Color I: trichromatic theory

CS 178, Spring 2012

Marc Levoy
Computer Science Department
Stanford University

Outline

- spectral power distributions
- → color response in animals and humans
- → 3D colorspace of the human visual system
 - and color filter arrays in cameras
- reproducing colors using three primaries
- → additive versus subtractive color mixing
- cylindrical color systems used by artists (and Photoshop)
- chromaticity diagrams
 - color temperature and white balancing
 - standardized color spaces and gamut mapping

Newton's Experimentum Crucis

Isaac Newton (1643-1727)

(Robin)

- sunlight can be divided into colors using a prism
- → these colors cannot be further divided using a 2nd prism
- experiment performed 1665, drawing made in 1672

Newton's Experimentum Crucis

◆ alternatively, the divided colors can be recombined using a lens and 2nd prism into a new beam that has exactly the same properties as the original

The visible light spectrum

- \star wavelengths between 400nm and 700 nm (0.4 μ 0.7 μ)
- * exactly the colors in a rainbow

The visible light spectrum

- \star wavelengths between 400nm and 700 nm (0.4 μ 0.7 μ)
- exactly the colors in a rainbow

Rene Descartes, Formation of a Rainbow (1637)

The visible light spectrum

- * wavelengths between 400nm and 700 nm (0.4μ 0.7μ)
- exactly the colors in a rainbow

Spectral power distribution (SPD)

(LampTech)

- units of power are watts (joules per second)
- shown here are spectra of common illumination sources
- → plots above are relative amounts (%) of each wavelength

Interaction of light with matter

- spectrum of illumination is multiplied wavelength-bywavelength by reflectance spectrum of object
 - cause is absorption by the material
 - so the spectrum you see depends on the illumination
- ◆ transmittance operates the same way

Example

= black

Examples of reflectance spectra

- two reflectance spectra that match (i.e. are metamers) under one illuminant may not match under another
- clothes that match in the store may not match outdoors

Questions?

- → two different spectra may appear alike to us
 - white petal and white flower (above left)
 - these are called *metamers*
- → Newton observed this, but could not explain it

Outline

spectral power distributions

- ★ color response in animals and humans
 - → 3D colorspace of the human visual system
 - and color filter arrays in cameras
 - reproducing colors using three primaries
 - → additive versus subtractive color mixing
 - cylindrical color systems used by artists (and Photoshop)
 - chromaticity diagrams
 - color temperature and white balancing
 - standardized color spaces and gamut mapping

Monochromats (contents of whiteboard)

- 1. organisms having only one kind of retinal receptor cannot distinguish changes in intensity from changes in wavelength, hence they have no *color discrimination*
 - for example a unit amount of λ_1 versus λ_2 above
 - or a unit amount of λ_1 versus half as much of λ_3 (assuming the sensitivity to λ_3 is twice the response to λ_1)
 - example: horseshoe crab

Dichromats (contents of whiteboard)

- 2. this organism can discrimate a response in the range wavelengths covered by A versus B, but cannot discriminate within those ranges
- 3. this organism has color discrimination over the range of wavelengths shown
 - for each wavelength within this range, the ratio of responses of receptors A and B is unique; hence the organism can identify which wavelength (e.g. λ_1 or λ_2) it's looking at
- 4. this organism has a larger range of color vision
 - example: dog, horse

Trichromats (contents of whiteboard)

- 5. humans can discrimate wavelengths from 400nm to 700nm
 - we can also discriminate mixtures of wavelengths that dichromats cannot; this will become clearer later
- * at the retinal level, our response to light is linear
 - a. if the response to a unit stimulus at λ_1 of is $(\rho_1, \gamma_1, \beta_1)$, and to a unit stimulus at λ_2 is $(\rho_2, \gamma_2, \beta_2)$, then the response to a superposition of stimuli λ_1 and λ_2 is $(\rho_1 + \rho_2, \gamma_1 + \gamma_2, \beta_1 + \beta_2)$
 - b. the response to n units of a stimulus at λ_1 is $(n \rho_1, n \gamma_1, n \beta_1)$
 - c. a system that obeys superposition (a) and scaling (b) is linear

Marc Levoy

Human response to an arbitrary stimulus

 \bullet output is three numbers (ρ, γ, β) per area on retina

Human response to an arbitrary stimulus

* stated algebraically, given a stimulus spectrum $L_e(\lambda)$, the human response to it (ρ, γ, β) are the integrals over all visible wavelengths of our responses

