CS 148: Introduction to Computer Graphics and Imaging
Basic Signal Processing:
Sampling, Aliasing, Antialiasing


No Jaggies

## Key Concepts

Frequency space
Filters and convolution
Sampling and the Nyquist frequency
Aliasing and Antialiasing

## Frequency Space

## Sines and Cosines


$\cos 2 \pi x$


## Frequencies $\cos 2 \pi f x$



CS 148 Lecture 13
Pat Hanrahan, Fall 2011

## Recall Complex Exponentials

## Euler's Formula

$$
e^{j x}=\cos x+j \sin x
$$

Odd (-x)

$$
e^{-j x}=\cos -x+j \sin -x=\cos x-j \sin x
$$

Therefore

$$
\cos x=\frac{e^{j x}+e^{-j x}}{2} \sin x=\frac{e^{j x}-e^{-j x}}{2 j}
$$

Hence, use complex exponentials for sines/cosines

## Constant



Spatial Domain


Spatial Domain
Frequency = 1/32; 32 pixels per cycle
Pat Hanrahan, Fall 2011

$$
\sin (2 \pi / 16) x
$$



## Spatial Domain

Frequency Domain


Spatial Domain
Frequency Domain

```
sin}(2\pi/32)x\times\operatorname{sin}(2\pi/16)
```



## Spatial Domain

CS148 Lecture 13
$e^{-r^{2} / 16^{2}}$

Pat Hanrahan, Fall 2011
Frequency Domain
$\qquad$

Spatial Domain



Frequency Domain


Spatial Domain


Frequency Domain

Pat Hanrahan, Fall 2011

$$
e^{-x^{2} / 32^{2}} \times e^{-y^{2} / 16^{2}}
$$



Spatial Domain

Rotate $45 e^{-x^{2} / 32^{2}} \times e^{-y^{2} / 16^{2}}$


## Spatial Domain

## Filtering

## My Humble Frequencies



Spatial Domain

CS148 Lecture 13

Frequency Domain

Pat Hanrahan, Fall 2011

## Remove Low Frequencies (Edges)



Spatial Domain


Frequency Domain

## Remove High Frequencies (Blur)



Spatial Domain
CS148 Lecture 13


Frequency Domain

Pat Hanrahan, Fall 2011

## Remove Low and High Frequencies



Spatial Domain


Frequency Domain

## Remove Low and High Frequencies



Spatial Domain


Frequency Domain

## Filters = Convolution

## Convolution



## Convolution



$$
1 * 1+3 * 2=7
$$



## Convolution



3* $1+0$ * $2=3$


## Convolution



$$
0 * 1+4 * 2=8
$$

| 7 | 3 | 8 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

## Convolution Theorem

A filter can be implemented in the spatial domain using convolution

A filter can also be implemented in the frequency domain
$\square$ Convert image to frequency domain
■ Convert filter to frequency domain
■ Multiply filter times image in frequency domain
■ Convert result to the spatial domain

## Box Filter



## Box Filter = Low-Pass Filter



Spatial Domain
Frequency Domain

Pat Hanrahan, Fall 2011

## Wider Filters, Lower Frequencies



Spatial Domain

## Size of Filter

As a filter is localized in space, it spreads out in frequency
Conversely, as a filter is localized in frequency, it spreads out in space

A box filter is very localized in space;
it has infinite extent in frequency space

## Efficiency?

When would it be faster to apply the filter in the spatial domain?

When would it be faster to apply the filter in the frequency domain?

## Sampling

## Image Generation = Sampling

## Evaluating a function at a point is sampling

for ( int $x=0 ; x<x m a x ; x++$ )
for ( int $y=0 ; y<y m a x ; ~ y++)$
Image[x][y] $=\mathbf{f}(x, y)$;

Rasterization is equivalent to evaluating the function inside(triangle, $x, y$ )

## Sampling Causes Jaggies

## Retort, by Don Mitchell



Staircase pattern or jaggies
CS 148 Lecture 13
Pat Hanrahan, Fall 2011

## Sampling in Computer Graphics

Artifacts due to sampling - Aliasing
$■$ Jaggies - sampling in space
■ Wagon wheel effect - sampling in time
$\square$ Temporal strobing - sampling in space-time
■ Moire - sampling texture coordinates
■ Sparkling highlights - sampling normals

## Preventing these artifacts - Antialiasing

## Aliasing

## Wagon Wheel Effect

## "Aliases"



These two sine waves are indistinguishable Indistinguishable frequencies are called "aliases"

## Nyquist Frequency

## Definition: The Nyquist frequency is $1 / 2$ the sampling frequency (1/Ts)

Frequencies above the Nyquist frequency appear as aliases

No aliases appear if the function being sampled has no frequencies above the Nyquist frequency

## Antialiasing

## Antialiasing

## Simple idea:

Remove frequencies above the Nyquist frequency before sampling

## How? Filtering before sampling

## Prefiltering by Computing Coverage

A 1 pixel box filter removes frequencies whose period is less than or equal to 1 pixel


Original


Filtered

## Point- vs. Area-Sampled



Point



Area

Checkerboard sequence by Tom Duff

## Antialiasing



Jaggies
CS 148 Lecture 13


Prefilter
Pat Hanrahan, Fall 2011

## Antialiasing vs. Blurred Aliases



Blurred Jaggies


Prefilter

## Things to Remember

## Signal processing

Frequency domain vs. spatial domain
Filters in the frequency domain
■ Filters in the spatial domain = convolution
Sampling and aliasing
$\square$ Image generation involves sampling
■ May also sample geometry, motion, ...
■ Nyquist frequency is $1 / 2$ the sampling rate
■ Frequencies above the Nyquist frequency appear as other frequencies - aliases
$■$ Antialiasing - Filter before sampling

## Extra Slides

Supersampling

## Supersampling

Approximate a box filter by taking more samples and averaging them together

$4 \times 4$ supersampling

## Point-sampling vs. Super-sampling



Point



4×4 Super-sampled

Checkerboard sequence by Tom Duff

## Area-Sampling vs. Super-sampling



Exact Area


