
ABSTRACT

A classical problem of imaging—the matting problem—is sepa-
ration of a non-rectangular foreground image from a (usually)
rectangular background image—for example, in a film frame,
extraction of an actor from a background scene to allow substitu-
tion of a different background. Of the several attacks on this diffi-
cult and persistent problem, we discuss here only the special case
of separating a desired foreground image from a background of a
constant, or almost constant, backing color. This backing color
has often been blue, so the problem, and its solution, have been
called blue screen matting. However, other backing colors, such
as yellow or (increasingly) green, have also been used, so we of-
ten generalize to constant color matting. The mathematics of con-
stant color matting is presented and proven to be unsolvable as
generally practiced. This, of course, flies in the face of the fact
that the technique is commonly used in film and video, so we
demonstrate constraints on the general problem that lead to solu-
tions, or at least significantly prune the search space of solutions.
We shall also demonstrate that an algorithmic solution is possible
by allowing the foreground object to be shot against two constant
backing colors—in fact, against two completely arbitrary backings
so long as they differ everywhere.

Key Words: Blue screen matte creation, alpha channel,
compositing, chromakey, blue spill, flare, backing shadows,
backing impurities, separating surfaces, triangulation matting.
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DEFINITIONS

A matte originally meant a separate strip of monochrome film that
is transparent at places, on a corresponding strip of color film, that
one wishes to preserve and opaque elsewhere. So when placed
together with the strip of color film and projected, light is allowed
to pass through and illuminate those parts desired but is blocked
everywhere else. A holdout matte is the complement: It is opaque
in the parts of interest and transparent elsewhere. In both cases,
partially dense regions allow some light through. Hence some of

the color film image that is being matted is partially illuminated.
The use of an alpha channel to form arbitrary compositions of

images is well-known in computer graphics [9]. An alpha channel
gives shape and transparency to a color image. It is the digital
equivalent of a holdout matte—a grayscale channel that has full
value pixels (for opaque) at corresponding pixels in the color
image that are to be seen, and zero valued pixels (for transparent)
at corresponding color pixels not to be seen. We shall use 1 and 0
to represent these two alpha values, respectively, although a typi-
cal 8-bit implementation of an alpha channel would use 255 and
0. Fractional alphas represent pixels in the color image with par-
tial transparency.

We shall use “alpha channel” and “matte” interchangeably, it
being understood that it is really the holdout matte that is the
analog of the alpha channel.

The video industry often uses the terms “key” and “keying”—
as in “chromakeying”—rather than the “matte” and “matting” of
the film industry. We shall consistently use the film terminology,
after first pointing out that “chromakey” has now taken on a more
sophisticated meaning (e.g., [8]) than it originally had (e.g., [19]).

We shall assume that the color channels of an image are
premultiplied by the corresponding alpha channel and shall refer
to this as the premultiplied alpha case (see [9], [14], [15], [2],
[3]). Derivations with non-premultiplied alpha are not so elegant.

THE PROBLEM

The mixing of several pictures—the elements—to form a single
resulting picture—the composite—is a very general notion. Here
we shall limit the discussion to a special type of composite fre-
quently made in film and television, the matte shot. This consists
of at least two elements, one or more foreground objects each shot
against a special backing color—typically a bright blue or green—
and a background. We shall limit ourselves to the case of one
foreground element for ease of presentation.

The matting problem can be thought of as a perceptual proc-
ess: the analysis of a complex visual scene into the objects that
comprise it. A matte has been successfully pulled, if it in combi-
nation with the given scene correctly isolates what most humans
would agree to be a separate object in reality from the other ob-
jects in the scene, that we can collectively refer to as the back-
ground. Note that this analysis problem is the reverse of classic
3D geometry-based computer graphics that synthesizes both the
object and its matte simultaneously, and hence for which there is
no matting problem.

There is also no matting problem of the type we are consider-
ing in the case of several multi-film matting techniques such as the
sodium, infrared, and ultraviolet processes [6], [16]. These record
the foreground element on one strip of film and its matte simulta-
neously on another strip of film.
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The problem we address here is that of extracting a matte for a
foreground object, given only a composite image containing it.
We shall see that, in general, this is an underspecified problem,
even in the case where the background consists of a single back-
ing color. Note that a composite image contains no explicit infor-
mation about what elements comprise it. We use the term
“composite” to convey the idea that the given image is in fact a
representation of several objects seen simultaneously. The prob-
lem, of course, is to determine, the objecthood of one or more of
these objects. In the film (or video) world, the problem is to ex-
tract a matte in a single-film process—that is, one with no special
knowledge about the object to be extracted, such as might be
contained in a separate piece of film exposed simultaneously in a
multi-film process.

