time. This
information is available to applications that generate prescripted anima-
tions off-line, and these algorithms work well in that setting. Interactive
applications, however, feature objects whose motion is specified “on the fly”
by human users, so these algorithms cannot be used directly. To work in
this context, these algorithms would need to predict the future positions of
objects; we discuss related ideas later in this section.

Other algorithms improve on the basic algorithm without making as-
sumptions about objects’ motions. Moore and Wilhelms [1988] and Shaffer
and Herb [1992] use recursive subdivision in the form of an octree. By
repeatedly subdividing regions of space that contain more than one object,
an octree helps these algorithms avoid testing distant parts of objects for
collisions. These algorithms must update the octree when objects move,
however, and the associated computation can be significant.

Most other algorithms appropriate for interactive applications view colli-
sion detection as two phases. Replacing lines 9 and 10 in Figure 2 is the
broad phase, which finds collisions between simplified forms of the objects,
such as bounding boxes or spheres. Line 11 is the narrow phase, and it
checks for exact intersections between individual pairs of objects whose
simplified forms collide at time td.

For the broad phase, Turk [1990] and Zyda et al. [1993] use a regular
grid to identify objects that are close to each other. Baraff [1992] and Cohen

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.

Time-Critical Collision Detection ● 185

et al. [1995] describe sweep-and-prune techniques that exploit interframe
coherence to efllciently sort bounding boxes, identifying those that inter-
sect. Several authors describe ways to adaptively change the broad phase’s
time step using predictions of objects’ future positions, predictions that
often are possible for interactively guided objects. Mirtich and Canny
[19951 use upper bounds on linear and angular velocity in a priority queue
that tracks the next possible collision between convex polyhedra. We use
bounds on maximum acceleration to derive space-time bounds [Hubbard
1993, 1995 b], four-dimensional structures whose intersections predict
bounding-sphere collisions. Foisy et al. [1990] also use maximum accelera-
tions to predict collisions, employing a queuing scheme to efficiently update
the predictions. In our experience, adaptive techniques must clamp the
time step at a minimum temporal resolution Atd to avoid slowing below
real-time rates, so these techniques do not eliminate the temporal inaccu-
racy mentioned in Section 2. Several of these broad-phase algorithms
perform well in empirical tests, so we use space-time bounds in our
time-critical algorithm and we concentrate on the narrow phase in the
remainder of this article.

An early narrow-phase algorithm of theoretical importance is described
by Dobkin and Kirkpatrick [1983]. This algorithm detects the collision of
two polyhedra in O(log2 n) time, where n is the total number of vertices in
the polyhedra. A practical disadvantage of this algorithm, however, is that
it returns insufficient information for many forms of collision response (it
reports only one collision point even if multiple parts of the objects collide).
Baraff [1990] presents an algorithm that exploits interframe coherence to
efficiently detect collisions between pairs of convex objects. Nonconvex
objects must be treated as a union of convex pieces, which will cause
inefficiency for objects with complicated shapes. Sclaroff and Pentland
[19911 improve the narrow phase’s performance by approximating each
object with a new representation, a deformed superquadric ellipsoid whose
surface is modulated by a displacement map. This approach works well but
applies to only some types of objects, those with spherical topology and
“star-shaped” [Preparata and Shames 1985] surface features. Recursive
subdivision allows an algorithm to process objects with more general
shapes. One of the earliest examples of this idea is the work of Mantyla and
Tamminen [1983]. Kitamura et al. [19941 present a more modern variation
that uses octrees.

Three recent algorithms with narrow phases that use subdivision tech-
niques—the work of Smith et al. [1995], Garcia-Alonso et al. [19951, and
Ponamgi et al. [1995]—deserve particular attention. Although their broad
phases create the temporal inaccuracy discussed in Section 2, these algo-
rithms have the advantage that they achieve real-time performance for
some challenging situations. In the Smith et al. algorithm, the narrow
phase builds an octree for a subset of the faces of polygonal objects, those
faces within intersecting bounding boxes found by the broad phase. In a
sample run that finds the first collision among 15 space shuttles (528 faces
each), the algorithm performs well, taking about 0.03 seconds at the

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.

186 ● P. M. Hubbard

slowest time step (which occurs at the first collision). Few real applications
end at the first collision, however. It is unclear how the algorithm would
perform after collision response, which can cause multiple objects to collect
in colliding and nearly colliding configurations for many time steps.

The Garcia-Alonso et al. [1995] algorithm precomputes a one-level grid
subdivision for each object. The narrow phase uses these grids to search for
intersecting faces within the overlap of object bounding boxes. When
detecting interference in an unfolding satellite antenna (with 50 jointed
objects and 1500 total faces), the algorithm allows near-real-time anima-
tion at 5 frames per second. The generality of these results is unclear,
though, for several reasons. The satellite animation stops at the first
collision, which can affect performance as previously noted. For objects
connected by joints, the narrow phase uses an inexpensive test of joint
limits, and the number of satellite components handled this way is unspec-
ified. For objects not handled this way, the narrow phase must deal with
rotations to the objects and thus to their precomputed grids. Its solution is
to replace a rotated grid cell with its axis-aligned bounding box. Unfortu-
nately, such a box can bound considerably more than the original cell: when
we generated 500,000 random rotations of a unit cube, we found that its
bounding box increased in volume by a factor of 3.4 on the average and 4.7
in the worst case. Thus rotations reduce the grid’s expected efficiency for
localizing collisions.

Ponamgi et al. [19951 use a narrow phase that builds on two previous
approaches. It first uses the incremental algorithm of Lin and Canny
[19911 to check the convex hulls of the two objects for intersection. An
intersection here may involve part of a hull that covers a concavity. In this
case, the narrow phase descends a precomputed octree subdivision of the
concavity, using a hierarchical version of the Cohen et al. sweep-and-prune
technique [19951 to exploit interframe coherence. For a sample run in
which eight interlocked tori (400 faces each) bounce against each other, this
approach gives real-time performance, taking 0.038 seconds per frame. The
single, highly regular hole of a torus makes the octree approach particu-
larly effective. Multiple irregular holes will pose more of a challenge,
however, especially those involving skinny faces; the precomputed octree
leaves must bound these faces in all possible orientations, so the octrees
will be looser and less effective at localizing collisions. Half the faces of a
torus lie on its convex hull, and the interlocked configuration of the tori
could cause nearly half the collisions to involve only these hull faces; the
algorithm is optimized to detect these collisions very quickly, but how it
would perform for more general situations is unclear.

The best evaluation of a new detection algorithm involves running it and
previous algorithms in the same application. Section 11 makes a first step
towards this goal by describing a comparison between the time-critical
algorithm and one previous algorithm, an algorithm based on binary space
partitioning (BSP) trees as described by Thibault and Naylor [1987].
Another interesting comparison would involve one of the subdivision algo-
rithms, for example, the work of Ponamgi et al. [19951. This algorithm and

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.

Time-Critical Collision Detection . 187

the BSP algorithm both traverse trees, and the subdivision algorithm has
the advantage that it can sometimes detect the absence of collisions before
reaching the leaves. On the other hand, the BSP algorithm makes better
use of preprocessing. A precomputed BSP tree transforms naturally to
match a moving rigid object, which is not true of a precomputed octree or
axis-aligned grid. The preprocess that builds the BSP tree can also opti-
mize the tree’s collision-localizing properties, as Naylor [1993] describes.
We are aware of no reports that subdivision algorithms outperform the BSP
algorithm, but further comparisons between the time-critical algorithm and
other approaches such as the subdivision algorithms would be interesting
future work.

4. A TIME-CRITICAL DETECTION ALGORITHM

The majority of the algorithms from the previous section process the real
surfaces of objects, so they do more work as the surfaces become more
complicated. This article now turns to how a time-critical detection algo-
rithm avoids this problem.

