Chapter 12

Numerical Integration and
Differentiation

In the previous chapter, we developed tools for filling in reasonable values of a function f(X)
given a sampling of values (¥}, f(¥;)) in the domain of f. Obviously this interpolation problem
is useful in itself for completing functions that are known to be continuous or differentiable but
whose values only are known at a set of isolated points, but in some cases we then wish to study
properties of these functions. In particular, if we wish to apply tools from calculus to f, we must
be able to approximate its integrals and derivatives.

In fact, there are many applications in which numerical integration and differentiation play
key roles in computation. In the most straightforward instance, some well-known functions are
defined as integrals. For instance, the “error function” used as the cumulative distribution of a
Gaussian or bell curve is written:

X

erf(x) = 2 e dt

7T JO

Approximations of erf(x) are needed in many statistical contexts, and one reasonable approach to
finding these values is to carry out the integral above numerically.

Other times, numerical approximations of derivatives and integrals are part of a larger system.
For example, methods we develop in future chapters for approximating solutions to differential
equations will depend strongly on these approximations. Similarly, in computational electrody-
namics, integral equations solving for an unknown function ¢ given a kernel K and output f appear
in the relationship:

@) = [ KEDe()di.

These types of equations must be solved to estimate electric and magnetic fields, but unless the ¢
and K are very special we cannot hope to find such an integral in closed form, yet alone solve this
equation for the unknown function ¢.

In this chapter, we will develop assorted methods for numerical integration and differentiation
given a sampling of function values. These algorithms are usually fairly straightforward approx-
imations, so to compare them we will also develop some strategies that evaluate how well we
expect different methods to perform.



12.1 Motivation

It is not hard to formulate simple applications of numerical integration and differentiation given
how often the tools of calculus appear in the basic formulae and techniques of physics, statistics,
and other fields. Here we suggest a few less obvious places where integration and differentiation

appear.

Example 12.1 (Sampling from a distribution). Suppose we are given a probability distribution p(t) on
the interval [0, 1]; that is, if we randomly sample values according to this distribution, we expect p(t) to be
proportional to the number of times we draw a value near t. A common task is to generate random numbers
distributed like p(t).

Rather than develop a specialized method to do so every time we receive a new p(t), it is possible to make
a useful observation. We define the cumulative distribution function of p to be

F(t) = /Otp(x) dax.

Then, if X is a random number distributed evenly in [0,1], one can show that F~1(X) is distributed like
p, where F~1 is the inverse of F. Thus, if we can approximate F or F~1, we can generate random numbers
according to an arbitrary distribution p; this approximation amounts to integrating p, which may have to
be done numerically when the integrals are not known in closed form.

Example 12.2 (Optimization). Recall that most of our methods for minimizing and finding roots of a
function f depended on having not only values f(X) but also its gradient V f (X) and even Hessian Hy. We
have seen that algorithms like BFGS and Broyden’s method build up rough approximations of the deriva-
tives of f during the process of optimization. When f has high frequencies, however, it may be better to
approximate N f near the current iterate Xy rather than using values from potentially far-away points X,
for £ < k.

Example 12.3 (Rendering). The rendering equation from ray tracing and other algorithms for high-
quality rendering is an integral stating that the light leaving a surface is equal to the integral of the light
coming into the surface over all possible incoming directions after it is reflected and diffused; essentially it
states that light energy must be conserved before and after light interacts with an object. Algorithms for
rendering must approximate this integral to compute the amount of light emitted from a surface reflecting
light in a scene.

Example 12.4 (Image processing). Suppose we think of an image as a function of two variables I(x,y).
Many filters, including Gaussian blurs, can be thought of as convolutions, given by

(Ixg)(x,y) = // I(u,v)g(x —u,y —v) dudo.

For example, to blur an image we could take g to be a Gaussian; in this case (I * ) (x,y) can be thought of
as a weighted average of the colors of I near the point (x,vy). In practice images are discrete grids of pixels,
so this integral must be approximated.