Now a formal presentation of the problem: The color C = [R
G  B  α] at each point of a desired composite will be some func-
tion of the color Cf of the foreground and color Cb of the new
background at the corresponding points in the two elements. We
have for convenience extended the usual color triple to a quadru-
ple by appending the alpha value. As already mentioned, each of
the first three primary color coordinates is assumed to have been
premultiplied by the alpha coordinate. We shall sometimes refer
to just these coordinates with the abbreviation c = [R  G  B], for
color C. For any subscript i, Ci = [Ri  Gi  Bi  αi] and ci = [Ri  Gi
Bi]. Each of the four coordinates is assumed to lie on [0, 1]. We
shall always assume that αf = αb = 1 for Cf and Cb—i.e., the given
foreground and new background are opaque rectangular images.

The foreground element Cf can be thought of as a composite
of a special background, all points of which have the (almost)
constant backing color Ck, and a foreground Co that is the fore-
ground object in isolation from any background and which is
transparent, or partially so, whenever the backing color would
show through. We sometimes refer to Co as the uncomposited
foreground color. Thus Cf = f(Co, Ck) expresses the point-by-point
foreground color as a given composite f of Ck and Co. We shall
always take αk = 1 for Ck.

We assume that f is the over function [9], Ca + (1 – αa) Cb,
combining Cb with (premultiplied) Ca by amount αa, 0 ≤ αa ≤ 1.
One of the features of the premultiplied alpha formulation is that
the math applied to the three primary color coordinates is the
same as that applied to the alpha coordinate. An alpha channel
holds the factor αa at every point in an image, so we will use
channel and coordinate synonymously. This facilitates:

The Matting Problem

Given Cf and Cb at corresponding points, and Ck a known backing
color, and assuming Cf = Co + (1 – αo)Ck , determine Co which
then gives composite color C = Co + (1 – αo)Cb at the corre-
sponding point, for all points that Cf and Cb share in common.

We shall call Co—that is, the color, including alpha, of a fore-
ground object—a solution to the Matting Problem. Once it is
known at each point, we can compute C at each point to obtain
the desired result, a composite over a new background presumably
more interesting than a single constant color. We shall refer to the
equation for Cf above as the Matting Equation. We sometimes
refer to an uncomposited foreground object (those pixels with αo
> 0) as an image sprite, or simply a sprite.

PREVIOUS WORK

Blue screen matting has been used in the film and video industries
for many years [1], [6], [21] and has been protected under patents

[17], [18], [19], [20] until recently. The most recent of these ex-
pired July, 1995. Newer patents containing refinements of the
process still exist, however. Any commercial use of the blue
screen process or extensions should be checked carefully against
the extant patents—e.g., [22], [23], [24], [25], [5], [4].

An outstanding inventor in the field is Petro Vlahos, who de-
fined the problem and invented solutions to it in film and then in
video. His original film solution is called the color-difference
technique. His video solution is realized in a piece of equipment,
common to the modern video studio, called the Ultimatte®. It is
essentially an electronic analog of the earlier color-difference film
technique. He was honored in 1995 with an Academy Award for
lifetime achievement, shared with his son Paul.

Vlahos makes one observation essential to his work. We shall
call it the Vlahos Assumption: Blue screen matting is performed
on foreground objects for which the blue is related to the green by
Bo ≤ a2Go. The usual range allowed by his technique is .5 ≤ a2 ≤
1.5 [20]. That this should work as often as it does is not obvious.
We shall try to indicate why in this paper.

The Vlahos formula for αo, abstracted from the claims of his
earliest electronic patent [18] and converted to our notation, is

αo = 1 – a1(Bf – a2Gf),
clamped at its extremes to 0 and 1, where the ai are tuning ad-
justment constants (typically made available as user controls). We
will call this the First Vlahos Form. The preferred embodiment
described in the patent replaces Bf above with min(Bf, Bk), where
Bk is the constant backing color (or the minimum such color if its
intensity varies, as it often does in practice). In the second step of
the Vlahos process, the foreground color is further modified be-
fore compositing with a new background by clamping its blue
component to min(Bf, a2Gf).

A more general Vlahos electronic patent [20] introduces
αo = 1 – a1(Bf – a2(a5 max(r, g) + (1 – a5)min(r, g))),

where r = a3Rf, g = a4Gf, and the ai are adjustment parameters.
Clamping again ensures 0 and 1 as limiting values. We shall call
this the Second Vlahos Form. Again the blue component of the
foreground image is modified before further processing.

A form for αo from a recent patent [4] (one of several new
forms) should suffice to show the continued refinements intro-
duced by Vlahos and his colleagues at Ultimatte Corp.:

αo = 1 – ((Bf – a1) – a2 max(r, g) – max(a5(Rf – Gf), a6(Gf – Rf))),
with clamping as before. They have continually extended the
number of foreground objects that can be matted successfully.

We believe Vlahos et al. arrived at these forms by many years
of experience and experiment and not by an abstract mathematical
approach such as presented here. The forms we derive are related
to their forms, as we shall show, but more amenable to analysis.

