Photons and sensors
(with an interlude on the history of color photography)

CS 178, Spring 2009

Marc Levoy
Computer Science Department
Stanford University
Camera pixel pipeline

- every camera uses different algorithms
- the processing order may vary
- most of it is proprietary
Example pipeline

- **Sensor**
- **Analog to Digital Conversion (ADC)**
- **Processing:** demosaicing, tone mapping & white balancing, denoising & sharpening, compression
- **Storage**

Components:
- **Canon 21 Mpix CMOS sensor**
- **Canon DIGIC 4 processor**
- **Compact Flash card**
Example

- Pentaprism: Rotates the image on the focusing screen 180 degrees to form an upright image when viewing through the viewfinder.
- Shutter Release Switch
- Focusing Screen: Reproduces an image of the subject to be photographed.
- Memory Card
- Main Mirror: Guides light from the lens to the viewfinder. Light passing through the half-mirror at the center of the main mirror is guided to the submirror. The main mirror flips up during exposure to open a path for light to reach the image sensor.
- DIGIC III Imaging Processor: Processes the signals read from the image sensor at high speeds and generates image data. With the EOS-1D Mark III, two DIGIC III processors work in parallel to process high-speed continuous shooting of approx. 10 frames per second.
- Metering Sensor: 6D-zone metering sensor optimized for Area AF.
- Image Sensor: Detects light and converts it into electrical signals.
- Shutter: Opens during exposure to allow light to reach the image sensor.
- Submirror: Elliptically shaped mirror that directs light from the lens to the AF optical distance meter.
- Self-Cleaning Sensor Unit
- Area AF Sensor
- Secondary Image Formation Lens: Two banks of integrated aspherical lenses guide the image of the subject to 94 pairs of AF sensors.

Canon 21 Mpix CMOS sensor
Canon DIGIC 4 processor
Compact Flash card
Outline

- converting photons to charge
- getting the charge off the sensor
 - CCD versus CMOS
 - analog to digital conversion (ADC)
- supporting technology
 - microlenses
 - antialiasing filters
 - shutters
- sensing color
The photoelectric effect

- when a photon strikes a material, an electron may be emitted
 - depends on wavelength, not intensity

\[E_{\text{photon}} = \frac{h \times c}{\lambda} \]
Quantum efficiency

- not all photons will produce an electron
 - depends on quantum efficiency of the device

 \[
 QE = \frac{\text{# electrons}}{\text{# photons}}
 \]

- human vision: \(~15\%\)
- typical digital camera: \(< 50\%\)
- best back-thinned CCD: \(> 90\%\)
Sensor pixel

- resulting current is small (10-100 fA)
 - so integrate over space and time (pixel area \times exposure time)
 - larger pixel \times longer exposure means more accurate measure

- typical pixel sizes
 - casio EX-F1: $2.5\mu m \times 2.5\mu m = 6\mu m^2$
 - Canon 5D II: $6.4\mu m \times 6.4\mu m = 41\mu m^2$
Full well capacity

- too many photons causes \textit{saturation}
 - larger capacity leads to higher \textit{dynamic range}
 - but the \textit{noise floor} is also a factor, as we’ll see
Blooming

- charge spilling over to nearby pixels
 - can happen on CCD and CMOS sensors
 - don’t confuse with glare or other image artifacts
Image artifacts can be hard to diagnose

Q. Is this blooming?
there may be blooming in the sky, but the shrinkage of the horse’s leg can be explained purely as a byproduct of misfocus

- in the accompanying plan view diagram, the horse’s leg is shown at top (in cross section)
- the red bundle of rays, corresponding to one sensor pixel, crossed before the leg (was misfocused), then spread out again, but saw only more leg, so its color would be dark
- the green bundle of rays, corresponding to a nearby pixel, crossed at the same depth but to the side of the red bundle, then spread out again, seeing partly leg and partly sky; its color would be lighter than the leg
- this lightening would look like the sky was “blooming” across the leg, but it’s just a natural effect produced by misfocus
CCD versus CMOS sensors

- **CCD** = charge-coupled device
 - charge shifted along columns to an output amplifier
 - oldest solid-state image sensor technology
 - highest quality, but not as flexible or cheap as CMOS

