

#### **Key Concepts**

Frequency space Filters and convolution Sampling and the Nyquist frequency Aliasing and Antialiasing

CS148 Lecture 13

## **Frequency Space**

#### **Sines and Cosines**





#### **Recall Complex Exponentials**

#### Euler's Formula

$$e^{jx} = \cos x + j\sin x$$

#### Odd (-x)

$$e^{-jx} = \cos -x + j\sin -x = \cos x - j\sin x$$

#### Therefore

$$\cos x = \frac{e^{jx} + e^{-jx}}{2} \quad \sin x = \frac{e^{jx} - e^{-jx}}{2j}$$

#### Hence, use complex exponentials for sines/cosines

#### CS148 Lecture 13









### $\sin(2\pi/32)x \times \sin(2\pi/16)y$













#### **My Humble Frequencies**



CS148 Lecture 13

Pat Hanrahan, Fall 2011

#### **Remove Low Frequencies (Edges)**



**Frequency Domain** 

CS148 Lecture 13



#### **Remove Low and High Frequencies**



CS148 Lecture 13

#### **Remove Low and High Frequencies**



# Filters = Convolution









#### **Convolution Theorem**

- A filter can be implemented in the spatial domain using convolution
- A filter can also be implemented in the frequency domain
  - Convert image to frequency domain
  - Convert filter to frequency domain
  - Multiply filter times image in frequency domain
  - Convert result to the spatial domain

CS148 Lecture 13

Pat Hanrahan, Fall 2011

#### **Box Filter**



CS148 Lecture 13





#### **Size of Filter**

As a filter is localized in space, it spreads out in frequency Conversely, as a filter is localized in frequency, it spreads out in space

A box filter is very localized in space; it has infinite extent in frequency space

CS148 Lecture 13

Pat Hanrahan, Fall 2011

#### **Efficiency?**

When would it be faster to apply the filter in the spatial domain?

When would it be faster to apply the filter in the frequency domain?



#### Image Generation = Sampling

Evaluating a function at a point is sampling

for( int x = 0; x < xmax; x++ )
for( int y = 0; y < ymax; y++ )
Image[x][y] = f(x,y);</pre>

# Rasterization is equivalent to evaluating the function inside(triangle, x, y)

#### **Sampling Causes Jaggies**

#### **Retort, by Don Mitchell**



CS148 Lecture 13

#### **Sampling in Computer Graphics**

Artifacts due to sampling - Aliasing

- Jaggies sampling in space
- Wagon wheel effect sampling in time
- Temporal strobing sampling in space-time
- Moire sampling texture coordinates
- Sparkling highlights sampling normals

**Preventing these artifacts - Antialiasing** 



# Wagon Wheel Effect

http://www.michaelbach.de/ot/mot\_wagonWheel/



#### **Nyquist Frequency**

Definition: The Nyquist frequency is ½ the sampling frequency (1/Ts)

Frequencies above the Nyquist frequency appear as aliases

No aliases appear if the function being sampled has no frequencies above the Nyquist frequency

# Antialiasing

#### Antialiasing

Simple idea:

Remove frequencies above the Nyquist frequency before sampling

How? Filtering before sampling

CS148 Lecture 13





#### Antialiasing



#### **Antialiasing vs. Blurred Aliases**



**Blurred Jaggies** 

Pat Hanrahan, Fall 2011

CS148 Lecture 13

#### **Things to Remember**

Signal processing

- Frequency domain vs. spatial domain
- **Filters in the frequency domain**
- Filters in the spatial domain = convolution
- Sampling and aliasing
  - Image generation involves sampling
    - May also sample geometry, motion, ...
  - Nyquist frequency is ½ the sampling rate
  - Frequencies above the Nyquist frequency appear as other frequencies aliases
  - Antialiasing Filter before sampling

CS148 Lecture 13

Pat Hanrahan, Fall 2011

# **Extra Slides**

# Supersampling

#### Supersampling

#### Approximate a box filter by taking more samples and averaging them together



#### 4 x 4 supersampling

CS148 Lecture 13