With these patents Vlahos defined and attacked several prob-
lems of matting: blue spill or blue flare (reflection of blue light
from the blue screen on the foreground object), backing shadows
on the blue screen (shadows of the foreground object on the
backing, that one wishes to preserve as part of the foreground
object), and backing impurities (departures of a supposedly pure
blue backing screen from pure blue). We shall touch on these
issues further in later sections.

Another contribution to matting [8] is based on the following
thinking: Find a family of nested surfaces in colorspace that sepa-
rate the foreground object colors from the backing colors. Each
surface, corresponding to a value of αo, is taken to be the set of
colors that are the αo blend of the foreground and backing colors.
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See Fig. 4. The Primatte® device from Photron Ltd., based on this
concept, uses a nested family of convex multi-faceted polyhedra
(128 faces) as separating surfaces. We shall discuss problems with
separating surface models in a later section.

THE INTRINSIC DIFFICULTY

We now show that single-film matting, as typically practiced in a
film or video effects house, is intrinsically difficult. In fact, we
show that there is an infinity of solutions. This implies that there
is no algorithmic method for pulling a matte from a given fore-
ground element. There must be a human—or perhaps someday a
sufficiently intelligent piece of image processing software—in the
loop who “knows” a correct matte when he (she or it) sees one,
and he must be provided with a sufficiently rich set of controls
that he can successfully “home in” on a good matte when in the
neighborhood of one. The success of a matting machine, such as
the Ultimatte or Primatte, reduces then to the cleverness of its
designers in selecting and providing such a set of controls.

The argument goes as follows: We know that Rf is an inter-
polation from Rk to Ro with weight αo, or Rf = Ro  + (1 – αo)Rk,
and that similar relations hold for Gf and Bf. This is cf = co  + (1 –
αo)ck in our abbreviated notation. (We ignore the relation for αf
because it is trivial.) A complete solution requires Ro, Go, Bo, and
αo. Thus we have three equations and four unknowns, an incom-
pletely specified problem and hence an infinity of solutions, un-
solvable without more information.

There are some special cases where a solution to the matting
problem does exist and is simple.

SOLUTION 1: NO BLUE

If co is known to contain no blue, co = [Ro  Go  0], and ck contains
only blue, ck = [0  0  Bk], then

[ ]c c c R G Bf o o k o o o k= + − = −( ) ( )1 1α α .
Thus, solving the Bf = (1 − αo) Bk equation for αo gives solution

C R G
B
Bo f f

f

k
= −








0 1 ,   if Bk ≠ 0.

This example is exceedingly ideal. The restriction to fore-
ground objects with no blue is quite serious, excluding all grays
but black, about two-thirds of all hues, and all pastels or tints of
the remaining hues (because white contains blue). Basically, it is
only valid for one plane of the 3D RGB colorspace, the RG plane.

The assumption of a perfectly flat and perfectly blue backing
color is not realistic. Even very carefully prepared “blue screens”
used in cinema special effects as backings have slight spatial
brightness variations and also have some red and green impurities
(backing impurities). A practical solution for brightness varia-
tions, in the case of repeatable shots, is this: Film a pass without
the foreground object to produce a record of Bk at each point to be
used for computing Co after a second pass with the object.

We rather arbitrarily chose pure blue to be the backing color.
This is an idealization of customary film and video practice
(although one sees more and more green screens in video). We
shall soon show how to generalize to arbitrary and non-constant
backing colors and hence do away with the so-called backing
impurities problem in certain circumstances.

SOLUTION 2: GRAY OR FLESH

The matting problem can be solved if co is known to be gray. We
can loosen this claim to say it can be solved if either Ro or Go
equals Bo. In fact, we can make the following general statement:

There is a solution to the matting problem if Ro or Go = aBo + bαo,
and if ck is pure blue with aBk + b ≠ 0. To show this, we derive the
solution Co for the green case, since the solution for red can be
derived similarly:

The conditions, rewritten in color primary coordinates, are:
[ ]c R aB b B Bf o o o o o k= + + −α α( )1 .

Eliminate Bo from the expressions for Gf and Bf to solve for αo:

C R G B B
G aB

aB bo f f o k
f

k
= +

−

+













Δ
Δ

α ,   if aBk + b ≠ 0.

Here we have introduced a very useful definition CΔ = Cf – Ck .
The special case Co gray clearly satisfies Solution 2, with a =

1 and b = 0 for both Ro and Go. Thus it is not surprising that sci-
ence fiction space movies effectively use the blue screen process
(the color-difference technique) since many of the foreground
objects are neutrally colored spacecraft. As we know from prac-
tice, the technique often works adequately well for desaturated
(towards gray) foreground objects, typical of many real-world
objects.