- **CMOS** = complementary metal-oxide semiconductor
 - an amplifier per pixel converts charge to voltage
 - low power, but noisier (but getting better)
Gratuitous animation showing a CCD “bucket brigade” readout

\[\Phi_1 \quad \Phi_2 \quad \Phi_3 \quad \Phi_1 \quad \Phi_2 \quad \Phi_3\]

10V 0V 0V 10V 0V 0V

P-substrate
Gratuitous animation showing a CCD “bucket brigade” readout

Φ1
+10V

Φ2
-10V

Φ3
0V

Φ1
+10V

Φ2
+10V

Φ3
+0V

P-substrate

T=1

v

Φ1

Φ2

Φ3
Gratuitous animation showing a CCD “bucket brigade” readout
Gratuitous animation showing a CCD “bucket brigade” readout
Gratuitous animation showing a CCD “bucket brigade” readout

P-substrate

Φ

Φ1
+0V

Φ2
+0V

Φ3
+10V

Φ1
+0V

Φ2
+0V

Φ3
+10V

T=4

V
Gratuitous animation showing a CCD “bucket brigade” readout

Φ1
+10V
Φ2
+0V
Φ3
+10V
Φ1
+10V
Φ2
+0V
Φ3
+10V

P-substrate

V
Φ2
T=5
Φ3

© 2009 Marc Levoy
Smearing

- side effect of bucket-brigade readout on CCD sensors
 - only happens if pixels saturate
 - doesn’t happen on CMOS sensors
Analog to digital conversion (ADC)

- **flash ADC**
 - voltage divider \rightarrow comparators \rightarrow decoder
 - for n bits requires 2^n comparators

- **pipelined ADC**
 - 3-bit ADC \rightarrow 3-bit DAC \rightarrow compute residual \rightarrow $4\times$ \rightarrow repeat
 - longer latency, but high throughput
 - some new sensors use an ADC per column
Fill factor

Fraction of sensor surface available to collect photons
- can be improved using per-pixel microlenses

Q. An image sensor performs 2D sampling. What is the prefilter, with and without microlenses?
What per-pixel microlenses do

- integrating light over a pixel serves **two** functions: capturing more photons, and convolving the focused image with a 2D Rect prefilter, to avoid aliasing
 - if only a portion of each pixel site is photo-sensitive, this Rect doesn’t span the spacing between pixels, so the prefilter is poor, and aliasing can result (like the short exposures in old movie cameras)
- microlenses both gather more light and improve the prefilter
 - with microlenses, prefilter width roughly equals pixel spacing

In lecture I described the signal \(f(x) \) and filters \(g(x) \) and \(r(x) \) as being one-dimensional, and I defined convolution is a single integral over the single variable “\(\tau \)”. I should have made clear that the theory extends naturally to two dimensions. In particular, the focused image arriving on a sensor can be treated as a 2D function \(f(x,y) \). Prefiltering consists of convolving this with a 2D filter function \(g(x,y) \). This 2D convolution is the double integral of \(f(x-\tau, y-\phi) \times g(\tau,\phi) \) \(d\tau d\phi \). For the special case of a square pixel that is equally sensitive at all points on its surface, \(g(x,y) \) is a 2D Rect function, i.e. a box from \(-1/2\) to \(1/2\) in \(x \) and \(y \) and of unit height. See next slide, added 4/21/09. If you want to include exposure time, then the arriving time-varying image becomes the 3D function \(f(x,y,t) \), the prefilter \(g(x,y,t) \) is a pixel area considered over time, and convolution becomes a triple integral. Assuming the shutter opens and closes instantly, \(g(x,y,t) \) is a 3D Rect, i.e. a rectangular parallelepiped, still of unit volume. The same extensions apply to postfiltering, i.e. to reconstruction; it consists of convolving the discretely sampled function \(f_s(x,y) \), i.e. the array of pixels, with a 2D filter function \(r(x,y) \). For images displayed on a laptop, \(r(x,y) \) is another 2D Rect function, equal is extent to a pixel on the laptop's screen. This convolution is done for you naturally when you display the image.
Spatial convolution in 2D

