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Abstract— Motivated by applications to sensor, peer-to- for facilitating computation, communication and time-
peer and ad hoc networks, we study distributed asyn- synchronization, (ii) the network topology may not be
chronous algorlthms, also known agjossip algorlthms, for Completely known to the nodes of the network1 (|||)
computation and information exchange in an arbitrarily 5qes may join or leave the network (even expire)
connected network of nodes. Nodes in such networksSO that the network topology itself may change, and

operate under limited computational, communication and (iv) in the case of sensor networks, the computational
energy resources. These constraints naturally give rise to ’ P

“gossip” algorithms: schemes which distribute the compu- POWer and energy resources may be very limited. These
tational burden and in which a node communicates with Cconstraints motivate the design of simple asynchronous

a randomly chosen neighbor. decentralized algorithms for computation where each

We analyze the averaging problem under the gossip con- node exchanges information with only a few of its
straint for arbitrary network, and find that the averaging immediate neighbors in a time instance (or, a round).
time of a gossip algorithm depends on the second largestThe goal in this setting is to design algorithms so that
eigenvalue of a doubly stochastic matrix characterizing te  the desired computation and communication is done as
algorithm. Using recent results of Boyd, Diaconis and Xiao quickly and efficiently as possible.

(2003), we show that minimizing this gquantity to design W dv th bl f . .
the fastest averaging algorithm on the network is a semi- e study the problem of averaging as an instance

definite program(SDP). In general, SDPs cannot be solved ©f the di.stributed gomputation problem. A toy examp!e
distributedly; however, exploiting problem structure, we t0 explain the motivation for the averaging problem is
propose a subgradient method that distributedly solves the sensing temperature of some small region of space by

optimization problem over the network. a network of sensors. For example, in Figure 1, sensors
The relation of averaging time to the second largest are deployed to measure the temperatliref a source.
eigenvalue naturally relates it to the mixing time of a Sensori, ¢ =1,...,4 measured; = T + n;, where the

random walk with transition probabilities that are derived 7, are |ID, zero mean Gaussian sensor noise variables.

from the gossip algorithm. We use this connection to The unbiased, minimum mean squared error (MMSE)
study the performance of gossip algorithm on two popular ; : x T

y the per gossip aig : pop estimate is the averagé = ZT. Thus, to combat
networks: Wireless Sensor Networks, which are modeled
as Geometric Random Graphs, and the Internet graph
under the so-called Preferential Connectivity Model.

Ty=T+m
7
|. INTRODUCTION Ty =T+¥771 S%ource\¥
The advent of sensor, wireless ad hoc and peer-to-peer \ %Tg =T+
networks has necessitated the design of asynchronous, v
distributed and fault-tolerant computation and informa- Ty =T+ n

tion exchange algorithms. This is mainly because such
networks are constrained by the following operational

characteristics: (i) they may not have a centralized ent@grﬁ;éra Sensor nodes deployed to measure ambient

ture.

*Author names appear in alphabetical order. ; ; ; ;
This work is supported in part by a Stanford Graduate FeIIowshirT,“nor fluctuations in the ambient temperature and the

and by C2S2, the MARCO Focus Center for Circuit and Syste is? in sensor readings, the nodes need to average their
Solution, under MARCO contract 2003-CT-888. readings.



Distributed averaging arises in many applications sughogram and obtain a near-optimal averaging algorithm.

as c_oordlnatlon of gutonomous agents, estimation anq:inally, we study the performance of gossip algorithms
distributed data fusion on ad-hoc networks, and dgp two network graphs which are very important in

centrgllzed optlmlzatlpn.1 Fast Q|str|buted averagingpractice: Geometric Random Graphs which are used to
algorithms are also important in other contexts; S¢goge| wireless sensor networks, and the Internet graph
Kempe et al [KDGO3], for example. For an extensivgnger the preferential connectivity model. We find that

body of related work, see [KK02],[KKDO1], [HHL88], geometric random graphs, the averaging time of
[GVRBO1], [KEW02], [MFHHO2], [VROQ], [EGHKOS), {he natural is the same order as the optimal averaging
[IEGHO02], [KSSV00b], [SMKF01], [RFH"01]. algorithm, which, as remarked earlier, need not be the