Example 12.5 (Bayes’ Rule). Suppose X and Y are continuously-valued random variables; we can use
P(X) and P(Y) to express the probabilities that X and Y take particular values. Sometimes, knowing X
may affect our knowledge of Y. For instance, if X is a patient’s blood pressure and Y is a patient’s weight,

2



then knowing a patient has high weight may suggest that they also have high blood pressure. We thus can
also write conditional probability distributions P(X|Y') (read “the probability of X given Y”) expressing
such relationships.

A foundation of modern probability theory states that P(X|Y) and P(Y|X) are related as follows:

_ _ PYIX)P(X)
PIX|Y) = [P(Y|X)P(X)dY

Estimating the integral in the denominator can be a serious problem in machine learning algorithms where
the probability distributions take complex forms. Thus, approximate and often randomized integration
schemes are needed for algorithms in parameter selection that use this value as part of a larger optimization
technique.

12.2 Quadrature

We will begin by considering the problem of numerical integration, or quadrature. This problem—in
a single variable— can be expressed as, “Given a sampling of #n points from some function f(x),

find an approximation of [ ab f(x) dx.” In the previous section, we presented several situations that
boil down to exactly this technique.

There are a few variations of the problem that require slightly different treatment or adapta-
tion:

e The endpoints 2 and b may be fixed, or we may wish to find a quadrature scheme that
efficiently can approximate integrals for many (a,b) pairs.

e We may be able to query f(x) at any x but wish to approximate the integral using relatively
few samples, or we may be given a list of precomputed pairs (x;, f(x;)) and are constrained
to using these data points in our approximation.

These considerations should be kept in mind as we design assorted algorithms for the quadrature
problem.

12.2.1 Interpolatory Quadrature

Many of the interpolation strategies developed in the previous chapter can be extended to meth-
ods for quadrature using a very simple observation. Suppose we write a function f(x) in terms of

a set of basis functions ¢;(x):
flx) = Y aigi(x).
Then, we can find the integral of f as follows:
b b
/ F(x)dx = / Y aii(x) | dx by definition of f
a a i
b
- Z”i [/ ¢i(x) dx}
i a

b
= Zciai if we make the definition ¢; = / ¢i(x) dx
i a



In other words, integrating f simply involves linearly combining the integrals of the basis func-
tions that make up f.

Example 12.6 (Monomials). Suppose we write f(x) = ¥\ axx*. We know

1kd 1
/Ox x_ik—l—l’

so applying the derivation above we know

1 e a
f, 1@ S My

In other words, in our notation above we have defined c; = kJ%l

Schemes where we integrate a function by interpolating samples and integrating the interpo-
lated function are known as interpolatory quadrature rules; nearly all the methods we will present
below can be written this way. Of course, we can be presented with a chicken-and-egg problem,
if the integral f ¢i(x) dx itself is not known in closed form. Certain methods in higher-order finite
elements deal with this problem by putting extra computational time into making a high-quality
numerical approximation of the integral of a single ¢;, and then since all the ¢’s have similar form
apply change-of-coordinates formulas to write integrals for the remaining basis functions. This
canonical integral can be approximated offline using a high-accuracy scheme and then reused.

12.2.2 Quadrature Rules

If we are given a set of (x;, f(x;)) pairs, our discussion above suggests the following form for a
quadrature rule for approximating the integral of f on some interval:

Qlf] = Y wif (xi).

Different weights w; yield different approximations of the integral, which we hope become in-
creasingly similar as we sample the x;’s more densely.

In fact, even the classical theory of integration suggests that this formula is a reasonable start-
ing point. For example, the Riemann integral presented in many introductory calculus classes takes
the form: ,

[ 76 = Jim Y0 (ke =30
Here, the interval [a,b] is partitioned into pieces @ = x1 < x2 < --- < x, = b, where Ax;, =
Xk+1 — Xx and Xy is any point in [xi, xx;1]. For a fixed set of x;’s before taking the limit, this
integral clearly can be written in the Q[f] form above.

From this perspective, the choices of {x; } and {w; } completely determine a strategy for quadra-
ture. There are many ways to determine these values, as we will see in the coming section and as
we already have seen for interpolatory quadrature.