4.1 Progressive Refinement

The time-critical algorithm assumes each object is approximated by a
hierarchy of spheres, which represents the object at multiple levels of
detail. Level O is the object’s bounding sphere. Subsequent levels are
unions of successively more spheres, approximating the object at higher
resolutions. Spheres are rotationally invariant, so for a rigid object, the
hierarchy is built once by a preprocess; a running application applies to
this hierarchy the same linear transformations it applies to the object, For
articulated objects, the same approach applies to each articulated compo-
nent individually. Sections 5 through 9 describe the hierarchy-building
preprocess, focusing on how it maximizes the accuracy in each level of
detail.

The time-critical detection algorithm uses these hierarchies to implement
progressive refinement. When called by the application, the algorithm
detects collisions between the level-O spheres of the hierarchies, the objects’
bounding spheres. Any broad-phase approach from Section 3 will suffice for
this step. Should the broad phase find any level-O spheres that collide as of
time step td, the algorithm enters its narrow phase. Each step of the
narrow phase descends one level in the hierarchies for one pair of objects
(still at their td positions). Descending one level involves the obvious
operations: the algorithm checks the colliding spheres at the current level
of the two hierarchies to see if their children collide. Spheres are simple
enough shapes that this collision checking is very efficient. If no spheres
from the two hierarchies collide at the current level, then that pair of
objects need no further processing as of t(l.Otherwise, the algorithm
returns the colliding spheres at the current level to the application. If the
application can devote more of the current frame’s processing time to
detection, it returns control to the algorithm to proceed with the next

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.

188 ● P. M. Hubbard

refinement step. The algorithm can continue these steps as long as the
hierarchies have the levels and the application can spare the time.

The application is free to stop the refinement at any level if available
time is exhausted. If spheres from two objects still collide at this point, the
application should invoke collision response (e.g., make the objects bounce),
using the colliding spheres as an approximation to the objects’ surface
contact; the accuracy of the detection and ensuing response depends on how
tightly the colliding spheres fit the real surfaces of the objects. The
application then proceeds to its next task for the current frame.

The processing time for this algorithm depends on the resolutions of the
sphere hierarchies. It is independent of the objects’ geometric complexity
because the algorithm does not use the hierarchies to find parts of the
objects’ real surfaces to test for collisions. If time allows, however, the
algorithm can test the real surfaces within colliding leaf spheres as a final
level of refinement.

Note that this algorithm restricts progressive refinement to the narrow
phase, with none occurring in the broad phase. Section 12 explains how this
restriction can sometimes limit performance and suggests future work that
may provide a solution.

4.2 Choosing the Amount of Refinement

To use the approach from the previous section, the application must
determine the time it can spend per frame on collision detection. The
answer depends on the application’s performance goals and the set of
activities it performs at each frame. These activities are summarized in the
code of the application from Figure 2. Ideally, the application would have
time-critical algorithms for all these activities, so it could allot a specific
amount of time for each one.

At the current state of the art, though, time-critical algorithms are rare.
For our tests, we thus used traditional algorithms for the tasks other than
collision detection. The main difficulty was predicting the time needed by
the rendering algorithm. The simplest approach is to use the average
rendering time over some number of previous frames. From this prediction
the application estimates the time which will be unused during the current
frame, and it allots this time to detection. Should rendering be faster than
predicted, the application idles for the “slack” time at the end frame, to
keep the frame from finishing too quickly. Section 11 presents results from
this approach in practice.

The detection algorithm may find multiple objects whose sphere hierar-
chies collide at the current frame. The application should refine all these
collisions in a round-robin fashion, to avoid spending all available time on
just one collision. In practice, we found it useful to require that every
collision be refined at least once (to level 1, one level better than an object’s
single bounding sphere); this approach prevented variations in predicted
rendering time from forcing undue inaccuracy in collision detection.

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.

Time-Critical Collision Detection . 189

refine-detection((s], s2), S)
SI t children of SI that intersect sz
Sz t children of Sz that intersect S1
for each pair (s{, s\), sj E S1, s; E S2

if (s; intersects s:)
add (s\, sj) to S

Fig. 3. Algorithm refining detection of collision involving spheres (s~, Sz) from different
sphere-trees,putting the result in S.

5. SPHERE HIERARCHIES

The hierarchies of spheres discussed in Section 4 involve several design
decisions. First, spheres at different levels need some sort of relationship.
An obvious approach is to make the hierarchy a tree, a sphere-tree. The
algorithm for one step of the narrow phase, from Section 4.1, is thus
straightforward and similar to hierarchical algorithms in other areas of
graphics; see Figure 3 for pseudocode. This algorithm is efficient because
testing two spheres for intersection is a very fast operation, and the
hierarchy prunes the numbers of spheres to test. Another form of relation-
ship (which we have not implemented) is a directed acyclic graph, a
sphere-DAG, in which parents can share children. In this case, the detec-
tion algorithm uses a variation of the pseudocode from Figure 3, marking
nodes to avoid repeated traversals of shared children.

The next design decision involves how the sphere hierarchy covers an
object’s surface. The strictest policy is fully conservative coverage, under
which children must collectively cover all the parts of the object their
parent covers. A looser policy is sample-based coverage, in which children
must cover a set of specific points that their parent covers. Fully conserva-
tive coverage is simpler to implement for a sphere-DAG than a sphere-tree,
as Section 9 discusses.

The final design decision is how to automatically generate the particular
spheres in the hierarchy. This question is the topic of Sections 6 through 9.

6. BUILDING SPHERE HIERARCHIES

The success of the time-critical detection algorithm depends on the prepro-
cess that builds the sphere hierarchies. The preprocess must meet three
requirements. It must be automatic, building useful hierarchies without
user intervention. It must ensure that each hierarchy is an effective search
structure, with each level pruning the parts of the next level that could be
visited by the detection algorithm. Finally, it must generate hierarchies in
which each level fits the object as tightly as possible. This requirement is
critical, because the detection algorithm could stop at any level and pass
the colliding spheres to collision response. Response based on these spheres
will be more accurate if the spheres’ surfaces are closer to the objects’ real
surfaces.

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.

190 l P. M. Hubbard

Fig. 4. Desktop lamp (626 triangles) and three levels of its octree-based sphere-tree.

6.1 Previous Approaches

The final requirement of tightness is the most challenging to meet, and it

limits the applicability of previous work on hierarchies. Octree-like recur-
sive subdivision is the basis for hierarchy-building algorithms described by
Liu et al. [19881 and by us in a previous paper [Hubbard 19931. An octree
for an object defines a sphere-tree if each occupied octant is circumscribed
by a sphere. A preprocess based on this approach has the advantages that
it is straightforward to implement and quick to execute. For the sphere-tree
in Figure 4, the preprocess took 2 seconds on a Hewlett Packard 9000/755.
The disadvantage of this approach is that it does not often produce
hierarchies that fit tightly. Figure 4 illustrates this problem, and Figures
11(a), 12(a), and 13(a) from Section 10 give further examples. These
hierarchies prevent the time-critical detection algorithm from reaching
acceptable accuracy, as empirical tests from Section 11 demonstrate.

