Light field photography

CS 178, Spring 2012

Marc Levoy Computer Science Department Stanford University

"Light field photography using a handheld plenoptic camera"

Ren Ng, Marc Levoy, Mathieu Brédif, Gene Duval, Mark Horowitz and Pat Hanrahan

> (Proc. SIGGRAPH 2005 and TR 2005-02)

Conventional versus plenoptic camera

Conventional versus plenoptic camera

Prototype camera

Contax medium format camera

Adaptive Optics microlens array

Kodak 16-megapixel sensor

125µ square-sided microlenses

 $4000 \times 4000 \text{ pixels} \div 292 \times 292 \text{ lenses} = 14 \times 14 \text{ pixels per lens}$

Digital refocusing

• refocusing = summing windows extracted from several microlenses

Example of digital refocusing

Refocusing portraits

Refocusable sports photography

Extending the depth of field

conventional photograph, main lens at f/4

conventional photograph, main lens at f/22

light field, main lens at f/4, after all-focus algorithm [Agarwala 2004]

Macrophotography

Digitally moving the observer

• moving the observer = moving the window we extract from the microlenses

Example of moving the observer

Moving backward and forward

© 2008 Marc Levoy

Implications / commercialization

• trades off (excess) spatial resolution for ability to refocus and adjust the perspective

LYTRO

sensor pixels should be made even smaller, subject to the diffraction limit
36mm × 24mm ÷ 2.5µ pixels = 266 Mpix
20K × 13K pixels
2000 × 1333 pixels × 10 × 10 rays per pixel

or

 2000×1500 pixels $\times 3 \times 3$ rays per pixel = 27 Mpix

Other devices for capturing light fields

Manex's bullet time array

Stanford Multi-Camera Array

Other devices for capturing light fields

Stanford Spherical Gantry

used to measure light scattering for rendering translucent materials

Lego gantry for capturing light fields (built by Andrew Adams)

© 2008 Marc Levoy

Flash-based viewer for light fields (written by Andrew Adams)

(see http://lightfield.stanford.edu/lfs.html)

Flash-based viewer for light fields (written by Andrew Adams)

The Lego gantry captures a light field of itself

© 2008 Marc Levoy