This paper undertakes an in-depth study of the desigase in a general graph.
and analysis of gossip algorithms for averaging in an\ye shall state our main results after setting out some

arbitrarily connectechetwork of nodes. (By gossip algo-nqtation and definitions in the next section.

rithm, we mean specifically an algorithm in which each
node communicates with no more than one neighbour in
each time slot.) Thus, given a grapgh we determine
the averaging time7 .., which is the time taken for

A. Problem Formulation and Definitions

Consider a connected gragh = (V, E), where the

the value at each node to be close to the averagftex seti’ containsn nodes ande is the edge set. The

value (a more precise definition is given later). We fingh component of the vectar(0)

[1(0), ..., xn(O)Jg

that the averaging time depends on the second largggiresents the initial value at nodeLet zpy, = =%

eigenvalue of a doubly stochastic matrix characterizing the average of the entries of0) and the goalnis to
the averaging algorithm: the smaller this eigenvalue, tl&%mputexave in a distributed and asynchronous manner.

faster the averaging algorithm. THeastest averaging
algorithm is obtained by minimizing this eigenvalue over °®
the set of allowed gossip algorithms on the graph. This
minimization is shown to be a semi-definite program,
which is a convex problem, and therefore can be solved
efficiently to obtain the global optimum.

The averaging time[ .., is closely related to the
mixing time, T, Of the random walk defined by
the matrix that characterizes the algorithm. This means
we can study also averaging algorithms by studying
the mixing time of the corresponding random walk on
the graph. The recent work of Boyd et al [BDXO03]
shows that the ratio of the mixing times of the natural
random walk to the fastest-mixing random walk can
grow without bound as the number of nodes increases;
correspondingly, therefore, the optimal averaging algo-
rithm can perform arbitrarily better than the one based
on the natural random walk. Thus, computing the op-
timal averaging algorithm is important: however, this
involves solving a semi-definite program, which requires
a knowledge of the complete topology. Surprisingly, we
find that we can exploit the problem structure to devise a
distributed subgradient method to solve the semidefinite

1The theoretical framework developed in this paper is not merely
restricted to averaging algorithms. It easily extends to the computation
of other functions which can be computed via pair-wise operations;
e.g., the maximum, minimum or product functions. It can also be
extended for analyzing information exchange algorithms, although
this extension is not as direct. For concreteness and for stating
our results as precisely as possible, we shall consider averaging
algorithms in the rest of the paper.

Asynchronous time model: Each node has a
clock which ticks at the times of a rate 1 Poisson
process. Thus, the inter-tick times at each node are
rate 1 exponentials, independent across nodes and
over time. Equivalently, this corresponds to a single
clock ticking according to a rate Poisson process

at timesZy, k > 1, where{Z;,1 — Z;} are 1ID
exponentials of ratex. Let I, € {1,...,n} denote
the node whose clock ticked at timé,. Clearly,

the I, are IID variables distributed uniformly
over {1,...,n}. We discretize time according
to clock ticks since these are the only times at
which the value ofz(-) changes. Therefore, the
interval [Zy,, Z;,1) denotes thek!” time-slot and,

on average, there are clock ticks per unit of
absolute time. Lemma 1 states a precise translation
of clock ticks into absolute time.

« Synchronous time model:In the synchronous time

model, time is assumed to be slotted commonly
across nodes. In each time slot, each node contacts
one of its neighbors independently and (not neces-
sarily uniformly) at random. Note that in this model
all nodes communicate simultaneously, in contrast
to the asynchronous model where only one node
communicates at a given time. On the other hand,
in both models each node contacts only one other
node at a time.

This paper uses the asynchronous time model
whereas previous work, notably that of [KSSV00a],



[KDGO03], considers the synchronous time model.  with high probability, regardless of the initial value
The qualitative and quantitative conclusions are z(0).
unaffected by the type of model; we choose t

_ _ h‘Fhe following lemma relates the number of clock ticks
asynchronous time model for convenience.

to absolute time.