Another class of algorithms builds a bounding hierarchy from the leaves
up, with leaf spheres enclosing “primitive” pieces of an object. These
algorithms require an appropriate set of primitives and a way to designate
siblings at each hierarchy level. Youn and Wohn [19931 and Rolhf and
Helman [19941 assume that the designer of an object addresses both these
issues by modeling the object as a hierarchy of pieces; thus these algo-
rithms do not meet the requirement of producing hierarchies automatically.
Ray-tracing renderers commonly use bounding hierarchies to reduce the
number of ray-object intersection tests. Algorithms that build hierarchies
for that application are not appropriate in the context of collision detection,
though, for the following reasons. First, these algorithms are meant to
process scenes of many objects with clearly defined primitives; the algo-
rithms are not capable of breaking a single object into primitives that yield
an effective hierarchy. Second, these algorithms optimize the hierarchy for
the characteristics of ray-object intersection tests, an approach that does
not necessarily lead to the tightly fitting sphere hierarchies needed for
collision detection. Kay and Kajiya [19861, for example, build bounding
shapes that are cheap to intersect with rays, but these shapes do not have
the rotational invariance necessary for moving objects. Goldsmith and
Salmon [19871, as another example, show that a hierarchy prunes ray-
object intersection tests most effectively if it minimizes surface area; this
criterion does not necessarily encourage a tight fit around an object,
though, as it can create artifacts such as “caps” over concavities.

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996

Time-Critical Collision Detection 191

(a) (b)

Fig. 5. (a) Heavy lines are the 2D medial axis of the grey polygon; (b) Voronoi diagram
approximating the medial axis.

The most successful approach for tightly approximating an object with
spheres is the work of O’Rourke and Badler 119791. Their algorithm fits
spheres to a polyhedron by anchoring big spheres to points on the polyhe-
dron and shrinking the spheres until they just fit inside the polyhedron.
Badler et al. 119791 extend this approach to build two-level hierarchies, but
they do not consider the more general hierarchies of greater depth neces-
sary for a time-critical detection algorithm. Section 10 examines this
approach further, comparing it to a new approach whose details are the
topic of the intervening sections.

6.2 A New Approach

Inasmuch as no previous hierarchy-building algorithms fully satisfy all
three requirements of the time-critical detection algorithm, we present a
new approach. The motivation for this approach is Blum’s 119671 medial-
axis, which corresponds to a “skeleton” or “stick figure” representation of a
two-dimensional (2D) object. Figure 5(a) shows an example. A more techni-
cal definition involves the locus of points equidistant from two sides of the
object. The three-dimensional (3D) version is a medial-axis surface. This
structure contains surfaces rather than lines, but it remains analogous to a
skeleton.

The symmetries of an object around its medial-axis surface suggest that
the latter could guide the placement of spheres that approximate the object.
Spheres placed in this manner often correspond closely to the spheres a
person would choose when approximating the object manually. Section 8
describes an algorithm that centers many spheres on the medial-axis
surface and then “merges” them to reduce the number while optimizing the
accuracy with which the object is approximated. As a precursor to this
algorithm, Section 7 discusses the building of medial-axis surfaces.

7. BUILDING MEDIAL-AXIS SURFACES

An algorithm that builds a sphere hierarchy from a medial-axis surface
must first build the medial-axis surface. This problem is not simple, and
the literature contains few solutions. Hoffmann 119901 presents the only
exact algorithm, but it is complicated and limited to constructive solid
geometry (CSG) objects. Fortunately, building sphere hierarchies does not
require exact medial-axis surfaces; approximations suffice.

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.

192 l P. M. Hubbard

Fig. 6. Each circle is centered at a Voronoi vertex and touches the object at three forming
points.

One way to approximate a medial-axis surface uses a Voronoi diagram
[Preparata and Shamos 19851. The Voronoi diagram for a discrete set of
points identifies, for each point, the region of space closer to that point than
to any of the other points. The regions are called Voronoi cells. For 2D
points the cells are convex polygons; for 3D points they are convex polyhe-
dra. Each face of a cell is equidistant between two points in the discrete set.
Thus, for a set of points P on the surface of a polyhedron, the Voronoi
diagram’s cells have faces lying roughly on the medial axis. Figure 5(b)
shows an analogous 2D situation. This idea could work for nonpolyhedral
objects, but this article focuses on the polyhedral case.

Goldak et al. 119911 develop this idea into an algorithm. Their algorithm
identifies the Voronoi vertices (corners of Voronoi cells) that lie on the
medial-axis surface. In their description of the algorithm, Goldak et al.
emphasize the general properties at the expense of specific details. The
remainder of this section summarizes the practical enhancements to the
algorithm necessary for a successful implementation.

The algorithm’s first step places the set of points P on the polyhedron’s
surface. The number of points is a parameter set by the user. In our
experience, the algorithm works better when P covers the polyhedron
uniformly, and the simplest way to achieve this goal is to use Turk’s 119911
point-placement algorithm. It first creates a random distribution of points
and then applies a relaxation technique to make the distribution even.

The second step is building a Voronoi diagram for the points. The
literature contains several algorithms for 3D Voronoi diagrams. Bowyer
[19811 presents a straightforward algorithm that incrementally adds points
to the diagram. This algorithm is not numerically robust, however, so
Inagaki et al. 119921 rephrase the algorithm to use topological properties
rather than necessarily inexact geometric computations. Unfortunately,
these extensions compromise accuracy. As a remedy, we extend the algo-
rithm to choose between equally valid topological situations based on
estimated accuracy [Hubbard 19941.

Each Voronoi vertex is the center of a sphere on which lie four points
from the set P. The four points thus associated with a vertex are its
forming points. Figure 6 shows a 2D example, in which spheres are
replaced by circles and the number of forming points is reduced to three.
The spheres centered at Voronoi vertices and the associated forming points

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.

Time-Critical Collision Detection . 193

are the foundation of the algorithm for building hierarchies from medial-
axis surfaces, as Section 8 explains.

Only the Voronoi vertices interior to the polyhedron lie on the medial-
axis surface. The third step of the algorithm identifies these vertices.
Inclusion testing is a standard geometric problem, and extensions of 2D
algorithms [Preparata and Shames 1985] apply.

Vertices in the Voronoi diagram are adjacent to each other if they lie on
the same face of a Voronoi cell. These faces may legitimately have zero
area, in which case vertices coincide. In the algorithm from Section 8 it is
convenient to treat a set of coincident vertices as one vertex that inherits
the adjacency of the set. To identify coincident vertices, simple space
subdivision [Turk 1990] is helpful. Once adjacency is recorded, the medial-
axis surface is sufficiently complete for the algorithm from Section 8.

There is the possibility of aliasing problems in the medial-axis surface. A
low density of points from P on narrow “necks” of the polyhedron or along
narrow “gaps” can cause the medial-axis surface to disconnect or bridge a
gap. Preventing these problems in advance seems difficult. In our experi-
ence, the best solution is to detect the problems after they occur and then
add more points to correct them. This process involves tinding certain
intersections between Voronoi-cell faces and the polyhedron, in particular,
intersections with parts of the polyhedron that are not adjacent to the point
p = P contained in the cell. For each such intersection, P gets an additional
point p‘, the projection of p onto the region of intersection. Complete details
of this process appear elsewhere [Hubbard 1994].

8. BUILDING SPHERE HIERARCHIES FROM MEDIAL-AXIS SURFACES

The previous section’s algorithm generates a large set of Voronoi vertices
on a polyhedral object’s medial-axis surface. Each vertex and its forming
points define a sphere, and these spheres tightly approximate the polyhe-
dron. The topic now is reducing the number of spheres while preserving as
much tightness of the approximation as possible. After discussing this
reduction process, this section describes how the hierarchy-building prepro-
cess applies it multiple times to produce a hierarchy with multiple levels of
detail.

The strategy for reducing the number of spheres is to “merge” adjacent
spheres. Merging two spheres s ~ and Sz involves replacing them with a new
sphere s ~z that covers the parts of the polyhedron they cover. For efficiency,
the preprocess approximates what a sphere covers in terms of its forming
points from the set P of points on the polyhedron’s surface (as defined in
the previous section). Thus s ~z is the bounding sphere for the forming
points associated with SI and S2; we use Ritter’s [1990] method to compute a
nearly optimal bounding sphere. Figure 7 illustrates a 2D example of
merging. After the merge, s ~z stores the union of the forming points from s,
and Sz, and any future merge involving s ~z must cover these points.