- re-iterating the points made in the yellow comment post-it on the previous slide
Antialiasing filters

- improves on non-ideal prefilter, even with microlenses
- typically two layers of birefringent material
 - splits 1 ray into 4 rays
 - operates like a 4-tap discrete convolution filter kernel!
Removing the antialiasing filter

✦ “hot rodding” your digital camera
 • $450 + shipping

anti-aliasing filter removed normal
Removing the antialiasing filter

- “hot rodding” your digital camera
 - $450 + shipping

![Comparison of images with and without antialiasing filter](maxmax.com)

anti-aliasing filter removed normal
Shutters

- quiet
- slow (max 1/500s)
- need one per lens

- loud
- fast (max 1/4000)
- distorts motion
Jacques-Henri Lartigue, Grand Prix (1912)
Color sensing technologies

- field-sequential
- 3-sensor
- spatial mosaic
- vertically stacked
Historical interlude

Q. Who made the first color photograph?

James Clerk Maxwell, 1861
- of Maxwell’s equations
- 3 images, shot through filters, then simultaneously projected
Historical interlude

Q. Who made the first color print?

- Louis Arthur Ducos du Hauron, 1877
 - 3 images, shot through filters, printed with color inks
 - he experimented with RGB and CMY
• simultaneous projection provided good saturation, but available printing technology did not
• digital restoration lets us see them in full glory...
Sergey Prokudin-Gorsky, Alim Khan, emir of Bukhara (1911)
Sergey Prokudin-Gorsky,
Pinkhus Karlinskii, Supervisor of the Chernigov Floodgate (1919)
First color movie technology?

- George Albert Smith’s Kinemacolor, 1906
 - alternating red and green filters, total of 32 fps
 - projected through alternating red and green filters

A Visit to the Seaside (1908) (wikipedia)
Technicolor

- beam splitter leading through 2 filters to two cameras
- 2 strips of film, cemented together for projection

Toll of the Sea (1922)
Phantom of the Opera (1925)
Technicolor

- 3 filters, 3 cameras, 3 strips of film
- better preserved than single-strip color movies of 1960s!

Disney’s Flowers and Trees (1932)
Wizard of Oz (1939)
First consumer color film?

(wikipedia)

Picadilly Circus, 1949

- Kodachrome, 1935
 - no longer available
First color television broadcast?

- competing standards
 - U.S. NTSC 525-line, 30fps, interlaced
 - Europe PAL 625-line, 50fps, interlaced
 - France SECAM 625-line, 50fps, interlaced

1951

NBC PRESENTATION IN RCA COLOR

By Golly! This is the stuff! S. Byrns & Lewis

The Ed Sullivan Show
First color television broadcast?

- competing standards
 - U.S. NTSC Never Twice the Same Color
 - Europe PAL Pale and Lurid
 - France SECAM Système Electronique Contre les Americains

1951
Color sensing technologies

- field-sequential - just covered
- 3-sensor
- spatial mosaic
- vertically stacked
3-CCD cameras

- high-quality video cameras
- prism & dichroic mirrors split the image into 3 colors, each routed to a separate CCD sensor
- no light loss, as compared to filters
- expensive, and complicates lens design
Color mosaic

- uses absorption filters, so light is lost
- interpolate color information to get RGB per pixel
 - called demosaicing
 - hard problem, many artifacts, active research area
 - we’ll return to this...

Bayer pattern

Sony RGB+E
better color

Kodak RGB+C
less noise
Crop from raw Bayer mosaic image
longer wavelengths penetrate deeper into silicon, so arrange a set of vertically stacked detectors
- top gets mostly blue, middle gets green, bottom gets red
- no control over spectral responses, so requires processing

fewer color artifacts than color mosaics
- but possibly worse noise performance
Not yet covered

- dynamic range

\[
DR = \frac{\text{max output swing}}{\text{noise in the dark}} = \frac{\text{saturation level} - \text{dark current}}{\text{dark shot noise} + \text{readout noise}}
\]

- noise and ISO
- spectral characteristics of color filters
- demosaicing
Slide credits

- Brian Curless
- Eddy Talvala
- Abbas El Gamal