GROUP THEORY

Afra Zomorodian
CS 468 – Lecture 4
2-4-4
I never got a pass in math.... And just imagine—mathematicians now use my prints to illustrate their books.

— M. C. Escher
OVERVIEW

• Why groups?
 – Abstracting core properties
 – Representation
 – Classification

• What to take home: factor groups
ABSTRACTION

1. \(5 + x = 2 \implies \mathbb{Z}
\)
2. \(2x = 3 \implies \mathbb{Q}
\)
3. \(x^2 = -1 \implies \mathbb{C}
\)

\[
\begin{align*}
5 + x &= 2 & \text{Given} \\
-5 + (5 + x) &= -5 + 2 & \text{Addition property of equality} \\
(-5 + 5) + x &= -5 + 2 & \text{Associative property of addition} \\
0 + x &= -5 + 2 & \text{Inverse property of addition} \\
x &= -5 + 2 & \text{Identity property of addition} \\
x &= -3 & \text{Addition}
\end{align*}
\]
Binary Operation

- A binary operation \ast on a set S is a rule that assigns to each ordered pair (a, b) of elements of S some element in S.
- **well-defined**: single element
- **not defined**: no element
- **not well-defined**: multiple elements
- **closed**: element in S only
- **associative**: $(a \ast b) \ast c = a \ast (b \ast c)$ for all $a, b, c \in S$.
- **commutative**: $a \ast b = b \ast a$ for all $a, b \in S$.

Afra Zomorodian – CS 468
Binary Operation Example

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>b</td>
<td>d</td>
<td>c</td>
</tr>
</tbody>
</table>

- $S = \{a, b, c\}$
GROUPS

• A set \(G \)

• A binary operation \(* \) on \(G \) such that:
 (a) \(* \) is associative.
 (b) \(G \) has an identity \(e \) element for \(* \):
 \[e \ast x = x \ast e = x \] for all \(x \in G \).
 (c) any element \(a \) has an inverse \(a' \) wrto \(* \):
 \[\forall a \in G, \exists a' \in G, \text{ such that } a' \ast a = a \ast a' = e. \]

• A group \(\langle G, * \rangle \). Often, just \(G \).

• If \(G \) is finite, the order of \(G \) is \(|G| \).

• A group \(G \) is abelian if its binary operation \(* \) is commutative.
Example Groups

• $\langle \mathbb{Z}, + \rangle$?
• $\langle \mathbb{Z}, \cdot \rangle$?
• $\langle \mathbb{R}, + \rangle$?
• $\langle \mathbb{R}, \cdot \rangle$?
Example Groups

- $\langle \mathbb{Z}, + \rangle$? Yes!
- $\langle \mathbb{Z}, \cdot \rangle$? No!
- $\langle \mathbb{R}, + \rangle$? Yes!
- $\langle \mathbb{R}, \cdot \rangle$? No (zero has no inverse)
• Let n be a fixed positive integer

• Let h and k be any integers.

• The remainder r when $h + k$ is divided by n is $h + _n k$, the sum of h and k modulo n.

• Let $\mathbb{Z}_n = \{0, 1, 2, \ldots, n - 1\}$

• $\langle \mathbb{Z}_n, +_n \rangle$ is a group
Small Groups

\[
\begin{array}{c|c|c}
\hline
 & e & a \\
\hline
 e & e & a \\
\hline
 a & a & e \\
\hline
\end{array}
\quad
\begin{array}{c|c|c|c}
\hline
 & e & a & b \\
\hline
 e & e & a & b \\
\hline
 a & a & b & e \\
\hline
 b & b & e & a \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c|c}
\hline
 & 0 & 1 & 2 & 3 \\
\hline
 0 & 0 & 1 & 2 & 3 \\
\hline
 1 & 1 & 2 & 3 & 0 \\
\hline
 2 & 2 & 3 & 0 & 1 \\
\hline
 3 & 3 & 0 & 1 & 2 \\
\hline
\end{array}
\quad
\begin{array}{c|c|c|c|c}
\hline
 V_4 & e & a & b & c \\
\hline
 e & e & a & b & c \\
\hline
 a & a & e & c & b \\
\hline
 b & b & c & e & a \\
\hline
 c & c & b & a & e \\
\hline
\end{array}
\]
SYMMETRIES

- Metric space with metric d
- φ is an isometry if $d(x, y) = d(\varphi(x), \varphi(y))$
- A symmetry is any isometry that leaves the object as a whole unchanged
- Symmetries form groups!
SYMMETRY GROUPS
Symmetry Groups
Subgroups

- $\langle G, * \rangle$, a group
- $H \subseteq G$
- $*$ is the induced operation on H from G if S is closed under it
- H is a subgroup of G if H is a group with the induced operation
- $\{e\}$ is the trivial subgroup of G.
- All other subgroups are nontrivial.
Characterizing Subgroups

- (Theorem) $H \subseteq G$ of a group $\langle G, * \rangle$ is a subgroup of G iff:
 1. H is closed under $*$,
 2. the identity e of G is in H,
 3. for all $a \in H$, $a^{-1} \in H$.