A particularly important foreground element in film and video
is flesh which typically has color [d  .5d  .5d]. Flesh of all races
tends to have the same ratio of primaries, so d is the darkening or
lightening factor. This is a non-gray example satisfying Solution
2, so it is not surprising that the blue screen process works for
flesh.

Notice that the condition Go = aBo + bαo, with 2/3 ≤ a ≤ 2 and
b = 0, resembles the Vlahos Assumption, Bo ≤ a2Go. In the special
case b = 0, our derived expression for αo can be seen to be of the
same form as the First Vlahos Form:

αo
k

f fB
B

a
G= − −







1 1 1 .

Thus our Bk is Vlahos’ 1/ a1 and our a is his 1/ a2. Careful read-
ing shows that Bk = 1/ a1 is indeed consistent with [18]. By using
these values, it can be seen that Vlahos’ replacement of Bf by
min(Bf, a2Gf) is just his way of calculating what we call Bo.

The next solution does not bear resemblance to any technique
used in the real world. We believe it to be entirely original.

SOLUTION 3: TRIANGULATION

Suppose co is known against two different shades of the backing
color. Then a complete solution exists as stated formally below. It
does not require any special information about co. Fig. 1(a-d)
demonstrates this triangulation solution:

Let Bk1
and Bk2

be two shades of the backing color—i.e.,
B cBk k1

= and B dBk k2
= for 0 ≤ d < c ≤ 1. Assume co is known

against these two shades. Then there is a solution Co to the mat-
ting problem. N.B., ck2

could be black—i.e., d = 0.
The assumption that co is known against two shades of Bk is

equivalent to the following:

[ ]
[ ]

c R G B B

c R G B B
f o o o o k

f o o o o k

1 1

2 2

1

1

= + −

= + −

( )

( )

α

α
.

The expressions for B f1
and B f2

can be combined and Bo elimi-

nated to showαo
f f

k k

B B
B B

= −
−

−
1 1 2

1 2

, where the denominator is not 0

since the two backing shades are different. Then
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R R Ro f f= =
1 2

      G G Go f f= =
1 2

     B
B B B B

B Bo
f k f k

k k
=

−

−
2 1 1 2

1 2

completes the solution.
No commonly used matting technique asks that the fore-

ground object be shot against two different backgrounds. For
computer controlled shots, it is a possibility but not usually done.
If passes of a computer controlled camera are added to solve the

problem of nonuniform backing mentioned earlier, then the trian-
gulation solution requires four passes.

Consider the backing shadows problem for cases where the
triangulation solution applies. The shadow of a foreground object
is part of that object to the extent that its density is independent of
the backing color. For a light-emitting backing screen, it would be
tricky to perform darkening without changing the shadows of the
foreground objects. We will give a better solution shortly.

Figure 1. Ideal triangulation matting. (a) Object against known constant blue. (b) Against constant black. (c) Pulled. (d) Com-
posited against new background. (e) Object against a known backing (f). (g) Against a different known backing (h). (i) Pulled.
(j) New composite. Note the black pixel near base of (i) where pixels in the two backings are identical and the technique fails.
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GENERALIZATIONS

The preceding solutions are all special cases of the generalization
obtained by putting the Matting Equation into a matrix form:

[ ]C

t
t
t

R G B t

R G B To

k k k

1 0 0
0 1 0
0 0 1

1
2
3
4− − −

















= Δ Δ Δ ,

where a fourth column has been added in two places to convert an
underspecified problem into a completely specified problem. Let

[ ]t t t t t= 1 2 3 4 .
The matrix equation has a solution Co if the determinant of the
4x4 matrix is non-0, or

t R t G t B t t Ck k k k1 2 3 4 0+ + + = ⋅ ≠ .
Standard linear algebra gives, sinceαΔ = 0 always,

αo
k k

f

k

T t R t G t B
t C

T t C
t C

t C T
t C

=
− + +

⋅
=

− ⋅

⋅
= −

⋅ −

⋅

( )1 2 3 1Δ Δ Δ Δ .

Then c c co o k= +Δ α by the Matting Equation.
Thus Solutions 1 and 2 are obtained by the following two

choices, respectively, for t and T, where the condition on t ⋅ Ck is
given in parentheses:

t = [0    0   1   0];     T = 0;     (Bk ≠ 0)
t = [0  −1   a   b];     T = 0;     (−Gk + aBk + b ≠ 0).

The latter condition reduces to that derived for Solution 2 by the
choice of pure blue backing color—i.e., Gk = 0. We state the gen-
eral result as a theorem of which these solutions are corollaries:

Theorem 1. There is a solution Co to the Matting Problem if there
is a linear condition t ⋅ Co = 0 on the color of the uncomposited
foreground object, with t ⋅ Ck ≠ 0.