 $L_e(\lambda) \rho(\lambda),$ $L_e(\lambda) \gamma(\lambda),$

 $L_e(\lambda) \beta(\lambda)$

to each constituent wavelength λ , i.e.

$$(\rho, \gamma, \beta) = \left(\int_{400 \, nm}^{700 \, nm} L_e(\lambda) \, \rho(\lambda) \, d\lambda, \int_{400 \, nm}^{700 \, nm} L_e(\lambda) \, \gamma(\lambda) \, d\lambda, \int_{400 \, nm}^{700 \, nm} L_e(\lambda) \, \beta(\lambda) \, d\lambda\right)$$

Questions?

Outline

- spectral power distributions
- → color response in animals and humans

- ◆ 3D colorspace of the human visual system
 - and color filter arrays in cameras
 - reproducing colors using three primaries
 - → additive versus subtractive color mixing
 - cylindrical color systems used by artists (and Photoshop)
 - chromaticity diagrams
 - color temperature and white balancing
 - standardized color spaces and gamut mapping

Human 3D colorspace

- the three types of cones in our retina (Long, Medium, Short wavelength) define the axes of a three-dimensional space
- \bullet our response to any stimulus spectrum can be summarized by three numbers (ρ, γ, β) and plotted as a point in this space
- our responses to all visible single-wavelength spectra (a.k.a. pure wavelengths λ , i.e. positions along the rainbow), if connected together, form a curve in this space, called the *locus of spectral colors*; the sequence of (ρ, γ, β) numbers form the *tristimulus sensitivity functions* $\rho(\lambda)$, $\gamma(\lambda)$, and $\beta(\lambda)$

sensitivity functions

http://graphics.stanford.edu/courses/cs178/applets/locus.html

spectral locus

Properties of human 3D colorspace (1 of 2) (contents of whiteboard)

- 1. our response to any mixture ($\Sigma = 1$) of two pure wavelengths falls on a line connecting the responses to each wavelength
- 2. our response to any mixture ($\Sigma = 1$) of three pure wavelengths falls on a triangle connecting the responses to each wavelength; our response to any mixture or scaling ($\Sigma \leq 1$) of three pure wavelengths falls in a tetrahedron defined by this triangle and the origin
- 3. our responses to all possible mixtures or scalings ($\Sigma \leq 1$) of all visible wavelengths forms an irregular volume called the *gamut of perceivable colors*, equal to the convex hull of the spectral locus

Properties of human 3D colorspace (2 of 2) (contents of whiteboard)

- 4. to a deuteranope a color-blind person who is missing their medium-wavelength receptor, i.e. their gamma receptor this diagram is squashed into the rectangle shown above on the rho-beta plane
 - as a result, spectra whose (ρ, γ, β) responses lie along the dotted lines cannot be distinguished; they will appear as the same color, i.e. as metamers
 - by a similar argument, many spectra distinguishable to pentachromats (e.g. Mallard ducks) are indistinguishable to trichromats (humans)

Color blindness

The advantage of being color blind

- the maze (at left) is recreated (at right) using subtle intensity differences, but overridden by stronger red-green color differences
- only a deuteranope can see the maze at right

Canon 30D color filters

- → you want the camera's R, G, and B color filters to have the same spectral sensitivities as our L, M, and S cones
 - you don't want objects in the real world to be metamers to one system and not the other
 - otherwise, colored patterns the camera sees might be invisible to a person (bad), or patterns you see might be invisible to a camera (also bad)

filter transmissivity

http://graphics.stanford.edu/courses/ cs178/applets/locus.html

spectral locus

© Marc Levov

Outline

- spectral power distributions
- → color response in animals and humans
- → 3D colorspace of the human visual system
 - and color filter arrays in cameras

- reproducing colors using three primaries
 - → additive versus subtractive color mixing
 - cylindrical color systems used by artists (and Photoshop)
 - chromaticity diagrams
 - color temperature and white balancing
 - standardized color spaces and gamut mapping

Maxwell's color matching experiment

- ♦ Maxwell actually used a slightly different procedure
 - see http://www.handprint.com/HP/WCL/color6.html for details
 - the procedure below is used in modern versions of the experiment

(FLASH DEMO)

http://graphics.stanford.edu/courses/cs178/applets/colormatching.html

Maxwell's color matching experiment

(summary of live demo)