Producing a level of detail involves repeatedly merging pairs of spheres.
Choosing the pairs to merge is an optimization problem: at each repetition,

ACM Transactions on Graphics, Vol. 15. No. 3, .July 1996.

194 l P. M. Hubbard

Fig. 7. Merger of spheres s1 and s2 forms s12.

choose the minimum-cost merger, that is, the candidate pair whose
merger most preserves the level’s tightness around the polyhedron. Note
that this approach of optimizing each repetition independently is a
greedy approach, so it does not guarantee that the final result will have
the tightest possible fit; nevertheless, this approach has produced tight
fits in every test we have conducted. To identify candidate pairs for
merging, the preprocess uses the adjacency properties of the medial-axis
surface (as defined in the previous section). Initially, all spheres are
centered at Voronoi vertices on the medial-axis surface, and a pair of
spheres is a merging candidate if their vertices are adjacent in the
Voronoi diagram. When si and sg merge to become siz, then sls becomes
adjacent to the spheres adjacent to si and ss. By restricting attention to
only adjacent spheres, the preprocess avoids considering mergers of
spatially distant spheres, the results of which would be undesirably
large spheres. Adjacent spheres also reflect the medial-axis surface’s
ability to trace the skeleton of a polyhedral object, so mergers of
adjacent spheres tend to respect the conceptual organization of the
object.

The cost function for the optimization must return a low value when the
merger of candidates si and sz to form srz would preserve tightness around
the polyhedron. A useful approach is based on the Hausdorff distance
[Preparata and Shamos 19851 from s& to the polyhedron. This distance is
defined as the maximum, over all points on srz’s surface, of the minimum
distance from that point to the polyhedron. A cost function computing this
distance would return low costs in the appropriate cases, but we have found
no way to compute this distance exactly for nonconvex polyhedra; as we
explain elsewhere [Hubbard 19941, a straightforward algorithm (albeit one
with a complicated correctness proof) computes this distance exactly for
convex polyhedra, but the algorithm seems to overestimate the distance for
nonconvex polyhedra, even when expressed as unions of convex pieces. We
thus use a function that approximates the Hausdorff distance. For each
forming point of si or s2, the function measures the distance to si2’s surface
along the normal direction for the polygon containing the point; the
maximum of these distances is the cost returned by the function. To
compute the distance for a forming point at position p, the function first
projects sr2’s center c onto the plane of the polygon containing p. Letting c’

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.

Time-Critical Collision Detection 195

Fig. 8. Computing distance from p to a sphere.

be the projection of c, d, be the distance from c to c’, d, be the distance
from p to c’, and r be the radius of s12, then the distance from p to s12 is

Whether to add or subtract d, depends on the relative positions of p to c, as
illustrated in Figure 8. This form of the cost function strikes a balance
between efficiency and accuracy that works well for the merging operation.
Section 9.2 discusses a different, more accurate approximation which is
useful for measuring the tightness of a hierarchy when the merging is
complete.

To control the repetitions of merging, the preprocess uses a priority
queue. This queue ranks pairs of adjacent spheres according to their
merging cost, allowing the preprocess to quickly find the optimal merge.
After each merge the preprocess updates the queue to reflect changes in
adjacency. Building the queue initially takes some time, but updating it is
very efficient.

Building a full hierarchy requires that the preprocess apply the repeated-
merging technique in multiple passes. For a sphere-tree, the preprocess
first merges all the spheres centered at Voronoi vertices to produce a fixed
number of children for the root (the polyhedron’s bounding sphere). To
subsequently build children of a parent anywhere in the hierarchy, the
preprocess starts over with all the Voronoi vertices whose spheres merged
to form the parent; it repeatedly merges these spheres until the desired
number of children remain (we give each parent eight children, to match
the branching factor of an octree). For a sphere-DAG, the preprocess
merges the spheres centered at all Voronoi vertices down to the appropriate
number for each level independently.

The merging process only guarantees that forming points are covered.
The rest of the polyhedron tends to get covered as well, but to ensure fully
conservative coverage the techniques from Section 9 are necessary. Section
10 shows sphere-trees built with the merging process and discusses the
preprocessing time involved.

9. COMPLETING THE HIERARCHIES

Once the preprocess has used merging to build a sphere hierarchy that
approximates a polyhedral object, two extra steps can give the hierarchy
some useful properties.

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.

196 l P. M. Hubbard

Fig. 9. Boundary lemma.

9.1 Ensuring Conservative Coverage

The algorithm from Section 8 tends to produce spheres whose coverage of
the object is nearly conservative. Fully conservative coverage is also
valuable, though. With this form of coverage, the time-critical algorithm
can support a final level of exact detection: leaf spheres store the object’s
polygons they intersect, and the algorithm compares the polygons in
colliding leaves from different hierarchies.

Conservative coverage has different requirements for different types of
hierarchies. For a sphere-tree, the safest policy is for children to collec-
tively cover everything their parent covers. For a sphere-DAG, all the
spheres at hierarchy level +Y must collectively cover the whole polyhedron
(assuming the parents at level e - 1 have as children every level-e sphere
they intersect). In each case, the basic operation is determining if each
polyhedral face-assumed to be a triangle-is covered by a set of spheres.
Checking a triangle for coverage is a 2D problem: each sphere that
intersects the triangle corresponds to a solid 2D disk in the triangle’s
plane, and the union of these disks must cover the triangle. For sphere-
trees, the disks need only cover the part of the triangle inside another
“clipping disk,” corresponding to the parent sphere.

The outer circles or boundaries of these solid disks figure prominently in
the solution to the 2D problem. Specifically, the following boundary lemma
simplifies the problem: the triangle (within the clipping disk) is covered by
the disks if and only if for each disk, the part of its boundary inside the
triangle (and within the clipping disk) is covered by other disks. We prove
this lemma elsewhere [Hubbard 19941, but Figure 9 gives an intuitive
justification; note that the uncovered region U is ringed by uncovered
portions of disk boundaries. Implementing a coverage-checker based on the
boundary lemma is straightforward, because the bookkeeping involves
primarily set operations on one-dimensional intervals representing disk
boundaries. If any face is found to be not covered, the simplest remedy is to
iteratively enlarge the spheres that intersect the face until there is cover-
age.

In our experience, applying the safest policy to sphere-trees made them
noticeably “looser.” We thus chose to apply the sphere-DAG policy to
sphere-trees, which at least guarantees that every polygon is fully covered
by some set of spheres. Section 11 gives empirical results that suggest that
this approach can be as conservative as the safest policy in practice.

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.

Time-Critical Collision Detection l 197

Fig. 10. Separation distance is less than the sum of the Hausdorff distances (heavy lines).

9.2 Measuring Accuracy

A running application might want the time-critical detection algorithm to
report the inaccuracy of each collision as it is detected. Recall from Section
2 that an important factor in the inaccuracy of a detection algorithm is the
separation distance between two objects it designates as colliding. Unfortu-
nately, computing this distance exactly is expensive enough that doing so
negates the benefits of time-critical collision detection.

An upper bound on this distance is quickly computed, however, if the
preprocess stores with each sphere of the hierarchy the distance from
the sphere to the polyhedron. This distance is defined in Section 8 to be
the Hausdorff distance: the maximum, over all points on the sphere’s
surface, of the minimum distance from such a point to the polyhedron.
When two spheres from different hierarchies collide, the sum of their
Hausdorff distances is an upper bound on the enclosed polyhedra’s
separation distance, as illustrated in Figure 10. A tighter upper bound is
this sum minus the overlap of the spheres. For collisions involving
multiple pairs of spheres from the two hierarchies, the best estimate of
the separation distance is the minimum of the upper bounds over all the
pairs. This approach gives a true upper bound only if the sphere
hierarchy covers the object conservatively, but the technique from
Section 9.1 will make any hierarchy at least nearly conservative, so we
advocate this view of accuracy in general.