Proof. T = 0 in the matrix equation above givesαo
f

k

t C
t C

= −
⋅

⋅
1 . ■

The Second Vlahos Form can be shown to be of this form with a1

proportional to 1/( t ⋅ Ck). Geometrically, Theorem 1 means that
all solutions Co lie on a plane and that Ck does not lie on that
plane.

Solution 3 above can also be seen to be a special case of the
general matrix formulation with these choices and condition,
where by extended definition C C C

i i if kΔ = − , i = 1 or 2:

[ ]t B T B B Bk k k= − = − ≠0 0 1 0
2 2 1 2

; ; ( )Δ ,

with [ ]C Bk k= 0 0 1
1

and right side [ ]R G B Bf f1 1 1 2Δ Δ .

The condition is true by assumption. This solution too is a corol-
lary of a more general one, Ck1

not restricted to a shade of blue:

Theorem 2. There is a solution Co to the Matting Problem if the
uncomposited foreground object is known against two distinct
backing colors Ck1

and Ck2
, where Ck1

is arbitrary, Ck2
is a shade

of pure blue, and B Bk k1 2
0− ≠ .

Proof. This is just the matrix equation above with t and T as for

Solution 3, but with Ck generalized to [ ]R G Bk k k1 1 1
1 and the

right side of the matrix equation being [ ]R G B BΔ Δ Δ Δ1 1 1 2
.

Thus, as for Solution 3,αo
k k

f f

k k

B B
B B

B B
B B

=
−

−
= −

−

−
Δ Δ2 1

1 2

1 2

1 2

1 . ■

The following generalization of Theorem 2 utilizes all of the
Ck2

backing color information. Let the sum of the color coordi-
nates of any color Ca be Σa a a aR G B= + + .

Theorem 3. There is a solution Co to the Matting Problem if the
uncomposited foreground object is known against two distinct
backing colors Ck1

and Ck2
, where both are arbitrary and

Σ Σk k k k k k k kR R G G B B
1 2 1 2 1 2 1 2

0− = − + − + − ≠( ) ( ) ( ) .

Proof. Change t and T in the proof of Theorem 2 to

[ ]t Tk= − =1 1 1
2 2

Σ ΣΔ; .
This gives t Co o o k f k⋅ = − = −Σ Σ Σ Σα

2 2 2
, which is exactly what

you get by adding together the three primary color equations in
the Matting Equation, C C Co o k− =α

2 2Δ . The solution is

αo
k k

f f

k k
=

−

−
= −

−

−

Σ Σ

Σ Σ

Σ Σ

Σ Σ
Δ Δ1 2

1 2

1 2

1 2

1

= −
− + − + −

− + − + −
1 1 2 1 2 1 2

1 2 1 2 1 2

( ) ( ) ( )
( ) ( ) ( )
R R G G B B
R R G G B B

f f f f f f

k k k k k k
,

c c c c co o k f o k= + = − −Δ1 1 1 1
1α α( ) , or c c co f o k= − −

2 2
1( )α . ■

The conditions of Theorem 3 are quite broad—only the sums
of the primary color coordinates of the two backing colors have to
differ. In fact, a constant backing color is not even required. We
have successfully used the technique to pull a matte on an object
against a backing of randomly colored pixels and then against that
same random backing but darkened by 50 percent. Fig. 1(e-j)
shows another application of the technique, but Fig. 2 shows more
realistic cases. See also Fig. 5.

The triangulation problem, with complete information from
the two shots against different backing colors, can be expressed
by this non-square matrix equation for an overdetermined system:

C
R G B R G B

o
k k k k k k

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

1 1 1 2 2 2
− − − − − −

















=

[ ]R G B R G BΔ Δ Δ Δ Δ Δ1 1 1 2 2 2
.

The Theorem 3 form is obtained by adding the last three columns
of the matrix and the last three elements of the vector.

The standard least squares way [7] to solve this is to multiply
both sides of the equation by the transpose of the matrix yielding:

C

R R
G G
B B

R R G G B B

o

k k

k k

k k

k k k k k k

2 0 0
0 2 0
0 0 2

1 2

1 2

1 2

1 2 1 2 1 2

− +

− +

− +

− + − + − +





















=

( )
( )
( )

( ) ( ) ( ) Λ

[ ]R R G G B BΔ Δ Δ Δ Δ Δ Γ
1 2 1 2 1 2

+ + +

where Λ = + + + + +R G B R G Bk k k k k k1 1 1 2 2 2
2 2 2 2 2 2 and

Γ Δ Δ Δ Δ Δ Δ= − + + + + +( )R R G G B B R R G G B Bk k k k k k1 1 1 1 1 1 1 1 1 1 1 1
.
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Inverting the symmetric matrix and multiplying both sides by the
inverse gives a least squares solution Co if the determinant of the
matrix, 4

1 2 1 2 1 2
2 2 2(( ) ( ) ( ) )R R G G B Bk k k k k k− + − + − , is non-0.