- 1. given a stimulus wavelength, the amount of each primary required to match it is given by three numbers (r, g, b)
- 2. some stimuli cannot be matched unless first desaturated by adding a primary to it before matching; the amount added is denoted by negative values of r, g, or b
- 3. the sequence of (r, g, b) values, some negative, required to match the locus of spectral colors across all λ , form the *trichromatic matching functions* $r(\lambda)$, $g(\lambda)$, and $b(\lambda)$ for a particular set of 3 primaries

Human response to an arbitrary stimulus (contents of whiteboard)

Young-Helmholtz trichromatic theory

Thomas Young (1773-1829)

James Clerk Maxwell (c. 1860)

Hermann von Helmholtz (1821-1894)

- * spectra can be visually matched using mixtures of *primary colors*; such matches are called *metamers*
- due to the <u>linearity</u> of human retinal response, given a stimulus spectrum $L_e(\lambda)$, the amounts of each primary R, G, B required to match it, for any particular choice of 3 primaries, are the integrals over all visible wavelengths of the amounts $r(\lambda)$, $g(\lambda)$, and $b(\lambda)$ required to match each constituent wavelength λ , *i.e.*

$$(R,G,B) = \left(\int_{400\,nm}^{700\,nm} L_e(\lambda) \,\overline{r}(\lambda) \,d\lambda, \int_{400\,nm}^{700\,nm} L_e(\lambda) \,\overline{g}(\lambda) \,d\lambda, \int_{400\,nm}^{700\,nm} L_e(\lambda) \,\overline{b}(\lambda) \,d\lambda\right)$$

Young-Helmholtz trichromatic theory

Thomas Young (1773-1829)

3D interpretation of color matching

- \bullet our response to varying amounts of a primary forms a vector in (ρ, γ, β) space, rooted at the origin
- to provide a normal range of color vision, three primaries are required, and their vectors must not lie on a plane

♦ our responses to all possible mixtures and scales ($\Sigma \leq 1$) of three primaries form a tetrahedron called the *gamut of*

reproducible colors for these primaries

RGB matching functions

http://graphics.stanford.edu/courses/ cs178/applets/locus.html

gamut of reproducible colors

© Marc Levoy

3D interpretation of color matching

- ♦ the spectrum of each of the three primaries can be a pure wavelength (1) or a mixture of wavelengths (2)
- \bullet impure primaries have a smaller gamut in (ρ, γ, β) space
- * additional primaries can be added to increase the gamut

http://graphics.stanford.edu/courses/cs178/applets/locus.html

Questions?

Outline

- spectral power distributions
- → color response in animals and humans
- → 3D colorspace of the human visual system
 - and color filter arrays in cameras
- reproducing colors using three primaries

- * additive versus subtractive color mixing
 - cylindrical color systems used by artists (and Photoshop)
 - chromaticity diagrams
 - color temperature and white balancing
 - standardized color spaces and gamut mapping

demo using color guns and filters

http://graphics.stanford.edu/courses/cs178/ applets/ColorMixing-narrowCMY.swf

- * superimposed colored lights or small adjacent dots combine additively by adding their spectra wavelength-by-wavelength
- layered dyes or sequenced color filters combine subtractively by multiplying their transmittance spectra wavelength-by-wavelength

(FLASH DEMO)

http://graphics.stanford.edu/courses/cs178/applets/colormixing.html

- * superimposed colored lights or small adjacent dots combine additively by adding their spectra wavelength-by-wavelength
- layered dyes or sequenced color filters combine subtractively by multiplying their transmittance spectra wavelength-by-wavelength

♦ narrow spectra, widely spaced in wavelength, are best for primaries to be combined additively

- wide spectra that overlap are best for primaries to be combined subtractively, but product of all three must be black
- ♦ the particular spectra chosen are flexible; additive primaries need not be R,G,B, nor subtractive primaries C,M,Y
- ◆ additional primaries may be added to either system, resulting in a larger gamut of reproducible colors; adding black to a subtractive system (called CMYK) ensures a deep black
- → note: additive mixing can be interpreted as interpolation between points in rho-gamma-beta space, but subtractive mixing cannot, because the two spectra must be multiplied together, not added

Marc Levoy

Color printing

- → patches of the 3 subtractive primaries (C,M,Y) overlap partially on the page, making patches of 8 meta-primaries (Wh,C,M,Y,MY,CY,CM,CMY), which combine additively in the eye when viewed from a distance
 - M×Y=R, C×Y=G, C×M=B
 - these effects are modeled by the Neugebauer equations