As Section 8 mentions, there seems to be no way to compute the exact
Hausdorff distance from a sphere to a nonconvex polyhedron. That section
derived an inexpensive approximation to the distance that works well for
the merging operation. For the purposes of measuring separation distance,
a more expensive and accurate approximation is useful; the extra expense
is justified because the preprocess performs this computation only once,
when the hierarchy is complete. The approach involves computing the
minimum distance to the polyhedron from a discrete set of points on the
sphere, such as the vertices of an inscribed dodecahedron. The maximum of
these distances approximates the true Hausdorff distance. Adding a correc-
tion term-the maximum distance from the sphere’s surface to the nearest
dodecahedron vertex-makes the approximation a true upper bound. Com-
puting the minimum distance from a dodecahedron vertex to the polyhe-
dron is straightforward, involving computing the minimum distance to each
polyhedral face. Space subdivision techniques can prune the set of faces,
making the computation more efficient.

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.

198 . P. M. Hubbard

(a) Octree. (b) Medial-axis surface.

Fig. 11. Bathroom faucet (1,288 triangles): (a) octree; (b) medial-axis surface.

10. SPHERE HIERARCHY RESULTS

The hierarchy-building algorithm from Sections 7 through 9 worked well in
our tests. Figures 1, 11(b), 12(b), and 13(b) show some results. All four
sphere-trees are conservative according to the sphere-DAG policy from
Section 9.1. On a Hewlett Packard 9000/735, building the sphere-tree for
the lamp took 12.4 minutes, the faucet 14.2 minutes, the rocket 21.8
minutes, and the truck chassis 2.7 hours. These times included all opera-
tions, including measuring accuracy as in Section 9.2. Note that these
preprocessing times are amortized each time an object is used in an
application.

The results of the hierarchy-building algorithm compare favorably to an
octree-based algorithm in terms of accuracy. Figures 4, 11(a), 12(a), and
13(a) show that the results of the octree algorithm are visibly less accurate.
For a more quantitative comparison, we used the technique of Section 9.2
to measure the Hausdorff distance to the polyhedron for each sphere in
each hierarchy. For a given level of the hierarchy, two measures of the
inaccuracy are the average and maximum Hausdorff distances over all
spheres at that level. Figure 14 gives these measures for the four objects.
By these measures, the inaccuracy of the sphere-trees built with our
algorithm is only a fraction of the inaccuracy for octree-based sphere-trees.

It is worth comparing the algorithm from Sections 7 through 9 to the
work of Badler et al. [19791 and O’Rourke and Badler 119791. Their
algorithm also begins with a set of points distributed over the surface of the
polyhedron. The algorithm repeatedly chooses a point, anchors a big
sphere to it, and shrinks the sphere until it bounds none of the other
points; this process produces a set of spheres that fit just inside the
polyhedron. For an articulated object, the algorithm bounds the spheres
associated with each jointed component with another sphere, creating a

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.

Time-Critical Collision Detection l

(a) Octree. (b) Medial-axis surface.

Fig. 12. Rocket (1,420 triangles): (a) octree; (b) medial-axis surface.

(a) Octree. (b) Medial-axis surface.

Fig. 13. Truck chassis seen from below (10,171 triangles): (a) octree; (b) medial-axis surface.

two-level hierarchy. This work is important as early evidence that
objects can be successfully approximated with spheres. Our work contin-
ues in this tradition, and adds several significant improvements: build-
ing hierarchies of more than two levels, optimizing the tightness of the
spheres’ fit, checking for conservative coverage, measuring accuracy,
and using all these techniques in a time-critical context. These improve-
ments are essential for a detection algorithm that meets the needs of
interactive applications.

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.

200 . P. M. Hubbard

II fraction of octree’s
model level average inaccuracy maximum inaccuracy
lamp 1 0.442 0.494

2 0.220 0.485
3 0.164 0.433

faucet 1 0.492 0.552
2 0.358 0.439
3 0.377 0.687

rocket 1 0.654 0.728
2 0.546 0.690

3 0.379 0.979

truck 1 0.571 0.671
2 0.389 0.450
3 0.286 0.531

Fig. 14. Accuracy of medial-axis sphere-treescomparedto octree sphere-trees.

11. COLLISION DETECTION PERFORMANCE

To see how well the time-critical detection algorithm exploits the sphere
hierarchies, we tested its performance empirically, comparing it to an
algorithm based on BSP trees [Thibault and Naylor 1987]. These tests
demonstrated that hierarchies built from medial-axis surfaces provide
acceptable accuracy (improving on hierarchies built from octrees) and
significant speedups. Most important, the hierarchies allowed interactive
performance that was not otherwise possible, and they maintained this
performance as objects became more complex.

11.1 Sample Application

The context of the tests was a simple spaceship simulator. This simulator
allows a user to interactively control a ship flying among autonomous drone
ships. The user controls her ship’s forward acceleration and rotational
velocity, and the simulator computes its motion according to a simplified
dynamics model, solving the ordinary differential equations using a second-
order Runge-Kutta method with adaptive step size [Press et al. 1992]. The
drones move according to the same model and pick their control parameters
at random every few seconds. Each ship is free to collide with the other
ships, and the simulator detects all collisions using one of the detection
algorithms, or it calls both to compare their performances.

The ships can use as geometry any of the models from Figures 1, 11, 12,
or 13. We built sphere-trees and BSP trees for the particular geometry as
preprocessing. The sphere-trees had levels 1 through 3 depicted in the
figures plus an additional level, 4. The BSP trees were optimized to avoid
face-splitting, a heuristic that pilot studies indicated makes the BSP trees
more efficient. At run-time, both detection algorithms used a broad phase
based on space-time bounds [Hubbard 1993; 1995bl to find bounding-
sphere collisions.

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.

Time-Critical Collision Detection + 201

The simulator’s collision response is quite simple. When two ships
collide, the response algorithm determines if the ships are converging by
checking the relative velocities of the colliding spheres (for BSP trees, it
uses the bounding spheres). If they are converging, it applies energy and
momentum conservation to change the ships’ velocities, causing them to
bounce. It ignores rotational velocity for simplicity. The user’s ship has
infinite mass, so it affects other ships but is not itself affected. This
collision response improves on what we used in our companion paper
[Hubbard 1995bl, which “teleports” the colliding objects to their noncollid-
ing positions from the start of the simulation.

11.2 Performance at Each Hierarchy Level

The first set of tests studied the performance available from each level in
the sphere-trees. The ships used the lamp geometry from Figure 1; we
chose this shape because the deep concavities create complicated collision
patterns. The simulator application called both detection algorithms at
each frame. It refined the sphere-trees to the deepest colliding level; it also
used the idea from Section 9.1 for comparing polygons stored in leaf
spheres, giving an extra level of refinement, designated level 5. For each
level t, it recorded the speedup of sphere-trees, defined as:

processing time for BSP trees
speedup = - —-=-– . ..—

processing time for sphere-trees” to level /?”

Note that a speedup greater than 1 indicates that the sphere-trees are
faster. These tests ran on a Hewlett Packard 9000/755, with the user-
controlled ship and ten drones. The total number of calls to each algorithm
(each call corresponding to one pair of ships whose bounding spheres
collided) was 86,083, and the calls featured ships in a wide variety of
relative orientations.

Histograms of the speedups for all 86,083 calls appear in Figure 15. The
histograms show that, not surprisingly, the speedup was greater when the
detection algorithm had not descended so far down the sphere-tree. Even
so, sphere-trees were significantly faster than BSP trees at all levels except
level 5, the level of the objects’ real surfaces; even at this level, sphere-trees
were faster in 75. lYc of the calls.