Example 12.7 (Method of undetermined coefficients). Suppose we fix x1,...,x, and wish to find a
reasonable set of accompanying weights w; so that }_; w; f(x;) is a suitable approximation of the integral

4



of f. An alternative to the basis function strategy listed above is to use the method of undetermined
coefficients. In this strategy, we choose n functions f1(x),..., fu(x) whose integrals are known, and ask
that our quadrature rule recover the integrals of these functions exactly:

/abfl(x) dx = w1 f1(x1) + waf1(x2) + -+ + wnf1(xn)
/abfz(x) dx = w1 fo(x1) + wafa(x2) + -+ - + W fa(xn)

/:fn(X)dx = wifu(x1) +wafu(x2) + -+ Wy fu(xn)

This creates an n x n linear system of equations for the w’s.
One common choice is to take fy(x) = x*=1 that is, to make sure that the quadrature scheme recovers
the integrals of low-order polynomials. We know

b k+1 k+1
/ g
a k+1

Thus, we get the following linear system of equations for the w;’s:

witwrt - +w, =b—a

b2 — 42
X1W1 + XoWo + - - - + XpWy = >

3 3

2 2 o b’—a
X{W1 + X5wy + -+ - - + X Wy, = >

_ _ _ b? — a2
X7 Yy + 3 wa + -+ 2  w, = 5

This system is exactly the Vandermonde system discussed in §11.1.1.

12.2.3 Newton-Cotes Quadrature

Quadrature rules when the x/s are evenly spaced in [a, b] are known as Newton-Cotes quadrature
rules. As illustrated in Figure NUMBER, there are two reasonable choices of evenly-spaced sam-
ples:

o Closed Newton-Cotes quadrature places x;’s at 2 and b. In particular, for k € {1,...,n} we
take
(k—1)(b—a)

Xy =a+ 1



e Open Newton-Cotes quadrature does not place an x; at a or b:

k(b —a)
n+1°

a—+

After making this choice, the Newton-Cotes formulae simply apply polynomial interpolation to
approximate the integral from a to b; the degree of the polynomial obviously must be n — 1 to keep
the quadrature rule well-defined.

In general, we will keep n relatively small. This way we avoid oscillatory and noise phe-
nomena that occur when fitting high-degree polynomials to a set of data points. As in piecewise
polynomial interpolation, we will then chain together small pieces into composite rules when inte-
grating over a large interval [a, ].

Closed rules. Closed Newton-Cotes quadrature strategies require n > 2 to avoid dividing by
zero. Two strategies appear often in practice:

e The trapezoidal rule is obtained for n = 2 (so x; = a and x, = b) by linearly interpolating
from f(a) to f(b). It states that

b - f(a) + f(b)
/a flxydx ~ (b — ) R,

e Simpson’s rule comes from taking n = 3, so we now have

X1 =4a

xZ:cH—b
2

.X‘3:b

Integrating the parabola that goes through these three points yields

[ =Tt () +ar (0) + 0)).

Open rules. Open rules for quadrature allow the possibility of n = 1, giving the simplistic mid-

point rule:
/abf(x)dxz (b—a)f (”;b> .

Larger values of n yield rules similar to Simpson’s rule and the trapezoidal rule.

Composite integration. Generally we might wish to integrate f(x) with more than one, two, or
three values x;. It is obvious how to construct a composite rule out of the midpoint or trapezoidal
rules above, as illustrated in Figure NUMBER; simply sum up the values along each interval. For
example, if we subdivide [a, b] into k intervals, then we can take Ax = b%” and x; = a + iAx. Then,
the composite midpoint rule is:

/abf(x)dx%lgk%f(x’Jrl;_xl> Ax

6



Similarly, the composite trapezoid rule is:

" e Y (Lt o) o

2

1 1
= e (3700 + F) 4 f(x) 4+ fli) + 5/0))
by separating the two averaged values of f in the first line and re-indexing

An alternative treatment of the composite midpoint rule is to apply the interpolatory quadra-
ture formula from §12.2.1 to piecewise linear interpolation; similarly, the composite version of the
trapezoidal rule comes from piecewise linear interpolation.