Algorithm A(P): We consider a class of algo- Lemma l:Foranyk > 1, E[Z;] = k/n. Further, for
rithms, denoted by4. An algorithm in this class is @1y ¢ > 0,
characterized by an x n matrix P = [P;;] of non- Sk 52k
r >— ] < 2exp —5 ) 4
n

negative entries with the condition th&g; > 0 only

if (¢,7) € E. For technical reasons, we assume that 0 &

P is a stochastic matrix with its largest eigenvalue ~ Proof: By definition, E[Z,] = 05, E[Z; —
equal tol and all the remaining: — 1 eigenvalues Zj-1] = Y.y, 1/n = k/n. Equation (4) follows directly
are strictly less tha in magnitude. (Such a matrix from Cramer’s Theorem (see [DZ99], pp. 30 & 35M
can always be found if the underlying gragh As a consequence of the Lemma 1, fob n,

L
n

is connected and non-bipartite. We will assume

that the network grapld? satisfies these conditions 7, = k <1 2log n)
for the remainder of the paper) The algorithm n n
associated withP, denoted byA(P), is described

with high probability {.e probability at leastl — 1/n?).

In this paper, all the results aboudtaveraging times

are at least:. Hence, dividing the quantities measured

(J;lrll terms of the number of clock ticks by gives the
rresponding quantities when measured in absolute time

ﬁgr an example, see Corollary 2).

as follows:

In the k" time-slot, let node’s clock tick and let

it contact some neighboring nogewith probability

P;;. At this time both nodes set their values equ
to the average of their current values. Formally, |
x(k) denote the vector of values at the end of th
time-slotk. Then,

z(k) = Wk —1), (1) B. Previous Results

A general lower bound for any grap& and any

. oy 1 1 . oy
where V‘t’}fh probability; Ps; (;; is the probability 56 ra0ing algorithm was obtained in [KSSVOOb] in the
that the:*" node’s clock ticked and; is the chance synchronous setting. Their result is:

that it contacted nod¢) the random matri¥V (k)

is Theorem 1:For any gossip algorithm on any graph

T G and for0 < e < 0.5, the e-averaging time (in
Wiy = I— (ei —ej)(ei — ) ) synchronous steps) is lower bounded ®flog n).
? 2 )

For a complete graph and a synchronous averaging
wheree; = [0--- 01 0---0]7 is ann x 1 unit algorithm, [KDGO03] obtain the following result.

. th .
vector with the;"* component equal ta. Theorem 2:For a complete graph, there exists a gos-

) ) o _ . sip algorithm such that the/n-averaging time of the
Quantity of Interest: Our interest is in determining algorithm isO(log n).

the time (number of clock ticks) it takes far(k)

to converge tar...1, where1 is the vector of all The problem of (synchronous) fast distributed averag-

ones ing on an arbitrary graph without the gossip constraint

Definition 1: For any0 < ¢ < 1, the c—averaging is studied in [XBO03]; herel¥(¢t) = W for all ¢; i.e., the

time of an algorithmA(P) is denoted byl (c, P _system is completely d(_aterr_ninistic. Distributed_ averag-
and equals g (P) avele, P) ing has also been studied in the context of distributed

load balancing ([RSW98]), where an analysis based on
. { . <Hw(k’) — Zavel| > } Markov chains is used to obtain bounds on the time
supinf ¢k :Pr{ —————— >¢€| <e€,, . . . .
| z(0)]] required to achieve averaging (upto the integer con-
(3) straint) upto a certain accuracy. However, each iteration
where ||v|| denotes thé, norm of the vectow. is governed either by a constant stochastic matrix, or a
fixed sequence of matchings is considered. Some other
Thus thee-averaging time is the smallest number ofesults on distributed averaging can be found in [BS03],
clock ticks it takes forz(-) to get withine of z,,1 [Mur03], [LBF04], [OSMO04], [JLSO03].

z(0)



Not much is known about good randomized gossi. Upper Bound
algorithms for averaging on arbitrary graphs. The algo- ) . I
rithm of [KDGO3] is quite dependent on the fact that the Lemma 2: For algorithm.A(P), for any initial vector

underlying graph is a complete graph, and the gene?a(p)’ fork > K*(e).