If the application were to stop the refinement at a level with colliding
spheres, it would invoke collision response on objects that are not quite
touching, creating some inaccuracy. As Section 9.2 discusses, the algorithm
can report its inaccuracy in this situation, giving an upper bound on the
separation distance between the objects. The histograms in Figure 16 show
how this measure of inaccuracy improved for deeper levels in the sphere-
trees. These results and the histograms from Figure 15 suggest that
time-critical collision detection does allow a flexible tradeoff between speed
and accuracy.

The tests also suggest an interesting conjecture about conservative
coverage. Using level 5 (testing the polygons stored in the level-4 spheres),

ACM Transactions on Graphics, Vol. 15, No. 3, .July 1996.

202 ● P. M. Hubbard

Level 1
lm ~
14W30

12000

llMOO

8CN30

JL

20(XI-1 I
“u

o m 1000 1503 2WKI 2500 3m0
speedup(BSP-treetime/ sphere-hi%time)

Level3

1800 ~
1600 -
14C0 -

12C0 -

lofx -

8C43-

600 -

21X3
n
“o 500 1C4XI1500 2000 2500 3003

spedup (BSP-trIXtime/ sphere-treetime)

Level2
1am , 1 , r ,
16CKI-

1403 -
I2CQ-

1000 -
803 -

600 -

400 -

2CKI-

0
0 54M 1000 151YJ 2W3 250Q 30CHI

speedup(BSP-tr&timeI sphere-treetime)

1800

160fl

14a3

1200

1000
800

m

400
200

n

Level4

I
1 I I 1 I

1
L J

“o SIX 1000 151M 20013 2500 3000
speedup(BSP-treetime/ sphtre-tI&time)

Level5
2001, I 1

01 5 10 15 20
speedup(BSP-tr@time/ sphemtw time)

Fig. 15. Histograms of speedup of sphere-trees over BSP trees.

the sphere-tree algorithm found the same set of 804 collisions that the
BSP-tree algorithm detected. One would expect this result only if the
sphere-tree actually covers the object conservatively. So, applying the
simpler sphere-DAG policy for conservative coverage to sphere-trees (see
Section 9.1) may be as useful in practice as generating full coverage.

11.3 Sustainable Real-Time Performance

The second set of tests evaluated the detection algorithms’ ability to
maintain real-time performance. We ran the application once using BSP

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.

.

.

Time-Critical Collision Detection . 203

g 12C0 1200 -
:
=0 loco [@lo
.
% 80U 800 -

gwo - 600 -

2 403 4(W -

200 - 200 -

0 n
o 0.5 1 1,5 0 0.5 I 1,5

sepw~tionc6sumce(fr~ctionof bounding-sphereradius) separwiondistance(fmc[ion of bounding-sphereradius)

Level 3
1(5CO, I r 1 1603

1400

g 12CW3
.-
2 ,m~
“
% 8(UI-

$600 -
ac 403 -

200 -

0 ~
o

bvel 4

Ll;

14(XI

1200

1000

800

600

200

0
05 I Is n n5 1 15-..

separaoondistance(fractionof bounding-sphereradius) separationdistance(fractionof bounding-sphereradius)

Fig. 16, Histograms of sphere-tree accuracy,

trees, then again using two versions of sphere-trees. For the runs using
sphere-trees, the application used the strategy from Section 4.2, stopping
the detection algorithm’s progressive refinement in order to meet a target
frame rate.

These tests ran on a HewIett Packard 9000/755 with TVRX T4 graphics
acceleration. No time-critical operating system or rendering was available.
Having these components would likely improve the performance of the
application, but it is interesting to see how time-critical collision detection
alone affects performance.

The first set of tests involved the user’s ship plus nine drones. As in the
tests from Section 11.2, each ship used the 626-triangle lamp geometry
from Figure 1. Simulation time ran from O to 40, with the application
rendering frames every M, = 0.1 time units. The minimum temporal
resolution for detection was Atd = 0.05 units. Note that the detection
algorithms thus sample each object’s position twice per frame. The applica-
tion’s performance goal was making simulation time match wall-clock time,
that is, computing each frame in 0.1 seconds.

For a run involving 780 collisions,l Figure 17 tracks per-frame processing
time for BSP trees. The time includes times for the broad phase and

‘ The number of collisions was rather large for 400 frames because the simple collision
responserequiredseveral frames to fully eliminate some collisions.

ACM Transactions on Graphics, Vol. 1.5,No. 3, July 1996.

P. M. Hubbard

12 , , , , a 1 1
I

“o 5 10 15 20 25 30 35 40
simulationtime

Fig. 17. Performance with BSP trees for test involving 10 lamps. For detection time: mean =
5.825, std. dev. = 1.586, max. = 10.627.

collision response, but these times were insignificant. This graph indi-
cates that BSP trees caused the application to miss its target frame time
at almost all frames, often being between 10 and 100 times too slow. An
MPEG animation of this run is available orI the World Wide Web at URL
http://www.acm. org/pubs/tog/’hubbard96fi follow the link labeled “Run l“.

The next run used the time-critical algorithm with octree-based sphere-
trees, as depicted in Figure 4. Performance was much closer to the target of
0.1 seconds per frame, but accuracy was poor. Due to the “looseness” of the
octree-based sphere-trees, objects separated by large distances still had
colliding sphere-trees when the detection algorithm exhausted its allowable
processing time; thus collision response made objects bounce when they
were nowhere near touching. The World Wide Web page mentioned previ-
ously shows an MPEG animation of this run; follow the link labeled “Run
2“. This animation demonstrates the disadvantages of hierarchy-building
techniques that do not address the specific needs of time-critical collision
detection.

In the third run, the time-critical algorithm used sphere-trees built from
medial-axis surfaces. The run involved 274 collisions; Figure 18 categorizes
these collisions by the sphere-tree levels at which collision response was
invoked. A performance profile of the run appears in Figure 19. The graph
shows the time spent by collision detection (including the broad phase and
collision response) and rendering, as well as the “slack” time (see Section
4.2) and the overall frame time.z Note that the frame time meets the target
of 0.1 seconds at most frames, and the deviations that do occur are small.
The accuracy is also quite reasonable, as can be seen in an MPEG
animation from the World Wide Web page mentioned before; follow the link
labeled “Run 3.” Figure 20 shows a frame from this animation. This test

2To measurethe time spent solving the differential equationsfor motion control would have
required too many time-consumingcalls to the system clock, so portions of this time are
included in both the detection and renderingtimes. Pilot studies indicated that the time the
applicationspent on motion control was insignificant,however.

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.

Time-Critical Collision Detection 205

Fig. 18. Sphere-tree levels at which collision response was invoked, for test involving 10
lamps.

Fig. 19. Performance with sphere-trees from medial-axis surfaces for test involving 10 lamps.
For frame time: mean = 0.101, std. dev. = 0.002, max. = 0.116. For detection time: mean =
0.019, std. dev. = 0.003, max. = 0.028.

Fig. 20. Frame from run profiled in Figure 19. Light colored lamps have just collided.

confirms that the time-critical algorithm can provide real-time performance
not possible with the BSP algorithm.

For a final test, we ran the application with significantly more complex
geometry. Nine drone ships each used the 10,171-triangle truck geometry
from Figure 13, and the user’s ship used the lamp geometry. The total
number of triangles was thus 92,165, which is more than ten times the
number tested by Smith et al. [19951, the maximum in the literature for

ACM Transactions on Graphics, Vol. 15. No. 3, July 1996.

206 l P. M. Hubbard

Fig. 21. Performance with sphere-trees from medial-axis surfaces for test involving one lamp
and nine truck chassis. For detection time: mean = 0.018, std. dev. = 0.005, max. = 0.047.

