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Sermon

Motivation moment
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Weighted Least Squares

Extend least squares to account for data with different noise
variance per-sample, or missing data

argmin
x

n

∑
i=1

(
∑

m
j=1 Ai ,jxj −bi

)2

σ2
i

.
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Weighted Least Squares

argmin
x

n

∑
i=1

(
∑

m
j=1 Ai ,jxj −bi

)2

σ2
i

.

rewrite in matrix terms with W being a diagonal matrix Wii = 1
σi

⇒ argmin
x

(W(b−Ax))T (W(b−Ax)),
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Weighted Least Squares

rewrite once more

argmin
x

(W(b−Ax))T (W(b−Ax)),

⇒ argmin
x

(b−Ax)T WT W(b−Ax))

Rule: (ab)T = bT aT
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Weighted Least Squares

Big picture:

argmin
x

(b−Ax)T WT W(b−Ax)),

This is a “scalar” (a single number), expressing the summed
weighted error.

Take the derivative with respect to x and set to zero.

The solve for x.
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Matrix calculus I

derivative of scalar w.r.t scalar is scalar
derivative of scalar w.r.t vector is vector
derivative of scalar w.r.t matrix is matrix

ds
dx

= [
ds
dx1

,
ds
dx2

,
ds
dx3

, · · · ]

d
dx

xT Ax = 2Ax

Siggraph Course 11 Practical Least-Squares for Computer Graphics



Outline Least Squares with Generalized Errors Robust Least Squares Constrained Least SquaresWeighted Least Squares Total Least Squares

Matrix calculus II

“scalar” matrix

d
dx x2 ⇒ 2x d

dx xT x ⇒ 2x

d
dx ax2 ⇒ 2ax d

dx xT Ax ⇒ 2Ax A symmetric

d
dx ax ⇒ a d

dx aT x ⇒ a
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Weighted Least Squares

Goal:
argmin

x
(b−Ax)T WT W(b−Ax))

Expand
bT W2(b−Ax)−xT AT W2(b−Ax)

bT W2b−bT W2Ax−xT AT W2b+xT AT W2Ax
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Weighted Least Squares

bT W2b−bT W2Ax−xT AT W2b+xT AT W2Ax

⇒ bT W2b−2bT W2Ax+xT AT W2Ax

xT AT W2b is a scalar, legal to “transpose” a scalar.
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Weighted Least Squares

“c + bx + ax2”

bT W2b−2bT W2Ax+xT AT W2Ax

d
dx

= 0−2AT W2b+2AT W2Ax = 0
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Weighted Least Squares

d
dx

= 0−2AT W2b+2AT W2Ax = 0

AT W2Ax = AT W2b

x = (AT W2A)−1AT W2b = 0

Although A may not be square, AT W2A will be
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Total Least Squares

Total Least Squares
measures closest error to the
(line), rather than in the y
direction.
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Total Least Squares

Unusual: A least squares problem formulation leads to an
eigenvalue problem rather than a linear system!

Also requires Lagrange multiplers (constrained LS section...).
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Total Least Squares: Applications

Surface fitting.

N. Amenta and Y. J. Kil. Defining point-set surfaces,
SIGGRAPH 2004.
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Reminders

Win a high-end graphics card (HD2900XT) by filling out the
course evaluation:

http://www.siggraph.org/courses evaluation

Course web site (download corrected slides after course):

http://www.siggraph.org/courses evaluation
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Robust: Outline

Motivation
Redescending error measures
Iteratively reweighted least squares (IRLS)
RANSAC
Least Median of Squares
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Robust Least Squares: Motivation

Even a single accidental point (outlier, red point) can destroy an
“ordinary” least squares fit.
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Robust Least Squares: Applications

M. Black thesis: introduced
robust statistics in optic flow.

Application: optic flow-based
face tracking on the Matrix
sequels

Borshukov et al. Universal
Capture - Image-based
Facial Animation for “The
Matrix Reloaded”
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Non-Gaussian Distributions

A high kurtosis density (heavy line) has both more data close to
the mean, and more outliers, than a Gaussian distribution (light
line).
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Appropriateness of Gaussian

Gaussian distribution is appropriate when a large number
of independent effects are summed (stock market):
The distribution of a sum is the convolution of the individual
distributions. Multiple convolution rapidly converges to
Gaussian.
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Appropriateness of Gaussian

Gaussian distribution is not necessarily appropriate when
the error is due to a single cause, a few large isolate
events, or when the distribution is otherwise simply “non
Gaussian”.
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Robust error measures
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Non-Gaussian Distributions

(repeated figure)

For a high kurtosis error density (heavy line) we want to give
less weight to the large errors.