result of [KSSV0O0Db] is a non-constructive lower bound. p <Hx(k) — Zavel|| )
— 5  =Z €| €,
[lz(0)]]
C. Our Results where
. , , X A 3loge?
In this paper, we design and characterize the perfor- K*(e) = W, and (8)
2

mance of averaging algorithms for arbitrary graphs. Our _ )
main result is the following theorem, which we shall  Proof: Recall that under algorithma(P), from (1)

later (in Section V) apply to specific types of graph§nd (),
that are of interest in applications. a(k+1) = W(k+ k), (9)
Theorem 3:The averaging timeT,.(¢, P), of the

algorithm A(P) is bounded as follows: where with probability: P;; the random matri®¥’ (k) is

-1 (ei —ej)(ei —¢j)"

Tave(ey P) S losr;g%, and (5) VVZ = I- 92 . (10)
(e, P) 0.5loge ! (©) First note thatV (k) are doubly stochastic matrices for

ave (6 log Ay (W)~1’ all (i, j). For doubly stochastic matrices, the vecfer

where is the eigenvector corresponding to the largest eigenvalue

1. With this observation, and with our assumptions on

W A I iD N P+ pT 7) P, it can be shown that(k) — xawl. Our interest is
2n 2n in finding out how fast it converges. In particular, we

would like to obtain bounds on the error random vector
y(k),
n

D; = Z[Pzg + sz] y(k) = x(k) — Tavel. (11)

J=1 . T+
Theorem 3 is proved in Section II. Note that,y(k) L 1 sincey(k)"1 = 0.

and D is the diagonal matrix with entries

In Section Il we show that the problem of finding Consider the evolution o§(.):

the fastest averaging algorithm can be formulated as a y(k + 1) 2(k+1) — Zayel

semidefinite program (SDP). In general, it is not possible a

to solve a semidefinite program in a distributed fashion. = Wk +1a(k) - zaveW (k)1
However, we exploit the structure of the problem to = W(k+1) (z(k) — zavel)
propose a completely distributed algorithm that solves = W(k+Dy(k). (12)

the optimization problem on the network, based on a

subgradient method. The description of the algorithfiére (&) follows from the fact that is an eigenvector

and proof of convergence are found in Section Ill-A. for all W(k +1). Thusy(.) evolves according to the
%ame linear system ag-).

—~
N2

Section IV relates averaging time of an algorithm o _ o o
a graphG' with the mixing time of an associated random 10 obtain probabilistic bounds op(k), we will first
walk on G, and uses this result to study applications &ompute the second moment gfk) and then apply
our results in the context of two networks of practicd!arkov's inequality as below.
interest: wireless networks, and the Internet. Computing W:
Let,

Il. PROOF OFTHEOREM 3

1>

w EW(0)] = E[W(k)]
We prove bognds (5). and (6) in I_.emmas 2 and _3 on _ 1 ZPUWU (13)
the number of discrete times (or equivalently clock ticks) iy
required to get withire of z,.1 (analogous to (5) and ’
(6)). Then, the entries ofV are as follows:



1) fori # j, Wi; = Zath and Recursive application of (21) yields
2) Wy =1— Do (Piy+Pyi)]—2Pi T N T

" 2n ' Ely(k)"y(k)] < X(W)"y(0) y(0). (22)
This yields thelV in (7), that is

- Now,
1 P+P
W= I=g D —— (14) y(0)'y(0) = 2(0)"(0) — na3,
where D is the diagonal matrix with entries < 2(0)"x(0). (23)
" Application of Markov’s Inequality:
D; = Z[PZJ-FPM F L .
= rom (22), (23) and an application of Markov’s in-
equality, we have
Note that, if P = P, then P is doubly stochastic. T
' : k) — Zavel k) y(k
This implies thatD; = 2, which in turn implies that Pr (% > > = Pr <y((0§TyEO§ > 52)
W =1I(1-1/n)+ P/n. . Ex k;f .
Computing Second MomentE[y(k)y(k)]: < :[cy(E))Tx%))]
For eachk, W (k) = W;; with probability 22, so that _ )t (24)
2
(ei —ej)(ei —ej)” A
W (k)W (k) = (I - : : (15)  From (24), it follows that foik > K (¢) = bgi"fw,
€, —€ei)le — e T
€T
- W(k). an _ . .
This proves the Lemma, and gives us an upper bound
Since this is true for each instance of the random matipx the e-averaging time. [ |
w,
EW(0)"'W(0)] = E[W(0)] B. Lower Bound
= W 18
(18) Lemma 3:For algorithmA(P), there exists an initial
Now, from (12), vector z(0), such that fork < K.(e),
Ely(k+1)Ty(k +1)] o (l2®) — zaed ||
= Ely(k)"W (k + )W (k + )y (k)] TR0 ‘)=
— T T
= Ely(&)"EW (k+ )Wk + DyRE]  pere
= Ely(k)" Wy(k)], (19) o
A 0.5loge
using (18), and the fact that thé’(k + 1) are IID Ki(e) = log Ao (W)~ 1 (26)
(independent of)(k)). Proof:

The matrix W is symmetrié positive-semidefinite From (12) and (18), we obtain

(sinceW = WTW) and hence it has non-negative real

eigenvalues. Ely(k)] = WFy(0). (27)
As stated earliery(k) L 1, which is the eigenvector\y, have shown thativ is a symmetric positive-

corresponding to the largest eigenvalie = 1 of W.  gemiqefinite doubly stochastic matrixy’ has (non-
So, from the variational characterization of the Seco%gative real) eigenvalues

eigenvalue, we have
y(k)TWy(k) < Xa(W)y(k)Ty(k). (20)
From (18) and (20),

1= M(W) > A(W) > ... >\(W)>0,

with corresponding orthonormal eigenvectors

ﬁl, v9, U3, ..., U,. ChoOse
Ely(k+ D)Ty(k+1)] < Xo(W)E[y(k) y(k)).(21) L )
2The symmetry ofi¥’ does not depend o being symmetric. :U(O) - ﬁ <\/—ﬁl + Uz) = y(O) - ﬁvz'



For this choice ofc(0), ||z(0)|| = 1. Now from (27), with probability at leastl — 2e.

Ely(k)] = LAQ(W)UQ. (28) Proof: Ford = w andk = T"(e, P) and
V2 using (31), the right hand side of (4) evaluates to
For this particular choice af(0), we will lower bound 21 — o P Inlog el
thee—averaging time by lower bounding|||y(k)||?] and 2exp <— ( 3 2(P)) 2(1n_O§ 6(}3))) = 2e.
using Lemma 4 as stated below. " 2

By Jensen’s inequality and (28), Since —1_ < >\2(P). <1 for a non-nggative doubly
n n stochastic symmetric matri®, § = ln is larger than
E[Z yi(k)Y > ZEQ[yi(k)] the above choice of. This completes the proof. =

i=1 i=1
_ T
= ?[y(k)] Ely(k)] [1l. OPTIMAL AVERAGING ALGORITHM
= W)l o

g2 (W)vz vz From Theorem 5, we see that the averaging time is a

_ lA%k(W)‘ (29) monotonically increasing function of the second largest
2 ' eigenvalue of = Y°7'._, L P;jW;;. Thus, finding the
Lemma 4:Let X be a random variable such that< fastest averaging algorithm corresponds to findiRg

X < B. Then, for any0 < e < B, such thathy(W) is the smallest, while satisfying con-
FiX]| - straints onP. Thus, we have the optimization problem
Pr(X >¢€) > & P P
Proof: — € minimize Ay (W)
' subject to W =70, & P Wi (34)
EX] < €ePr(X <€)+ BPr(X > ¢ P>[0], Pj=01f {i,j} ¢ E,
= Pr(X>¢€)(B—¢€) +e > by =1, Vi
Rearranging terms gives us the lemma. B The objective function, which is the second largest eigen-
From (28),||y(k)||? < |ly(0)||2 < 1/2. Hence Lemma Value of a doubly stochastic matrix, is a convex function
(4) and (29) imply that fork < K, (¢) on the set of symmetric matrices, and therefore we
p Dl > 30 have a convex optimization problem. This problem can
r(lyk)l =€) > e (30)  pe reformulated as the following semidefinite program
This completes the proof of Lemma 3. (SDP):
u minimize s
The following corollaries are immediate. subject to W — 117 /n < sI,
—S  1p ..
Corollary 1: For largen and symmetrid?, Ty (€, P) W=> = nliiWij (35)
is bounded as follows: ;ZP[O]’ ]iz‘j ;0 if {i,5} ¢ E,
1 _1 . ’L] = N 1.