Fig. 22. Frame from run profiled in Figure 21. Light colored trucks have just collided.

nonconvex objects. With this many triangles, rendering became the bottle-
neck on our hardware, taking more than 0.9 seconds at almost every frame.
The application thus aimed for a target of 1 frame per second; this target is
clearly not interactive performance, but it limits collision detection to a
time budget that would allow interactive performance with faster render-
ing. For 43 collisions (all at level 4), the application met the target frame
rate, as illustrated in the profile from Figure 21. Figure 22 shows a
snapshot of the run, and an MPEG animation showing more appears on the
World Wide Web page previously mentioned; follow the link labeled “Run
4”. Note that the detection algorithm used an average of only 0.018 seconds
per frame. These results are evidence that time-critical collision detection
maintains real-time performance as objects become more complicated.

12. CONCLUSIONS AND FUTURE WORK

This article presents a time-critical collision-detection algorithm that
trades accuracy for speed. The foundation of the algorithm is a preprocess

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.

Time-Critical Collision Detection . 207

that builds sphere hierarchies automatically from medial-axis surfaces of
polyhedral objects; this preprocess specifically optimizes the tightness with
which each hierarchy level approximates an object. Empirical results
indicate that this preprocess improves on previous hierarchy-building
techniques in meeting the needs of time-critical collision detection. Tests
with a sample application demonstrate that the time-critical detection
algorithm provides acceptable accuracy while maintaining real-time perfor-
mance that is not possible with a previous algorithm. These tests also
indicate that the time-critical algorithm can preserve real-time perfor-
mance even as geometric complexity increases.

This work suggests several extensions and improvements. The hierarchy-
building algorithm works well but it was not simple to implement. The
most complicated part is the algorithm from Section 7 for medial-axis
surfaces, so a simpler approach to this subproblem would help. A version of
the algorithm to build sphere-DAGs is also worth implementing. Another
issue to explore is redundancy, that is, spheres whose removal from the
hierarchy does not affect conservative coverage. The boundary lemma from
Section 9.1 would help to detect redundancy, but we have not yet experi-
mented with an implementation based on it. Hierarchies of spheres may
not be the best way to approximate some objects. A flat wall, for example,
poses problems in that many spheres are required to form a tight approxi-
mation for a few triangles. One solution to this problem might be to use
hybrid hierarchies that incorporate boxes (or some other flat-side primitive)
in addition to spheres. Regardless of the hierarchy primitives, the algo-
rithm that traverses the hierarchies may be able to exploit interframe
coherence. Remembering the hierarchy nodes that collided at the previous
frame may reduce the work required to find the colliding nodes for the
current frame.

Because all of the algorithm’s progressive refinement occurs in the
narrow phase, there may be situations in which the algorithm cannot
guarantee real-time performance. lf many pairs of objects are simulta-
neously colliding or nearly colliding, then the broad phase may not have
enough time to detect all collisions between the objects’ bounding spheres.
Solving this problem requires some sort of progressive refinement in the
broad phase. One approach would involve allowing the broad phase to
selectively ignore collisions between user-designated “unimportant” objects.
The broad phase would devote its time to objects that are important for the
particular application, moving on to other objects only when it has extra
time.

ACKNOWLEDGMENTS

The majority of this work was conducted as part of the author’s doctoral
studies at Brown University. The guidance of John “Spike” Hughes was
essential to the completion of this work. Andy van Dam, Jim Kajiya, Franco
Preparata, Peter Shirley, and Don Greenberg also made important contri-
butions. Jim Arvo deserves special mention for implementing the tests of

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996.

208 c P. M. Hubbard

random cube rotations from Section 3. At Brown and Cornell, this work was
supported in part by the NSF/ARPA Science and Technology Center for
Computer Graphics and Scientific Visualization, and by Hewlett Packard.
At Brown, additional support was provided by: Sun Microsystems;
Autodesk; Taco, Inc.; ONR grant NOO014-91-J-4052 ARPA order 8225;
NCR; lBM; Digital Equipment Corporation; Apple; and Microsoft.

REFERENCES

BADLER, N. I., O’ROURRE, J., AND TOLTZIS, H. 1979. A spherical representationof a human
body for visualizing movement.Proc. IEEE 67, 10 (Oct.), 1397–1403.

BARAFF, D. 1992. Dynamic simulation of non-penetrating rigid bodies. Dept. of Computer
Science, Cornell Univ., Ph.D. Thesis, March.

BARAFF, D. 1990. Curved surfaces and coherence for non-penetrating rigid body simulation.
In Proceedings of SIGGRAPH ’90, published as Comput. Graph. 24, 4 (Aug.), 19–29.

BLUM, H. 1967. A transformation for extracting new descriptors of shape. In Models for the
Perception of Speech and Visual Form, W. Wathen-Dunn,Ed., MIT Press, Cambridge,MA,
362–380.

BOWYER,A. 1981. Computing Dirichlet tessellations. Comput. J. 24, 2, 162–166.
BROORS, F. P., JR. 1988. Grasping reality through illusion—interactive graphics serving

science. In Proceedings of CHZ ’88 (May), 1–11.
CAMERON, S. A. 1990. Collision detection by four-dimensional intersection testing. IEEE

Trans. Robot. Autom. 6, 3 (June), 291-302.
CANNY,J. 1986. Collision detection for moving polyhedra. IEEE Trans. Pattern Anal. Mach.

Zntell. 8, 2 (March), 200–209.
COHEN, J. D., LIN, M. C., MANOCRA, D., AND PONAMGt,M. K. 1995. I-COLLIDE: An interac-

tive and exact collision detection system for large-scale environments. In Proceedings of the
1995 Symposium on Interactive 3D Graphics (Monterey, CA), 189–196.

DOBKIN, D. P., AND KIRRFATRICK, D. G. 1983. Fast detection of polyhedral intersection.
Z’heor. Comput. Sci. 27, 3 (Dec.), 241-253.

DUFF, T. 1992. Interval arithmetic and recursive subdivision for implicit functions and
constructive solid geometry. In Proceedings of SIGGRAPH ’92, published as Comput. Graph.
26, 2 (July), 131-138.

FOISY, A., HAYWARD,V., ANDAUBRY, S. 1990. The use of awareness in collision prediction. In
Proceedings of the 1990 IEEE International Conference on Robotics and Automation,
338–343.

FUNKHOUSER,T. A. AND SEQUIN, C. H. 1993. Adaptive display algorithm for interactive
frame rates during visualization of complex virtual environments. In Proceedings of SZG-
GRAPH ’93, published as Computer Graphics Proceedings, Annual Conference Series (Aug.),
247–254.

GARCIA-ALONSO, A., SERRANO, N., AND FLAQUER, J. 1995. Solving the collision detection
problem. IEEE Comput. Graph. Appl. 14, 3 (May), 36-43.

GOLDAK,J. A., Yu, X., KNIGHT, A., AND DONG, L. 1991. Constructing discrete medial axis of
3-D objects. Znt. J. Comput. Geometry AppL 1, 3, 327-339.

GOLDSMITH, J. AND SALMON, J. 1987. Automatic creation of object hierarchies for ray
tracing. IEEE Comput. Graph. AppL 7, 5 (May), 14–20.

GRANIERI,J. P., CRARTREE,J., AND BADLER, N. L 1995. Production and playback of human
figure motion for 3D virtual environments. In Proceedings of the IEEE Virtual Reality
Annual International Symposium (March), 127–135.

HE’rTINGER, L. J. AND RICCIO, G. E. 1992. Visually induced motion sickness in virtual
environments. Presence 1, 3 (Summer),306–310.