The composite version of Simpson’s rule, illustrated in Figure NUMBER, chains together three
points at a time to make parabolic approximations. Adjacent parabolas meet at even-indexed x;’s
and may not share tangents. This summation, which only exists when 7 is even, becomes:

n—2-—1 n/2

fla)+2 Y, flxn) +4§f<xzi_1) + f(b)

i=1

/abf(x)dsz?,x

= ZEF(@) + 4 () + 26 (02) + 4 (319) + 2 (x) -+ 4f (10 1) + £ (D)

Accuracy. So far, we have developed a number of quadrature rules that effectively combine the
same set of f(x;)’s in different ways to obtain different approximations of the integral of f. Each
approximation is based on a different engineering assumption, so it is unclear that any of these
rules is better than any other. Thus, we need to develop error estimates characterizing their respec-
tive behavior. We will use our Newton-Cotes integrators above to show how such comparisons
might be carried out, as presented in CITE.

First, consider the midpoint quadrature rule on a single interval [a, b]. Define ¢ = %(u +Db). The
Taylor series of f about c is:

1 1 1
fx) = f) + f(e)(x =)+ Sf" () (x =) + f(e)(x = ) + o, f " (e)(x =) 4
Thus, by symmetry about c the odd terms drop out:

[ FGd = (6= a)f(6) + e f(0) (b~ )+ o (€ (b — )+ -

Notice that the first term of this sum exactly the estimate of [ ab f(x) dx provided by the midpoint
rule, so this rule is accurate up to O(Ax?).
Now, plugging a and b into our Taylor series for f about ¢ shows:

F@) = F(©) + f()a =) + 3F"()a— )+ gf"(c)(a—cf + -

1 1
f(0) = fle) + f1(e)(b =) + 51 ()b =) + f"(e) (b =)’ + -
Adding these together and multiplying both sides by —4/2 shows:

-2l DO _ 0y + L0 -0+ -0+

7



The f'(c) term vanishes by definition of c. Notice that the left hand side is the trapezoidal rule
integral estimate, and the right hand side agrees with our Taylor series for | ub f(x)dx up to the
cubic term. In other words, the trapezoidal rule is also O(Ax®) accurate in a single interval.

We pause here to note an initially surprising result: The trapezoidal and midpoint rules have
the same order of accuracy! In fact, examining the third-order term shows that the midpoint rule
is approximately two times more accurate than the trapezoidal rule. This result seems counterin-
tuitive, since the trapezoidal rule uses a linear approximation while the midpoint rule is constant.
As illustrated in Figure NUMBER, however, the midpoint rule actually recovers the integral of
linear functions, explaining its extra degree of accuracy.

A similar argument applies to finding an error estimate for Simpson’s rule. [WRITE EXPLA-
NATION HERE; OMIT FROM 205A]. In the end we find that Simpson’s rule has error like O(Ax?).

An important caveat applies to this sort of analysis. In general, Taylor’s theorem only applies
when Ax is sufficiently small. If samples are far apart, then the drawbacks of polynomial inter-
polation apply, and oscillatory phenomena as discussed in Section NUMBER can cause unstable
results for high-order integration schemes.

Thus, returning to the case when a and b are far apart, we now divide [4,b] into intervals
of width Ax and apply any of our quadrature rules inside these intervals. Notice that our total
number of intervals is ¥—4/Ax, so we must multiply our error estimates by 1/ax in this case. In
particular, the following orders of accuracy hold:

e Composite midpoint: O(Ax?)
e Composite trapezoid: O(Ax?)

e Composite Simpson: O(Ax*)

12.2.4 Gaussian Quadrature

In some applications, we can choose the locations x; at which f is sampled. In this case, we can
optimize not only the weights for the quadrature rule but also the locations x; to get the highest
quality. This observation leads to challenging but theoretically appealing quadrature rules.