ol P) < 298 _ 27 p) (3D) J | -
(1—=X2(P)) For general background on SDPs, eigenvalue optimiza-
0.5nloge! A tion, and associated interior-point methods for solving

Tave(e, P) - 2 1— x(P) T(e.P). (32) ihese problems, see, for example, [BV03], [WSV00],

Proof: By definition,  Ay(W) — [LO96], [Ove9?], and references therein. Interior point
(1—L1(1—x(P)). For large n, 1(1 — X(P)) methods can be used to solve problems with a thousand
is ver@L/ small, and hence " edges or so; subgradient methods can be used to solve

1 1 the problem for larger graphs with upto a hundred thou-
log (1 - E(l - /\Q(P))> ~ _E(l — X2(P)). sand edges. The disadvantage of a subgradient method

compared to a primal-dual interior point method is that
This along with Theorem 3 completes the proof. B the aigorithm is relatively slow (in terms of number of
Corollary 2: For a symmetricP, the absolute time, iterations), and has no simple stopping criterion that can
Zr-(,p), it takes forT*(e, P) clock ticks to happen is guarantee a certain level of suboptimality.

given by Thus, given a graph topology, we can solve the
T*(e, P) 2 semidefinite program (35) to find the* for the fastest
ZT* (E p) - 1 :l: —— 5 (3 ) . .
; n NG averaging algorithm.



A. Distributed Optimization 1) Subgradient methodWe will describe the subgra-

dient method for the optimization problem restated in

rms of the variablep. We can state (35) in terms of
e variablep = [p_m, ... p_1,P1,- .- Pm] as follows:

Finding the fastest averaging algorithm is a conv
optimization problem, and can therefore be solved
ficiently to obtain the optimal distributio®*. Unfor-
tunately, aP* computed via a centralized computation minimize Xo(I + % SimE +poEy)
is not very useful in our setting. It is natural to ask subjectto 17p; <1, Vi (37)
if in this setting, the optimization (like the averaging p >0, 1<|l] <m,
itself), can also be performed distributedlye., is it
possible for the nodes on the graph, possessing ol
local information, and with only local communication, We will use the subgradient method to solve this

to compute the probab|||t|e§w that lead to the fastestprOblem distributedly. The use of the subgradient method
averaging algorithm? to solve eigenvalue problems is well-known; see for

Cfxample [BDX03], [OW93], [Lew96], [Lew99] for ma-

perepi is as defined in (36).

In this section, we outline a completely distributed al="". . )
erial on non-smooth analysis of spectral function, and

gorltth based on alapp_rommate subgradient metho Cla90], [HUL93], [BLOO] for more general background
which converges to a neighborhood of the optin®il S
non-smooth optimization.

The algorithm uses distributed averaging to compu?é] _ _ _
a subgradient; the accuracy to which the averaging isRecall that asubgradientof A, at W' is a symmetric
performed determines the size of the neighbourhodBatrix G that satisfies the inequality

The greater the accuracy, the smaller the neighbourhood, = =

. . . > —

i.e., the better the approximation to the optinial. The (W) 2 (W) +(G, WN W)

exact relation between the accuracy of the distributed = W)+ TrGW —-W)

averaging and the size of the neighbourhood is statedl v feasiblei.e., symmetric stochastic matri¥’. Let
Theorem 4_at the end of this section. First we start W|t751 be a unit eigenvector associated with(W), then the
some notation. matrix G = uu” is a subgradient ofy(W) (see, for
Notation: It will be easier to analyze the subgradiengéxample, [BDX03]).

method if we collect the entries of the matd; into a

Usin
vector, which we will callp. Since there is no symmetry g
requirement on the matri®, the vectorp will need to B 1« B R
have entries corresponding 1#; as well asP;; (this Wip) = I+%(Z<plEl+p*lE*l)) = I+%(Z pE),

corresponds to replacing each edge in thwdirected =1 t=1

graphG by two directed edges, one in each direction)in terms of the probability vectos, we obtain