HOFFWN, C. M. 1990. How to construct the skeleton of CSG objects. In The Mathematics
of Surfaces ZV. A. Bowyer and J. Davenport, Eds., Oxford University Press, Oxford.
Available as Tech. Rep. CSD-TR-1014, Computer Sciences Department, Purdue University.

ACM Transactions on Graphics, Vol. 15, No, 3, July 1996.

Time-Critical Collision Detection . 209

HUBBARD, P. M. 1995a. Real-time collision detection and time-critical computing. In Pro-
ceedings of the First ACM Workshop on Simulation and Interaction in Virtual Environments

(JuiY), 92–96.
HUBBARD, P. M. 1995b. Collision detection for interactive graphics applications. IEEE

Trans. Visual. Comput. Graph. 1, 3 (Sept.), 218–230,
HUBBARD, P. M. 1994. Collision detection for interactive graphics applications. Dept. of

Computer Science, Brown University, Ph.D. Thesis. Oct. Available at ftp://ftp.cs.brown. edul
pub/techreports/95/cs95 -08 ,ps,Z.

HUBBARD, P. M. 1993. Interactive collision detection. In Proceedings of the 1993 IEEE
Symposium on Research Frontiers in Virtual Reality (Oct.), 24-31.

INAGAKI,H., SUGIHARA,K., AND SU~IE, N. 1992. Numerically robust incremental algorithm
for constructing three-dimensional Voronoi diagrams. In Proceedings of the Fourth Cana-
dian Conference on Computational Geometry, 334–339.

KAY, T. L. AND KAJIYA, J. T. 1986. Ray tracing complex scenes. In Proceedings of SIG-
GRAPH ’86, published as Comput. Graph. 20, 4 (Aug.), 269–277.

K]TAMURA,Y., TAKEMURA,H,, AHUJA, N., AND KISHINO, F, 1994. Efllcient collision detection
among objects in arbitrary motion using multiple shape representations. In Proceedings
12th L4PR International Conference on Pattern Recognition (Oct.), 390–396.

LIN, M. C. AND CANNY, J. F. 1991. A fast algorithm for incremental distance calculation. In
Proceedings 1991 IEEE International Conference on Robotics and Automation, 1008-1014.

LIU,Y., NOBORIO, J., AND ARIMOTO, S. 1988. Hierarchical sphere model (HSM) and its
application for checking an interference between moving robots. In Proceedings of the IEEE
International Workshop on Intelligent Robots and Systems, 801-806.

MACIEL, P. W. C. AND SHIRLEY, P. 1995. Visual navigation of large environments using
textured clusters. In Proceedings of the 1995 Symposium on Interacti ue 3D Graphics

(Monterey,CA), 95–102.
MANTYLA, M. AND TAMMINEN, M. 1983. Localized set operations for solid modeling. In

Proceedings of SIGGRAPH ’83, published as Comput. Graph. 17, 3 (July), 279-287.
MIRTICH,B. ANDCANNY,J. 1995, Impulse-based simulation of rigid bodies. In Proceedings of

the 1995 Symposium on Interactive 3D Graphics (Monterey, CA), 181-188.
MOORE, M. P. ANDWILHELMS,J. 1988. Collision detection and response for computer anima-

tion. In Proceedings of SIGGRAPH ’88, published as Comput. Graph. 22, 4 (Aug.), 289-298.
NAYLOR, B. F, 1993. Constructing good partitioning trees. In Proceedings of Graphics Inter-

face ’93 (May), 181-191.
OROURKE, J. AND BADLER, N. 1979. Decomposition of three-dimensional objects into

spheres. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1, 3 (July), 295–305.
PAUSCH, R., CREA, T., AND CONWAY, M. 1992. A literature survey for virtual environments:

Military flight simulator visual systems and simulator sickness. Presence 1, 3 [Summer),
344-363.

PONAM~I, M. K., MANOCHA, D., AND LIN, M. C. 1995. Incremental algorithms for collision
detection between solid models. In Proceedings of the Third ACM Symposium on Solid
Modeling and Applications (May), 293-304.

PREPARATA, F. P. AND SHA~OS, M. 1, 1985. Computational Geometry: An Introduction.
Springer-Verlag, New York.

PRESS, W. H., TEUKOLSKV,S. A., VETTERLtNG,W. T., AND FLANNERY,B. P. 1992. Numerical
Recipes in C, 2nd edition, Cambridge University Press, Cambridge, England.

RITTER, J. 1990. An et%cient bounding sphere. In Graphics Gems. A. S. Glassner, Ed.
Academic Press, Boston, MA, 301–303.

ROHLF, J. AND HELMAN, J. 1994. IRIS performer: A high performance multiprocessing
toolkit for real-time 3D graphics, In Proceedings of SIGGRAPH ’94, published as Computer

Graphics Proceedings, Annual Conference Series (July), 381-394.
SAMIIT, H. AND TAMMINEN, M. 1985. Bintrees, CSG trees, and time. In Proceedings of

SIGGRAPH ’85, published as Comput. Graph. 19, 3 (July), 121-130.
SCLAROFF,S. ANDPENTLAND,A. 1991. Generalized implicit functions for computer graphics.

In Proceedings of SIGGRAPH ’91, published as Comput. Graph. 25, 4 (Aug.), 247-250.

ACM Transactions on Grsphics, Vol. 15, No. 3, July 1996

210 ● P. M. Hubbard

SHAFFER, C. A. AND HERB, G. M. 1992. A real-time robot arm collision avoidance system.
IEEE Trans. Robot. Autom. 8, 2 (April), 149-160.

SMITH, A., KITAMURA, Y., TAKEMURA, H., AND KISHINO, F. 1995. A simple and efficient
method for accurate collision detection among deformable objects in arbitrary motion. In
Proceedings of the IEEE Virtual Reality Annual International Symposium (March), 136–
145.

SNYDER,J, M., WOODBURY,A. R., FLEISCHER,K., CURRIN, B., ANDBARR, A. H. 1993. Interval
methods for multipoint collisions between time-dependent curved surfaces. In Proceedings of
SIGGRAPH ’93, published as Computer Graphics Proceedings, Annual Conference Series

(Aug.), 321-334.
THIBAULT,W. C. AND NAYLOR, B. F. 1987. Set operations on polyhedra using binary space

partitioning trees. In Proceedings of SIGGRAPH ’87, published as Comput. Graph. 21, 4

(July), 153-162.
TURK, G. 1991. Generating textures on arbitrary surfaces using reaction-diffusion. In

Proceedings of SIGGRAPH ’91, published as Comput. Graph. 25, 4 (Aug.), 289-298.
TURK, G. 1990. Interactive collision detection for molecular graphics. Tech. Rep. TR90-014,

Department of Computer Science, The University of North Carolina at Chapel Hill, Jan.
VAN DAM, A. 1993. VR as a forcing function: Software implications of a new paradigm. In

Proceedings of the 1993 IEEE Symposium on Research Frontiers in Virtual Reality (Oct.),
5–8.

VON HERZEN, B., BARR, A. H., ANDZATZ, H. R. 1990. Geometric collisions for time-dependent
parametric surfaces. In Proceedings of SIGGRAPH ’90, published as Comput. Graph. 24, 4
(Aug.), 39-48.

YOUN, J. H. AND WOHN, K. 1993. Real-time collision detection for virtual reality applica-
tions. In Proceedings of the IEEE Virtual Reality Annual International Symposium (Sept.),
415-421,

ZYDA, M. J., OSBORNE,W. D., MONAHAN,J. G,, AND PRATT, D. R, 1993, NPSNET: Real-time
vehicle collisions, explosions and terrain modifications. J. Visual. Comput. Animation 4, 1,
13-24.

Received August 1995; accepted January 1996

ACM Transactions on Graphics, Vol. 15, No. 3, July 1996,