The details of this technique are outside the scope of our discussion, but we provide one simple
path toits derivation. In particular, as in Example 12.7, suppose that we wish to optimize x, ..., x,
and wy, ..., w, simultaneously to increase the order of an integration scheme. Now we have 2n
instead of n knowns, so we can enforce equality for 2n examples:

/:fl(x) dx = w1 fi(x1) + w2 fi(x2) + - - + W f1(xn)
[ Pl dx = wifale) + wafale) + -+ wifa()
b | ‘

[ o) dx = w01 fu (1) 4 wafu(a) + -+ 0 fu(xa)

Now both the x;’s and the w;’s are unknown, so this system of equations is no longer linear. For
example, if we wish to optimize these values for polynomials on the interval [—1,1] we would

8



have to solve the following system of polynomials (CITE):

1
w1+w2:/ ldx =2
-1

1

w1X1 + waXxy :/ xdx =0
1

1 2
w13 + wox3 = / x*dx = 3
-1

1
wlx% +w2x§ = / ¥dx =0
-1

It can be the case that systems like this have multiple roots and other degeneracies that depend not
only on the choice of f;’s (typically polynomials) but also the interval over which we are approxi-
mating an integral. Furthermore, these rules are not progressive, in the sense that the set of x;’s for
n data points has nothing in common with those for k data points when k # n, so it is difficult
to reuse data to achieve a better estimate. On the other hand, when they are applicable Gaussian
quadrature has the highest possible degree for fixed n. The Kronrod quadrature rules attempt to
avoid this issue by optimizing quadrature with 2n + 1 points while reusing the Gaussian points.

12.2.5 Adaptive Quadrature

As we already have shown, there are certain functions f whose integrals are better approximated
with a given quadrature rule than others; for example, the midpoint and trapezoidal rules inte-
grate linear functions with full accuracy while sampling issues and other problems can occur if f
oscillates rapidly.

Recall that the Gaussian quadrature rule suggests that the placement of the x;’s can have an
effect on the quality of a quadrature scheme. There still is one piece of information we have not
used, however: the values f(x;). After all, these determine the quality of our quadrature scheme.

With this in mind, adaptive quadrature strategies examine the current estimate and generate
new x; where the integrand is more complicated. Strategies for adaptive integration often com-
pare the output of multiple quadrature techniques, e.g. trapezoid and midpoint, with the assump-
tion that they agree where sampling of f is sufficient (see Figure NUMBER). If they do not agree
with some tolerance on a given interval, an additional sample point is generated and the integral
estimates are updated.

ADD MORE DETAIL OR AN EXAMPLE; DISCUSS RECURSIVE ALGORITHM; GANDER
AND GAUTSCHI

12.2.6 Multiple Variables

Many times we wish to integrate functions f(X) where ¥ € R". For example, when n = 2 we
might integrate over a rectangle by computing

/ﬂb /Cdf(x,y) dx dy.

More generally, as illustrated in Figure NUMBER; we might wish to find an integral [ f(¥) d¥,
where () is some subset of IR".



A “curse of dimensionality” makes integration exponentially more difficult as the dimension
increases. In particular, the number of samples of f needed to achieve comparable quadrature
accuracy for an integral in R¥ increases like O(n*). This observation may be disheartening but is
somewhat reasonable: the more input dimensions for f, the more samples are needed to under-
stand its behavior in all dimensions.

The simplest strategy for integration in R is the integrated integral. For example, if f is a func-

tion of two variables, suppose we wish to find | ab J Cd f(x,y) dx dy. For fixed y, we can approximate
the inner integral over x using a one-dimensional quadrature rule; then, we integrate these values
over y using another quadrature rule. Obviously both integration schemes induce some error, so
we may need to sample X;’s more densely than in one dimension to achieve desired output quality.

Alternatively, just as we subdivided [g, b] into intervals, we can subdivide () into triangles and
rectangles in 2D, polyhedra or boxes in 3D, and so on and use simple interpolatory quadrature
rules in each piece. For instance, one popular option is to integrate the output of barycentric
interpolation inside polyhedra, since this integral is known in closed form.

When n is high, however, it is not practical to divide the domain as suggested. In this case, we
can use the randomized Monte Carlo method. In this case, we simply generate k random points X; €
Q) with, for example, uniform probability. Averaging the values f(¥;) yields an approximation of
Jq f (%) dX that converges like 1/ vk — independent of the dimension of Q! So, in large dimensions
the Monte Carlo estimate is preferable to the deterministic quadrature methods above.