The vectorp corresponds to the matriR as follows.
Let the total number of (non self-loop) edgesGrbe m. m

. . 1
Assign numbers to the edgés j) from 1 throughm. X (W(5)) > Aa(W (p)) + Z(UT(—EZ)U)(ﬁl —m),
If ¢ < j thenp, = P;;, wherel is the number assigned =1 2n
to (the undirected) edg@, j) (which we will denote by (38)

L~ (i,7)); if i > j thenp_, = F;;. (Recall that we are 5o that the subgradient(p) is given by
not considering self-loop edges.) )

=5 (uTE_mu, .. ,uTEmu) , (39)

We will also introduce the notatiop; corresponding 9(p)
to the non-zero entries in théh row of P (we do this to

make concise the constraint that the sum of elements irwith components

each row should bg). That is, we define fot < i <mn, 1 1 )
== o By =—— i — WUj) [~ .7 . )
pi = [Pyj; (i.4) € €], @) NPT g T g, ) )
Define also the matrice®;, [ ~ (i,j) as follows: wherefl| =1,...,m.
E, = E = +1, E, = E,. = —1, and all other  Observe that if each nodeknows its own component
entries of B, are zero. Then, we have that u; of the unit eigenvector, then this subgradient can be
computed locally, using only local information.
By =2(W;; —I). o . .
The following is the projected subgradient method for
Finally, denote the degree of nodéy m;. (40):



« Initialization: Initialize p to some feasible vector,well sinceg; > 0, and so to satisfy (43), we must have
for examplep corresponding to the natural randong; = 0. Combining these gives us that

walk. Setk := 1. U
o Repeatfor & > 1, qj = max{0, pi; — ?}. (45)
— Subgradient step.Compute a subgradiept”)

The ¢ must satisfy17¢* < 1, i.e, Y max{0,q; —

v*/2} < 1. However, we must also satisfy the com-
(k) " T % _ _

pi=Dp—Ukg plementary slackness condition®(1* ¢ 1) = 0.

- teasibl h nodei These two conditions combined together lead to a unique
— Projection onto feasible setAt each nodei, g4tion for »*, obtained either av* = 0, or at the

project p; obtained from the subgradient ste : ok _ 1 * *
onto 17¢ < 1,¢ = 0. This is achieved asI%OIUtIon szmax{o’%- v'/2} = 1 from v the g;
= 1= can be found as described.

follows:

1) If 377, max{0,p;;} < 1, then setp; =
max{0, p;}, stop.

2) If not, then use bisection to fingd > 0
such thatd 7" max{0,pi; — #} = 1; set
pi = max{0, pj; — =}, stop.

at p, and set

2) Decentralization: Now consider the issue of de-
centralization. Observe that in the above algorithyn,
can be computed locally at each nodeuif the unit
eigenvector corresponding td; (W), is known; more
precisely, if each nodéis aware of its own component
of u and that of its immediate neighbours. The projection

In this algorithm, Step 1 moves in the direction of step can be carried out exactly at each node using local
the subgradient with stepsize,; we will discuss the information alone.

stepsizes a little later i_n this secti.on. Step 2 proje_cts the-l-he rest of the section proceeds as follows: first we
vector p onto the feasible set. Since the constraints @y yiscuss approximate distributed computation of the
each node are separable, the varialpigsorresponding gigenvecton: of 17, and then show that the subgradient
to nodes: are projected onto the feasible set separatemethod converges to a certain neighborhood of the

The projection method is derived from the optimalitpptimal value in spite of the error incurred during the

conditions of the projection problem distributed computation ofi at each iteration.
minimize "™, (¢; — pi;)? The problem of distributedly computing the tép-
subject to 1T]q <1, ¢>0 (40) eigenvectors of a matrix on a graph is discussed in

[KMO04]; a distributed implementation of and error anal-
as shown. ysis for orthogonal iterations is described. By distritolite
Introduce Lagrange multipliers\ € R for the computation of an eigenvectarof a matrixi/’, we mean

inequality ¢ = 0, and v for 17¢g — 1 < 0. The that each node is aware of the!” row of W, and can
KKT conditions for optimal primal and dual variablesonly communicate with its immediate neighbours; given

q", \*,v* are these constraints, the distributed computation ensures
. T that each node holds its valug in the unit eigenvector
¢ =0, I"¢g <1 w