- Example: subgroups of \mathbb{Z}_4

<table>
<thead>
<tr>
<th>\mathbb{Z}_4</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Cosets

- H, a subgroup of G.

- Let the relation \sim_L be defined on G by:
 \[a \sim_L b \text{ iff } a^{-1}b \in H. \]

- Let \sim_R be defined by:
 \[a \sim_R b \text{ iff } ab^{-1} \in H. \]

 Then \sim_L and \sim_R are both equivalence relations on G.

- Let H be a subgroup of group G. For $a \in G$, the subset
 \[aH = \{ah \mid h \in H\} \] of G is the **left coset** of H containing a, and
 \[Ha = \{ha \mid h \in H\} \] is the **right coset** of H containing a.
NORMAL SUBGROUPS

• If left and right cosets match, the subgroup is normal.

• All subgroups H of an abelian group G are normal, as $ah = ha, \forall a \in G, h \in H$

• $\{0, 2\}$ is a subgroup of \mathbb{Z}_4. It is normal. The coset of 1 is $1 + \{0, 2\} = \{1, 3\}$.

• Plan:
 – Treat elements in a subgroup as equal
 – Breaks group into cosets
 – Treat cosets as elements of a smaller group!
Factor Groups

- Let H be a normal subgroup of group G.
- Let $\{aH \mid a \in G\}$ be the set of cosets.
- Left coset multiplication is well-defined by the equation
 \[(aH)(bH) = (ab)H\]
- The cosets of H form a group G/H under left multiplication
- G/H is the factor group (or quotient group) of G modulo H.
- The elements in the same coset of H are congruent modulo H.
Factor Groups

(Example)

- \(\{0, 3\} \) is a normal subgroup
- Cosets \(\{0, 3\} \), \(\{1, 4\} \), and \(\{2, 5\} \)
- \(\mathbb{Z}_6/\{0, 3\} \) looks like \(\mathbb{Z}_3 \)
FACTOR GROUPS

(EXAMPLE)

\[
\begin{array}{c|ccc|ccc}
\mathbb{Z}_6 & 0 & 2 & 4 & 1 & 3 & 5 \\
\hline
0 & 0 & 2 & 4 & 1 & 3 & 5 \\
2 & 2 & 4 & 0 & 3 & 5 & 1 \\
4 & 4 & 0 & 2 & 5 & 1 & 3 \\
1 & 1 & 3 & 5 & 2 & 4 & 0 \\
3 & 3 & 5 & 1 & 4 & 0 & 2 \\
5 & 5 & 1 & 3 & 0 & 2 & 4 \\
\end{array}
\]

- \(\{0, 2, 4\}\) is a normal subgroup
- Cosets \(\{0, 2, 4\}, \{1, 3, 5\}\)
- \(\mathbb{Z}_6/\{0, 2, 4\}\) looks like \(\mathbb{Z}_2\)
HOMOMORPHISMS

- Given groups G, G'
- $\varphi : G \to G'$
- φ is a homomorphism if it is linear: for all $a, b \in G$,
 \[\varphi(ab) = \varphi(a)\varphi(b) \]
- Trivial homomorphism defined by $\varphi(g) = e'$ for all $g \in G$
- A 1-1 homomorphism is an monomorphism.
- A homomorphism that is onto is an epimorphism.
- A homomorphism that is 1-1 and onto is an isomorphism \cong.
- (Theorem) Let \mathcal{G} be any collection of groups. Then \cong is an equivalence relation on \mathcal{G}.
Properties of Homomorphisms

- If \(e \) is the identity in \(G \), then \(\varphi(e) \) is the identity \(e' \) in \(G' \).
- If \(a \in G \), then \(\varphi(a^{-1}) = \varphi(a)^{-1} \).
- If \(H \) is a subgroup of \(G \), then \(\varphi(H) \) is a subgroup of \(G' \).
- If \(K' \) is a subgroup of \(G' \), then \(\varphi^{-1}(K') \) is a subgroup of \(G \).
- The normal subgroup \(\ker \varphi = \varphi^{-1}\{e'\} \subseteq G \), is the kernel of \(\varphi \).
Cyclic Groups

