CS161: Algorithm Design and Analysis Recitation Section 6
Stanford University 20-23 February, 2018

Problem 6-1. Just a warm-up: Solve the following recursion:
T(n)=T(n/2)+T(n/4)+n

Solution. If we think about the tree for this recurrence we see that in the first levgl we have n,
in the second level we have n/2+n/4 = 3n/4, and in the i-th level we have (%)’*ln until we
hit the base case on one of the branches. After that, each level will only have less than (%)i’ln.

So we can uppper bound 7' (n) by:

From the first level alone, we have T'(n) > n.
So we conclude T (n) = ©(n).

Problem 6-2. Asymptotic analysis: Order the following asymptotic runtimes, from fastest to

slowest (all logarithms are with base e, i.e. €!°" = n):
logn
2" logl n logn '\ loglogn
2 n! n2" 10n log(n!) n 088" (4) e" (loglogn)
Solution. The order is:
logn
logn '\ loglogn n log1 on
() 10n log(n!) (4> ploglogn pon g g

Problem 6-3. In this exercise we will study the Heaviest Non-Successive Numbers problem:

Given a sequence X = (x1,xp,...,X,) of positive integers, the index set I C {1,...,n} is called
legal, if I does not contain successive indices from the sequence. For any index set J, we define
its weight: w(J) =Y jc;x;. Here we are seeking for a fast algorithm to compute a legal index
set of maximum weight.

For example, if X = (12,66,23,6), then I = {1,3} would be legal and w(I) = 12423 = 35,
whereas I = {1,3,4} would not be legal because indices 3 and 4 are successive. The best
solution is the set I* = {2,4} with w(I*) =66+ 6 = 72.

1.We consider the following natural greedy algorithm:

2 CS161: : Recitation Section 6

eStart with the empty set / = @ and J = {1,...,n}.

eWhile J # &, find index j € J with the maximum weight x;, add x; to / and delete
indices j,j—1,j+ 1 from J.

eQutput /.

Give a simple counterexample where the above greedy algorithm fails to find the optimum
solution.

2.True or False: if I is the output of the greedy algorithm and 7* is a legal index set of
maximum weight, then: w(I) > Jw(I*)

3.Give a dynamic programming algorithm that runs in time O(n) and finds a legal set of
maximum weight.

Solution.

1.(1,1+¢€,1). The greedy algorithm will pick the 1+ € element, whereas the optimum
solution is 2.

2.True: If the greedy algorithm picks element j, then by the greedy criterion we have
xj > xj—1 and x; > xj;1. Using induction, it follows that the greedy algorithm is a 2-
approximation.

3.We use dynamic programming: Define X; = {x1,x2,...,x;} and let S(X;) to be the weight
of the optimum solution for the sequence X;. Suppose we knew S(X,_1) and S(X,,—»)
and we are focusing on whether to choose x, or not. We get the recursion: S(X,) =
max{S(X,—1),S(Xy—2) +x,)}. Generally: S(X;) = max{S(X;—1),S(Xi—2) +x;)} fori > 2,
S(Xl) = X1 and S(X()) =0.

Problem 6-4. Subset Sum: Given a set of non-negative integers, and a value sum S, determine
if there is a subset of the given set with sum equal to the given sum S.

Example: set = {3, 34, 4, 12, 5, 2}, sum = 9
Output: True //There is a subset (4, 5) with sum 9.

Solution. The basic idea is to observe that (n is the number of elements in the set and || means
logic or):

isSubsetSum(set, n, sum) = isSubsetSum(set, n-1, sum) ||
isSubsetSum(set, n-1, sum-set[n-11])

Base Cases:

isSubsetSum(set, n, sum) = false, if sum > 0 and n ==

isSubsetSum(set, n, sum) true, if sum == 0

A naive implementation in Python:

CS161: : Recitation Section 6 3

A recursive solution for subset sum
problem

Returns true if there 1is a subset
of set[] with sum equal to given sum

def isSubSum(set,n, sum)

Base Cases

if (sum == 0)
return True
if (n == 0 and sum != 0)

return False

If last element is greater than
sum, then ignore it
if (set[n - 1] > sum)
return isSubSum(set, n - 1, sum);

else, check if sum can be obtained

by any of the following

(a) including the last element

(b) excluding the last element

return isSubSum(set, n-1, sum) or isSubSum(set, n-1, sum-set[n-117)

Driver program to test above function

set = [3, 34, 4, 12, 5, 2]

sum = 9

n = len(set)

if (isSubSum(set, n, sum) == True)

print ("Found a subset with given sum")
else
print ("No subset with given sum")

The above implementation is naive because similar to the Fibonacci computation from class,
we may end up computing the same quantities many times from scratch. We can avoid this by
using Dynamic Programming. We create a boolean 2D table subset|][] and fill it in a bottom up
manner. The value of subset|i][j] will be true if there is a subset of set[0..i — 1] with sum equal
to j, otherwise false. Finally, we return subset [n][S].