Thus we obtain our most powerful result:

Theorem 4. There is a solution Co to the Matting Problem if the
uncomposited foreground object is known against two arbitrary

backing colors Ck1
and Ck2

with nonzero distance between them—

( ) ( ) ( )R R G G B Bk k k k k k1 2 1 2 1 2
2 2 2 0− + − + − ≠  (i.e., distinct).

The desired alpha αo can be shown to be one minus
( )( ) ( )( ) ( )( )

( ) ( ) ( )

R R R R G G G G B B B B

R R G G B B
f f k k f f k k f f k k

k k k k k k

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2
2 2 2

− − + − − + − −

− + − + −
.

Figure 2. Practical triangulation matting. (a-b) Two different backings. (c-d) Objects against the backings. (e) Pulled. (f) New
composite. (g-i) and (j-l) Same triangulation process applied to two other objects (backing shots not shown). (l) Object com-
posited over another. The table and other extraneous equipment have been “garbage matted” from the shots. See Fig. 5.
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The Theorem 3 and 4 expressions for αo are symmetric with re-
spect to the two backings, reflected in our two expressions for co
(in the proof of Theorem 3).

Theorems 2 and 3 are really just special cases of Theorem 4.
For Theorem 2, the two colors are required to have different blue
coordinates. For Theorem 3, they are two arbitrary colors that do
not lie on the same plane of constant Σ. In practice we have found
that the simpler conditions of Theorem 3 often hold and permit
use of computations cheaper than those of Theorem 4.

Theorem 4 allows the use of very general backings. In fact,
two shots of an object moving across a fixed but varied back-
ground can satisfy Theorem 4, as indicated by the lower Fig. 1
example. If the foreground object can be registered frame to frame
as it moves from, say, left to right, then the background at two
different positions can serve as the two backings.

Notice that the Theorem 3 and 4 techniques lead to a backing
shadows solution whereas simple darkening might not work. The
additional requirement is that the illumination levels and light-
emitting directions be the same for the two backing colors so that
the shadows are the same densities and directions.

The overdetermined linear system above summarizes all in-
formation about two shots against two different backing colors. A
third shot against a third backing color could be included as well,
replacing the 4×6 matrix with a 4×9 matrix and the 1×6 right-
hand vector with a 1×9 vector. Then the same least squares solu-
tion technique would be applied to find a solution for this even
more overdetermined problem. Similarly, a fourth, fifth, etc. shot
against even more backing colors could be used. An overdeter-
mined system can be subject to numerical instabilities in its solu-
tion. We have not experienced any, but should they arise the tech-
nique of singular value decomposition [11] might be used.

IMPLEMENTATION NOTES

The Fig. 1(a-d) example fits the criteria of Theorem 2 (actually the
Solution 3 special case) perfectly because the given blue and
black screen shots were manufactured by compositing the object
over perfect blue and black backings. As predicted by the theo-
rem, we were able to extract the original object in its original
form, with only small least significant bit errors. Similarly Fig.
1(e-j) illustrates Theorem 3 or 4.

Fig. 2 is a set of real camera shots of real objects in a real stu-
dio. Our camera was locked down for the two shots required by
Theorem 3 and 4 plus two more required for backing color cali-
brations as mentioned before. Furthermore, constant exposure was
used for the four shots, and a remote-controlled shutter guarded
against slight camera movements. The results are good enough to
demonstrate the effectiveness of the algorithm but are nevertheless
flawed from misregistration introduced during the digitization
process—pin registration was not used—and from the foreground
objects having different brightnesses relative one another, also
believed to be a scanning artifact.

Notice from the Theorem 3 and 4 expressions for αo that the
technique is quite sensitive to brightness and misregistration er-
rors. If the foreground colors differ where they should be equal,
then αo is lowered from its correct value of 1, permitting some
object transparency. In general, the technique tends to err towards
increased transparency.

Another manifestation of the same error is what we term the
“fine line” problem. Consider a thin dark line with bright sur-
roundings in an object shot against one backing, or the comple-
ment, a thin bright line in a dark surround. Such a line in slight
misregister with itself against the other backing can differ dra-

matically in brightness at pixels along the line, as seen by our
algorithm. The error trend toward transparency will cause the
appearance of a fine transparent line in the pulled object.

The conclusion is clear: To effectively use triangulation, pin-
registered filming and digitization should be used to ensure posi-
tional constancy between the four shots, and very careful moni-
toring of lighting and exposures during filming must be under-
taken to ensure that constant brightnesses of foreground objects
are recorded by the film (or other recording medium).

Since triangulation works only for non-moving objects
(excluding rigid motions, such as simple translation), it should be
possible to reduce brightness variations between steps of the
process due to noise by averaging several repeated shots at each
step.