• Let \(G \) be a group and let \(a \in G \)

• \(H = \{a^n \mid n \in \mathbb{Z}\} \) is a subgroup of \(G \)

• It is the smallest subgroup of \(G \) that contains \(a \)

• \(H \) is the cyclic subgroup of \(G \) generated by \(a \) denoted \(\langle a \rangle \)

• If \(\langle a \rangle \) is finite, the order of \(a \) is \(|\langle a \rangle| \)

• \(a \in G \) generates \(G \) and is a generator for \(G \) if \(\langle a \rangle = G \)

• A group \(G \) is cyclic if it has a generator
Classification of Cyclic Groups

- $\langle \mathbb{Z}, + \rangle = \langle 1 \rangle$
- $\langle \mathbb{Z}_n, +_n \rangle = \langle 1 \rangle$
- (Theorem) Any infinite cyclic group is isomorphic to $\langle \mathbb{Z}, + \rangle$. Any finite cyclic group of order n is isomorphic to $\langle \mathbb{Z}_n, +_n \rangle$.
Small Groups (Revisited)

\[
\begin{array}{|c|c|}
\hline
e & a \\
\hline
a & e \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
| & e & a \\
\hline
| e & e & a \\
\hline
| a & a & e \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
e & a \\
\hline
a & b \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
| & e & a & b \\
\hline
| e & e & a & b \\
\hline
| a & a & b & e \\
\hline
| b & b & e & a \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
0 & 1 & 2 & 3 \\
\hline
0 & 0 & 1 & 2 & 3 \\
\hline
1 & 1 & 2 & 3 & 0 \\
\hline
2 & 2 & 3 & 0 & 1 \\
\hline
3 & 3 & 0 & 1 & 2 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
V_4 & e & a & b & c \\
\hline
e & e & a & b & c \\
\hline
a & a & e & c & b \\
\hline
b & b & c & e & a \\
\hline
c & c & b & a & e \\
\hline
\end{array}
\]
Finitely Generated Groups

• (Theorem) The intersection of subgroups is a subgroup.

• Let G be a group and let $a_i \in G$ for $i \in I$

• We can take the intersection of all subgroups containing all a_i to obtain a subgroup H

• H is the smallest subgroup containing all a_i

• H is the subgroup generated by $\{a_i \mid i \in I\}$

• If H is G, then $\{a_i \mid i \in I\}$ generates G and the a_i are the generators of G

• If there is a finite set $\{a_i \mid i \in I\}$ that generates G, then G is finitely generated

DIRECT PRODUCTS

- Let G_1, G_2, \ldots, G_n be groups.
- The set is $\prod_{i=1}^{n} G_i$ (Cartesian product)
- Binary operation:
 \[(a_1, a_2, \ldots, a_n) \times (b_1, b_2, \ldots, b_n) = (a_1 b_1, a_2 b_2, \ldots, a_n b_n).\]
- Then $\langle \prod_{i=1}^{n} G_i, \times \rangle$ is a group.
- We call it the **direct product of the groups G_i.**
- Sometimes called **direct sum** with \oplus.
- Example: $\mathbb{Z}_2 \times \mathbb{Z}, \mathbb{Z} \times \mathbb{Z}$
FUNDAMENTAL THEOREM

• (Theorem) Every finitely generated abelian group is isomorphic to product of cyclic groups of the form

\[\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \ldots \times \mathbb{Z}_{m_r} \times \mathbb{Z} \times \mathbb{Z} \times \ldots \times \mathbb{Z}, \]

where \(m_i \) divides \(m_{i+1} \) for \(i = 1, \ldots, r - 1 \).

• The direct product is unique: the number of factors of \(\mathbb{Z} \) is unique and the cyclic group orders \(m_i \) are unique.

• Free: vector space, basis, rank

• Torsion: module

• The number of factors of \(\mathbb{Z} \) is the Betti number \(\beta(G) \) of \(G \).

• The orders of the finite cyclic groups are the torsion coefficients of \(G \).
GROUP PRESENTATIONS

• For each generator, we have a letter in an alphabet

• Any symbol of the form $a^n = aaaaa \cdots a$ (a string of $n \in \mathbb{Z}$ a’s) is a syllable

• A finite string of syllables is a word

• The empty word 1 does not have any syllables

• We may replace $a^m a^n$ by a^{m+n} using elementary contractions

• Relations are equations of form $r = 1$ (torsion)

• Notation: (letters : relations)

• Example: $\mathbb{Z}_6 = ?$
SYMMETRY WORK 70