template<class LearnerInput, class LearnerOutput> class BaggedNeighborLearner : public RegressionLearner<LearnerInput, LearnerOutput> { public: BaggedNeighborLearner(RegressionLearnerFactory<LearnerInput, LearnerOutput> *Factory, UINT BagCount) { _Factory = Factory; _BagCount = BagCount; } ~BaggedNeighborLearner() { FreeLearners(); if(_Factory) { delete _Factory; } } void FreeLearners() { while(_BaseLearners.Length() > 0) { delete _BaseLearners.Last(); _BaseLearners.PopEnd(); } } void Train(const Dataset &Examples) { FreeLearners(); Console::WriteLine(String("Bagged learner training on ") + String(Examples.Entries().Length()) + String(" samples...")); Console::AdvanceLine(); _BaseLearners.Allocate(_BagCount); Dataset NewDataset; for(UINT learnerIndex = 0; learnerIndex < _BagCount; learnerIndex++) { Console::OverwriteLine(String("Bag ") + String(learnerIndex + 1) + String(" / ") + String(_BagCount)); NewDataset.SampleFromDataset(Examples, Examples.Entries().Length()); RegressionLearner<LearnerInput, LearnerOutput> *NewLearner = _Factory->MakeLearner(); NewLearner->Train(NewDataset); _BaseLearners[learnerIndex] = NewLearner; } } void Evaluate(const LearnerInput &Input, LearnerOutput &Result) const { Result = 0.0; for(UINT learnerIndex = 0; learnerIndex < _BagCount; learnerIndex++) { LearnerOutput curResult; _BaseLearners[learnerIndex]->Evaluate(Input, curResult); Result += curResult; } Result *= LearnerOutput(1.0 / double(_BagCount)); } private: RegressionLearnerFactory<LearnerInput, LearnerOutput> *_Factory; UINT _BagCount; Vector<RegressionLearner<LearnerInput, LearnerOutput>*> _BaseLearners; };