Siggraph Course 11 Practical Least-Squares for Computer Graphics



Outline Least Squares with Generalized Errors Robust Least Squares Constrained Least SquaresMotivation Non-Gaussian Distributions Robust error measures Motivation Motivation Least Median of Squares

Trimmed Least Squares

A simple approach to robust least squares fitting is to first do an
ordinary least squares fit, then identify the k data points with
the largest residuals, omit these, perform the fit on the
remaining data.

Siggraph Course 11 Practical Least-Squares for Computer Graphics



Outline Least Squares with Generalized Errors Robust Least Squares Constrained Least SquaresMotivation Non-Gaussian Distributions Robust error measures Motivation Motivation Least Median of Squares

IRLS

Iteratively Reweighted Least Squares generalizes trimmed
least squares by raising the error to a power less than 2. No
longer “least squares”.

‖b−Ax‖p

where ‖‖p is the “Lp” norm, i.e.,

‖x‖p =
(
∑xp

k

)1/p

The usual least squares minimizes ‖‖p for p = 2.
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IRLS

The trick is that an error |e|p can be rewritten as

|e|p = |e|p−2e2

Then, interpret the |e|p−2 factor as a weight, and minimize e2

using weighted least squares.
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IRLS: sketch

Problem: e unknown because it depends on x .

iterate:

e = (b−Ax)

W = diag(|ei |(p−2)/2)

solve weighted least squares ‖W(Ax−b)‖2.
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Least Median of Squares (LMedS)

Successful application of Least Median of Squares fitting: The
LMedS line (blue) lies close to the model line (black) from which
the inliers were generated. The ordinary least squares fit (red
line) is influenced by the two outliers.
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Least Median of Squares (LMedS)

LMedS finds the fit with the smallest median error.

Thus, it can fit data with up to 50% outliers.
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Least Median of Squares (LMedS)

Simple algorithm: brute force on a random subset (note slight
resemblance to RANSAC).

Repeat M times:

pick n points at random
record the median error of the fit on the remaining points

Keep the model with the lowest median error.
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Least Median of Squares: SIGGRAPH Applications

Fitting scanned (e.g. Cyberware or LIDAR) data:

Fleishman, Cohen-Or, Silva, Robust Moving Least-Squares
Fitting with Sharp Features, Proc. SIGGRAPH 2005 p. 544
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Least Median of Squares: SIGGRAPH Applications

Left, Cyberware scan; Right, moving least squares fit initialized
with LMedS surface estimate
from: Fleishman, Cohen-Or, Silva, Robust Moving Least-Squares Fitting with Sharp Features, SIGGRAPH 2005

Siggraph Course 11 Practical Least-Squares for Computer Graphics



Outline Least Squares with Generalized Errors Robust Least Squares Constrained Least SquaresMotivation Non-Gaussian Distributions Robust error measures Motivation Motivation Least Median of Squares

Least Median of Squares: References

Z. Zhang, Parameter Estimation Techniques: A Tutorial
with Application to Conic Fitting, online at
http://www-sop.inria.fr/robotvis/personnel/
zzhang/Publis/Tutorial-Estim/Main.html

P. Rousseeuw and A. Leroy, Robust Regression and
Outlier Detection, Wiley, 1987.
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Reminders

Win a high-end graphics card (HD2900XT) by filling out the
course evaluation:

http://www.siggraph.org/courses evaluation

Course web site (download corrected slides after course):

http://www.siggraph.org/courses evaluation
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Lagrange Multipliers

For equality contraints
Often gives a non-iterative or even closed-form solution
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Lagrange Multipliers: Basic Mechanics

1 Express the constraint as g(variables) = 0
2 Add a term λ ·g(variables) to the original equations.
3 Set derivative with respect to all variables (including λ ) = 0,

and solve.

Why? (later...)
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Lagrange Multipliers: Very Simple Example

Problem: find rectangle of given perimeter with maximum area.

area = xy

perimeter = 2x +2y

constraint = 2x +2y = 2
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Lagrange Multipliers: max area given perimeter

area = xy

constraint: 2x +2y = 2 ⇒ “λ (2x +2y −2)”

the objective (“Lagrangian”)

max
xy

xy +λ (2x +2y −2)

The constant in the constraint (2 here) usually drops out
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Lagrange Multipliers: max area given perimeter

Objective:
max

xy
xy +λ (2x +2y −2)

d
dx

= y +2λ = 0 ⇒ λ =−y
2

d
dy

= x +2λ = 0

x +2 ·−y
2

= 0 ⇒ x = y
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Lagrange Multipliers: Somewhat Simple Example

Find a point p on a sphere that is closest to a given point q.
The constraint that p is on a (unit side sphere):

pT p = 1

Express as λg(x) with g(x) = 0:

λ (pT p−1)

Distance from p to q: (p−q)T (p−q).
Final cost:

min
p

(p−q)T (p−q)+λ (pT p−1)
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Lagrange Multipliers: Simple Example

Find a point p on a sphere that is closest to a given point q.
Final cost:

min
p

(p−q)T (p−q)+λ (pT p−1)

Take derivative with respect to p, and λ , and set to zero,
obtaining 2 equations. Solve for p in the second equation,
substitute into the first, result is q

‖q‖ .
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Lagrange Multipliers: Intuition

Minimize f (x ,y) subject
to g(x ,y) = 0.
The solution is at a point
where further movement
along g(x ,y) = 0 will not
change f . This means
there is no component of
the gradient of f that is
along g, so the gradient
of f must be parallel to
the gradient of g.
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Lagrange Multipliers: Intuition

So

∇f (x ,y)+λ∇g(x ,y) = 0
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Lagrange Multipliers Example: Inverse Kinematics

p = f (q)

p 2d position of end effector, controlled by mouse

q state vector, the n joint angles of a limb.

q has more variables than p ⇒ underconstrained
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Lagrange Multipliers Example: Inverse Kinematics

One solution: linearize by taking the derivative with respect to
time. (This technique used by Gleicher and Witkin in several
papers).

dp
dt

=
df
dq

dq
dt

and denote J ≡ df
dq , so

ṗ = Jq̇
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Lagrange Multipliers Example: Inverse Kinematics

ṗ = Jq̇

A linear system, but underconstrained.

Gleicher suggested making the change in state between
frames be as small as possible, i.e., minimize

‖q̇‖2 =
n

∑
i
(q̇i −0)2
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Lagrange Multipliers Example: Inverse Kinematics

Minimizing ‖q̇‖2 alone would result in no movement.

Instead, minimize it, subject to the constraint that the joint angle
change Jq̇ matches the end effector ṗ.

This gives the objective

argmin
q

1
2

q̇T q̇+λ (ṗ−Jq̇)
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Lagrange Multipliers Example: Inverse Kinematics

Objective

argmin
q

1
2

q̇T q̇+λ (ṗ−Jq̇)

d
d q̇ = 0 = q̇−JT λ

d
dλ

= 0 = ṗ−JT q̇
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Lagrange Multipliers Example: Inverse Kinematics

d
d q̇ = 0 = q̇−JT λ

d
dλ

= 0 = ṗ−JT q̇

Solution: block matrix linear system[
J 0
I −JT

][
q̇
λ

]
=

[
ṗ
0

]
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Lagrange Multipliers Example: Inverse Kinematics

M. Gleicher, A. Witkin, Differential Manipulation, Graphics
Interface 1991
M. Gleicher, A. Witkin, Through-the-Lens Camera Control,
SIGGRAPH 1992
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Non-Negative Least Squares: Motivation

Aw = b, when A is near singular, can produce very large
positive and negative weights.

See Regularization section, and also comments in:
Doug James and Christopher Twigg, Skinning Mesh
Animations, SIGGRAPH 2005
Chuang and Bregler, Performance driven facial animation
using blendshape interpolation, Stanford University CS
Technical Report.
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Non-Negative Least Squares: SIGGRAPH
Applications

Skinning:

Doug James and Christopher Twigg, Skinning Mesh
Animations, SIGGRAPH 2005

Siggraph Course 11 Practical Least-Squares for Computer Graphics



Outline Least Squares with Generalized Errors Robust Least Squares Constrained Least SquaresLagrange Multipliers Non-Negative Least Squares Inequality Constraints

Non-Negative Least Squares: References

Lawson and Hansen, Solving Least Squares Problems,
SIAM, 1995
Chang, Hyperspectral Imaging, Kluwer 2003 (has good
discussion)
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Non-Negative Least Squares

Implementation: nnls.c
Matlab: lsqnonneg (or lsqlin)
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Beyond Non-Negative Least Squares

Quadratic programming
Semidefinite Programming
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Interlude: basic decomposition/inverse techniques

Though basically all are O(N3), some are faster than others.

normal equation: x = (AT A)−1A′b. Fast in the
overconstrained case, AT A is smaller than A.
QR decomposition. Results in an orthogonal matrix Q and
a triangular matrix R. Appropriate for overconstrained
(especially if basis for the residual space is needed)
SVD: slowest, but has many uses, especially in analysis of
the problem.
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Reminders

Win a high-end graphics card (HD2900XT) by filling out the
course evaluation:

http://www.siggraph.org/courses evaluation

Course web site (download corrected slides after course):

http://www.siggraph.org/courses evaluation
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