MORE DETAIL ON MONTE CARLO CONVERGENCE AND CHOICE OF DISTRIBUTIONS
OVER O

12.2.7 Conditioning

So far we have considered the quality of a quadrature method using accuracy values O(Ax*);
obviously by this metric a set of quadrature weights with large k is preferable.

Another measure, however, balances out the accuracy measurements obtained using Taylor
arguments. In particular, recall that we wrote our quadrature rule as Q[f] = Y_; w; f(x;). Suppose
we perturb f to some other f. Define ||f — f||o = maXye(p |f(x) — f(x)|. Then,

Q1 - QU _ [ Siwi(f(xi) — f(x))]

If = flleo If = Fllea.
< Y, |w1:|| jj[r (XZ} H— fxi)] by the triangle inequality

< ||| oo since | f(x;) — f(x;)| < ||f = flleo by definition.

Thus, the stability or conditioning of a quadrature rule depends on the norm of the set of weights
w.

In general, it is easy to verify that as we increase the order of quadrature accuracy, the con-
ditioning ||@|| gets worse because the w;’s take large negative values; this contrasts with the all-
positive case, where conditioning is bounded by b — a because ) ; w; = b — a for polynomial in-
terpolatory schemes and most low-order methods have only positive coefficients (CHECK). This
fact is a reflection of the same intuition that we should not interpolate functions using high-order
polynomials. Thus, in practice we usually prefer composite quadrature to high-order methods,
that may provide better estimates but can be unstable under numerical perturbation.

10



12.3 Differentiation

Numerical integration is a relatively stable problem. in that the influence of any single value

f(x) on fab f(x)dx shrinks to zero as a4 and b become far apart. Approximating the derivative
of a function f’(x), on the other hand, has no such stability property. From the Fourier analysis
perspective, one can show that the integral [ f(x) generally has lower frequencies than f, while
differentiating to produce f’ amplifies the high frequencies of f, making sampling constraints,
conditioning, and stability particularly challenging for approximating f”.

Despite the challenging circumstances, approximations of derivatives usually are relatively
easy to compute and can be stable depending on the function at hand. In fact, while developing
the secant rule, Broyden’s method, and so on we used simple approximations of derivatives and
gradients to help guide optimization routines.

Here we will focus on approximating f” for f : R — R. Finding gradients and Jacobians
often is accomplished by differentiating in one dimension at a time, effectively reducing to the
one-dimensional problem we consider here.

12.3.1 Differentiating Basis Functions

The simplest case for differentiation comes for functions that are constructed using interpolation
routines. Just as in §12.2.1, if we can write f(x) = }_; a;¢;(x) then by linearity we know

f1(x) = L aig(v).

In other words, we can think of the functions ¢/ as a basis for derivatives of functions written in
the ¢; basis!

An example of this procedure is shown in Figure NUMBER. This phenomenon often connects
different interpolatory schemes. For example, piecewise linear functions have piecewise constant
derivatives, polynomial functions have polynomial derivatives of lower degree, and so on; we
will return to this structure when we consider discretizations of partial differential equations. In
the meantime, it is valuable to know in this case that f’ is known with full certainty, although as
in Figure NUMBER its derivatives may exhibit undesirable discontinuities.

12.3.2 Finite Differences

A more common case is that we have a function f(x) that we can query but whose derivatives are
unknown. This often happens when f takes on a complex form or when a user provides f(x) as a
subroutine without analytical information about its structure.