A LOWER BOUND

The trouble with the problems solved so far is that the premises
are too ideal. It might seem that the problems which have Solu-
tions 1 and 2, and Theorem 1 generalizations, are unrealistically
restrictive of foreground object colors. It is surprising that so
much real-world work approaches the conditions of these solu-
tions. Situations arising from Solution 3, and Theorems 2-4 gen-
eralizations, require a doubling of shots, which is a lot to ask even
if the shots are exactly repeatable. Now we return to the general
single-background case and derive bounds on αo that limit the
search space for possible solutions.

Any Co offered as solution must satisfy the physical limits on
color. It must be that 0 ≤ Ro ≤ αo (since Ro is premultiplied by αo)
and similarly for Go and Bo. The Matting Equation gives Rf = Ro +
(1 – αo)Rk. The inequalities for Ro applied to this expression give

( )1 1− ≤ ≤ − +α α αo k f o k oR R R( ) ,
with the left side being the expression for Ro = 0 and the right for
Ro = αo. Similar inequalities apply to Gf and Bf. Fig. 3 shows all
regions of valid combinations of αo, Rf, Gf, and Bf using equality
in the relationship(s) above as boundaries. The color ck for this
figure is taken to be the slightly impure blue [.1  .2  .98].

The dashed vertical lines in Fig. 3 represent a given cf—in this
figure, [.8  .5  .6]. The dotted horizontal lines represent the mini-
mum αo for each of Rf, Gf, and Bf which gives a valid Ro, Go, and
Bo, respectively. Let these three αo’s be called αR, αG, and αB.
Since only one αo is generated per color, the following relation-
ship must be true:

αo ≥ max(αR, αG, αB).
We shall call the αo which satisfies this relationship at equality
αmin, and any αo ≥ αmin will be called a valid one. Notice that al-
though the range of possible αo’s is cut down by this derivation,
there are still an infinity of valid ones to choose from, hence an
infinity of solutions.

If Rf > Rk, as in the Fig. 3 example, then αR corresponds to Ro

= αo, the right side of the inequalities above for Rf and αo. If Rf <
Rk then αR corresponds to Ro = 0, the left side. Thus
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In the example of Fig. 3, αmin ≈ .78. For the special case of pure
blue backing, αmin = max(Rf, Gf, 1 – Bf). So long as a valid αo
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exists, a foreground object color can be derived from the given cf
by c c co o k= +Δ α  as before.

AN UPPER BOUND

Tom Porter pointed out (in an unpublished technical memo [10])
that an upper bound could also be established for αo, by taking
lessons from Vlahos.

The Vlahos Assumption, when valid, has Bo ≤ a2Go. The rear-
rangement of the Matting Equation above for the green channel is

G G Go f o k= − −( )1 α .
Another rearrangement, this time for the blue channel, gives us

αo
o f

k

o f

k

B B
B

a G B
B

= +
−

≤ +
−

1 1 2 .
Combining these two, by substituting the equation for Go into the
inequality for αo and solving, gives

αo
f f

k k

B a G
B a G

≤ −
−

−
1 2

2
,

clamped to [0, 1] if necessary. Recall that .5 ≤ a2 ≤ 1.5 typically.
Let αo at equality be αmax. Then, in our Fig. 3 example, a2 = 1
yields αmax ≈ .87, which constrains the possible solutions a bit
more: .78 ≤ αo ≤ .87.

BLUE SPILL

Vlahos tackled the very important blue spill (blue flare) problem
of backing light reflecting off the foreground object in [19]. He
solved it for an important class of objects, bright whites and flesh
tones, by making what we call the Second Vlahos Assumption:
Foreground objects have max(Bo − Go , 0) ≤ max(Go − Ro, 0). If
this is not true, the color is assumed to be either the backing color
or flare from it. Object transparency is taken, as before, to be pro-
portional to Bo − Go, and this distinguishes the two cases.

Our statement of the Matting Problem needs to be altered to
include the blue spill problem. Our current model says that the
foreground color Cf is a linear combination of the uncomposited
foreground object color Co and the backing color Ck, Cf = Co + (1
– αo)Ck. The Extended Matting Problem would include a term Cs
for the backing spill contribution. For example, it might be mod-
eled as a separate foreground object, with its own alpha αs, in
linear combination with the desired foreground object color Co: Cf
= Cs + (1 – αs)(Co + (1 – αo)Ck). Now the problem becomes the
more difficult one of determining both Cs and Co from the given
information Cf and Ck.

A simplification is to assume that the spill color is the same as
the backing color, Cs = α sCk. Thus Cf = (1 – αs)Co + (1 – αo +
αoαs)Ck. For brevity, let C C

s sΔ Δ= −/ ( )1 α . Then this spill
model can be put into a matrix equation of the same form as be-
fore (but notice the α s = 1 singularity):

[ ]C

t
t
t

R G B t

R G B To

k k k

s s s

1 0 0
0 1 0
0 0 1

1
2
3
4− − −

















= Δ Δ Δ .