A Dynamic Programming solution for
subset sum problem

4 CS161: : Recitation Section 6

Returns true 1f there is a subset
of set[] with sum equal to given sum
def isSubsetSum(st, n, sm)

The value of subset[i][j] will be
true if there is a subset of

set[0..i-1] with sum equal to]
subset=[[True] * (sm+1l)] * (n+1)

If sum is 0, then answer is true
for 1 in range (0, n+1)
subset [1] [0] = True

If sum is not 0 and set is empty,

then answer is false

for 1 in range(l, sm + 1)
subset [0] [1] = False

Fill the subset table in bottom
up manner
for 1 in range(l, n+1)
for j in range(l, sm+1l)
if(§ < st[i-1])

subset [1][]j] = subset[i-1]1[7]]
if (3 >= st[i-11)
subset [1][]J] = subset[i-1][]J] or subset[i - 1][j-st[i-1]]

return subset[n] [sm];

Driver program to test above function

st = [1, 2, 3]

sm = 7

n = len(st)

if (isSubsetSum(st, n, sm) == True)

print ("Found a subset with given sum")
else
print ("No subset with given sum")

Problem 6-5. Let ay,a;,...,a, be a sequence of n different integer numbers. The swap-
number for this sequence is the number of pairs (a;,a;) with i < j and a; > aj, i.e. it is the
number of out-of-order pairs. For example, for the sequence 6,5,4,3,2,1 the swap-number is

CS161: : Recitation Section 6 5

15 (all pairs are out of order), for the sequence 5,1,2,6,3,4 the swap-number is 6 (the pairs
are: (5,1),(5,2),(5,3),(5,4),(6,3),(6,4)) and finally for the sorted sequence 1,2,3,4,5,6 the swap-
number is 0.

1.Compute the swap-number of the sequence ay,a,...,a, by providing an algorithm that
runs in O(n?) time.

2.Compute the swap-number of the sequence ay,as,...,a, by providing a divide and con-
quer algorithm that runs in time O(nlogn). Feel free to use as a black-box any subroutines
we have seen in class.

Solution.

1.For every number we check how many numbers on the right are smaller than it is. We can
do that in O(n) time for each number hence O(n?) in total.

Merge&Count(A, B)
14 1; g 1; k< 1; rap + 0;
while i < |A| and j < |B| do
if A[{| < B[j] then
Clk] « Ali]; k< k+1;, i i+1;
else
Clk] « Bli]; k< k+1; j«<j+1;, rap<rap+|A4 —i+1;

Figure 1: The main change inside the subroutine in mergesort.

2.The idea is based on Mergesort with a slight change in the part where we merge the
subarrays. Suppose we split the initial sequence in two pieces A, B and we can recursively
compute the swap-number r4 of A and the swap-number rp of B. We can also assume
that the two pieces are sorted. Then the swap number for the initial sequence r is just
r =rp+rp+rap where rap is number of out-of-order pairs of the form (a,b) with a €
A,b € B. But we can compute this number while we are merging the two subarrays: Every
time an element b from B is selected to be merged and go on top of the merged array we
construct for A, B, the counter r4p is incremented by the remaining number of elements
in A that have not yet been merged, since all of the are larger than b. See Figure 1.

Problem 6-6. Here we study a variation of a sorting problem:

We want to make a construction and we have a box with n metal screws and a box with n metal
nuts. All the screws have different size and all the nuts have different size. Every screw matches
with exactly one nut. We are seeking to match all screws with their unique corresponding nut.
There is however a constraint: We cannot compare the sizes of two screws neither the sizes of
two nuts. We can only compare the size of one screw with the size of one nut and figure out if

6 CS161: : Recitation Section 6

the screw is bigger, smaller or matches exactly with the nut (and of course similarly figure out
if the nut is bigger, smaller or matches exactly with the screw).

Provide a randomised algorithm that runs in expected O(nlogn) time and that will match all
the screws with their unique corresponding nut.

Solution. Here the idea is based on Quicksort. We cannot of course use Quicksort by itself
because of the pivot rule. Here is the main idea: We are going to pick a random nut and this
will be used as a pivot for the partition of the screws, we are going to find in linear time the
screw that corresponds to the chosen nut, and then this screw will be used as a pivot for the
partition of the nuts. This partition procedure takes O(n) time and we now have two smaller
subsets of screws and corresponding nuts. We perform the above procedure recursively and the
running time analysis is exactly the same as randomised Quicksort.