The definition of the derivative suggests a reasonable approach:

(6) =t FE 1) = £

h—0

As we might expect, for a finite 1 > 0 with small || the expression in the limit provides a possible
value approximating f'(x).
To substantiate this intuition, we can use Taylor series to write:

flx+h) = f(x)+ f'(x)h + %f”(x);ﬂ T

11



Rearranging this expression shows:

h) —
po = LEEB =16 o
Thus, the following forward difference approximation of f’ has linear convergence:

i = LM =)

Similarly, flipping the sign of & shows that backward differences also have linear convergence:

) FI =)

We actually can improve the convergence of our approximation using a trick. By Taylor’s
theorem we can write:

Flr+B) = F(2) + QR+ "G+ Lf" ()R + -+

Flor=h) = F(x) = QR+ "GP — Lf" ()R + -+

= fx+h)—f(x—h) :2f’(x)h+%f”’(x)h3+...

f(x_}'h)z_hf(x_h) :f’(x)+O(h2)

Thus, this centered difference gives an approximation of f’(x) with quadratic convergence; this is the
highest order of convergence we can expect to achieve with a divided difference. We can, however,
achieve more accuracy by evaluating f at other points, e.g. x + 25, although this approximation is
not used much in practice in favor of simply decreasing h.

Constructing estimates of higher-order derivatives can take place by similar constructions. For
example, if we add together the Taylor expansions of f(x + k) and f(x — h) we see

flx+h)+ f(x—h) =2f(x) + f"(x)h* + O(h°)

— f(x+h)_2él(2x)+f(x_h) :f//(x)+o<h2)

To predict similar combinations for higher derivatives, one trick is to notice that our second
derivative formula can be factored differently:

Flxh) = 2f(x) + fla— ) LI ffan
2 I

That is, our approximation of the second derivative is a “finite difference of finite differences.”
One way to interpret this formula is shown in Figure NUMBER. When we compute the forward
difference approximation of f’ between x and x + h, we can think of this slope as living at x + 1/2;
we similarly can use backward differences to place a slope at x — /2. Finding the slope between
these values puts the approximation back on x.

12



One strategy that can improve convergence of the approximations above is Richardson extrap-
olation. As an example of a more general pattern, suppose we wish to use forward differences to
approximate f’. Define

D(h) Ef(x+h})l_f(x).

Obviously D(h) approaches f'(x) as h — 0. More specifically, however, from our discussion in
§12.3.2 we know that D(h) takes the form:

D) = /(x) + 3 f"(x)h+ O(R)
Suppose we know D(h) and D(ah) for some 0 < & < 1. We know:
D(ah) = f'(x) + %f”(x)och +0(h?)

We can write these two relationships in a matrix:

(1 8)(F3)- (8o

(FE)=(dh) (o) e

That is, we took an O(h) approximation of f'(x) using D(h) and made it into an O(h?) approx-
imation! This clever technique is a method for sequence acceleration, since it improves the order
of convergence of the approximation D(/). The same trick is applicable more generally to many
other problems by writing an approximation D(h) = a + bh"™ + O(h™) where m > n, where a is the
quantity we hope to estimate and b is the next term in the Taylor expansion. In fact, Richardson
extrapolation even can be applied recursively to make higher and higher order approximations.

Or equivalently,

12.3.3 Choosing the Step Size

Unlike quadrature, numerical differentiation has a curious property. It appears that any method
we choose can be arbitrarily accurate simply by choosing a sufficiently small &. This observation
is appealing from the perspective that we can achieve higher-quality approximations without ad-
ditional computation time. The catch, however, is that we must divide by & and compare more
and more similar values f(x) and f(x + h); in finite-precision arithmetic, adding and/or dividing
by near-zero values induces numerical issues and instabilities. Thus, there is a range of / values
that are not large enough to induce significant discretization error and not small enough to make
for numerical problems; Figure NUMBER shows an example for differentiating a simple function
in IEEE floating point arithmetic.

12.3.4 Integrated Quantities
Not covered in CS 205A, fall 2013.

13



12.4 Problems

e Gaussian quadrature — always contains midpoints, strategy using orthogonal polynomials
e Adaptive quadrature

e Applications of Richardson extrapolation elsewhere

14



	Numerical Integration and Differentiation
	Motivation
	Quadrature
	Interpolatory Quadrature
	Quadrature Rules
	Newton-Cotes Quadrature
	Gaussian Quadrature
	Adaptive Quadrature
	Multiple Variables
	Conditioning

	Differentiation
	Differentiating Basis Functions
	Finite Differences
	Choosing the Step Size
	Integrated Quantities

	Problems