Hence, sinceαΔ s
= 0 always, the solutions are of the same form as

before:αo
s

k

T t C
t C

=
− ⋅

⋅
Δ  and c c co o ks

= +Δ α . This does not solve

the problem since α s is still unknown. We shall not pursue the
spill problem further here but recommend it for future research.

SEPARATING SURFACE PROBLEMS

Fig. 4 illustrates the separating surface approach to the general
matting problem. A single plane of colorspace is shown for clar-
ity. A family of three separating surfaces for different values of αo
have been established between the body of backing colors Ck and
the body of object colors Co. A given foreground color Cf is
shown at the point of intersection with the αo = .5 locus along the
straight line through object colors A and B.

The Vlahos (or Ultimatte) matting solutions can be cast into
the separating surface model. In the First Vlahos Form (as well as
in our Solutions 1 and 2 and Theorem 1), each dotted line of Fig.

α
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1
0

0
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G

1

1
0

0
α

B

1

B k

0
0

G k

R k

αR  = αmin

R f

G f

αG

αB

B f

αmax

Figure 3. Shaded areas show solution space. Black areas
are constrained by upper and lower alpha limits to valid
alphas for the given foreground color. Valid alphas for Co lie
along intersection of Cf (dashed lines) with black areas.
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4 would simply be a straight line (a plane in RGB). In the Second
Vlahos Form it would be a line with two straight segments (two
polygons sharing an edge in RGB). The third form simply adds a
third segment (polygon) to this shape. The Primatte solution ex-
tends this trend to many (up to 128) segments (faces of a convex
polyhedron).

Fig. 4 illustrates a general problem with the separating surface
model. All mixtures of A with the backing color will be correctly
pulled if they indeed exist in the foreground object. However, all
mixtures of B with the backing will not be correctly pulled be-
cause they have been disguised as mixtures of A.

Another problem is that it is not always possible to have fore-
ground object colors disjoint from backing colors. Another is the
assumption that a locus of constant αo is a surface rather than a
volume, connected rather than highly disconnected, and planar or
convex.

SUMMARY

The expiration of the fundamental Vlahos patents has inspired us
to throw open the very interesting class of constant color matting
problems to the computer graphics community. Thus one of our
purposes has been to review the problems of the field—the gen-
eral one of pulling a matte from a constant color shot plus related
subproblems such as blue spill, backing impurities, and backing
shadows.

The mathematical approach introduced here we believe to be
more understandable than the ad hoc approach of the Vlahos pat-
ents, the standard reference on blue screen matting. Furthermore,
we believe that the treatment here throws light on why the process
should work so well as it does in real-world applications (gray,
near-gray, and flesh tones), surprising in light of the proof herein
that the general problem has an infinity of solutions. Consistent
with the lack of a general algorithmic solution is the fact that hu-
man interaction is nearly always required in pulling a matte in
film or video.

Our principal idea is that an image from which a matte is to be
pulled can be represented by a model of two images, an uncom-
posited foreground object image (a sprite) and a backing color

image, linearly combined using the alpha channel of the fore-
ground object. Our main results are deduced from this model. In
each case, the expression for the desired alpha channel α o is a
function of the two images in the model, Cf, the given image—a
composite by our model—and Ck, the given backing image. This
may be compared to the Vlahos expressions for alpha which are
functions of the given image Cf only.

We have introduced an algorithmic solution, the triangulation
solution, by adding a new step to the blue screen process as usu-
ally practiced: Another shot of the foreground object against a
second backing color. This multi-background technique cannot be
used for live actors or other moving foreground objects because of
the requirement for repeatability. Whenever it is applicable, how-
ever, it is powerful, the only restriction on the two backings being
that they be different pixel by pixel. Hence the backing colors do
not even have to be constant or pure—the backing impurities
problem does not exist. However, to solve the backing shadows
problem, illumination level and direction must be the same for
both backings, particularly important if they are generated by light
emission rather than reflection.

We have bounded the solution space for the general non-
algorithmic problem, a new extension to the Vlahos oeuvre.
Hopefully, this will inspire further researches into this difficult
problem. See the Vlahos patents (including [4] and [5]) for further
inspiration.

We have touched on the blue spill (blue flare) problem and
suggest that additional research be aimed at this important prob-
lem. We have sketched a possible model for this research, gener-
alizing the idea of the given image being a composite of others. In
particular, we propose that the idea of modeling blue spill by an
additional blue spill image, with its own alpha, might lead to fur-
ther insight.

Finally, we have briefly reviewed the modeling of the matting
problem with separating surface families (cf. [8]), shown how to
cast the Vlahos work in this light, and discussed some problems
with the general notion. We urge that this class of solutions be
further explored and their fundamental problems be elucidated
beyond the initial treatment given here.
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