ATz 0, vt 20 Since the matrixiW is symmetric and stochastic (it

(Tgt—1)=0, Xigf=0, j=1,....m; is a convex combination of symmetric stochastic matri-

2(qj’f — pij) + v — )\j =0, j=1,...,m;. ces), we know that the first eigenvectorlis Therefore
o _ _ orthogonal iterations takes a particularly simple form (in
Eliminating the slack variables;, we get the equivalent particular, we do not need any Cholesky factorization

optimality conditions type of computations at the nodes). We describe orthog-
¢ =0, 1T¢" <1, (41) onal iterations for this problem below:
v >0, v(1T¢*—1)=0, (42) « DecentralOl: Initialize the process with some ran-

domly chosen vectorg; for k£ > 1, repeat
— Setv, = Wug_q
— (Orthogonalize)vy, = v, — (31 2vg,)1
— (Scale to unit normyy = v /| vkl

If v* < 2pi;, then from the last condition, necessarily

q; > 0. From (43), this gives ug; = pij — v*/2. If Here, the multiplication by is distributed, sincéV
on the other hand™ > 2p;;, thenv* > 2p;; — 2¢; as respects the graph structuie,, W;; # 0 only if (i, j) is
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an edge. So entryof v, can be found using only values Consider thek-th iteration of the subgradient method,
of vi_1 corresponding to neighbours of node.e, the with current iteratep(k), and let /e be the error
computation is distributed. The orthogonalize and scdle the (approximate) eigenvectar corresponding to
steps can be carried out distributedly using the gossip(W (p(k))). (By error in the eigenvector, we mean
algorithm outlined in this paper, or just by distributedhe Lo distance betweem and the (actual) eigenspace
averaging as described in [XB03] and used in [KMO4torresponding td\s). Again, denote by, the vector in
Observe that the very matri¥’ can be used for the the eigenspace minimizing the distanceutcand denote
distributed averaging step, since it is also a probabilitiie exact subgradient computed fram by g,..

matrix. We state the following result (applied to our \ye have|u — u, || < e. First we finde;, in terms of
special case) from [KMO04], which basically states that jt 55 tollows:

is possible to compute the eigenvector upto an arbitrary

accuracy: M(W(p)) = Xa(W(p(k))) + (gr.p — p(k))
Lemma 5:If  DecentralOl is run  for = u(W(p(k))) + {(g,p — p(k))
O (tmix log(16/€)) iterations, producing orthogonal — (9 — gr,p —p(k))
vectoru, then S
This implies,
t
lu—u| <O ((%) n) + 3¢, (46) € = Sl;)p(g = gr,p — p(k))
2
2

where |u — u,|| is the L, distance betweem and the = clg—gl"

eigenspace of\,; u, is the vector in the eigenspacgyherec is a scaling constant.

achieving this distance. _— .
g Next, we will find ||g — g.||? in terms ofe as follows:

It is therefore clear that an approximate eigenvector, "
and therefore an approximate subgradient can be COMyy 2 <e = Z(“i )<
puted distributedly. - et T

3) Convergence analysigt now remains to show that = (u;—u,)><e 1<i<n.
the subgradient method converges despite approximation _
errors in computation of the eigenvector, which spill over Now, thel*" component ofy — g, is

into computation of the subgradient. To show this, we 1 5 5
will use a result from [Kiw04] on the convergence of (g—9 0 = mn ((“i —u;)” = (ur, — ur,) )
approximatesubgradient methods. 1
. L L . = o (i =) = (45 — ) (i — )
Given an optimization problem with objective function n
f and feasible set, the approximate subgradient method + (ur, = ur,).

k1 co
generates a sequenée”}>° , C S such that Combining the facts that

karl = PS(xk - ngk)a gk € 8€kf5($k)7 (47) |ul — uri| < \/E, Vi,

where Pg is a projection onto the feasible sej, > 0is and (since||u|| = 1)
a stepsize, and
ame'(xk) = {g : fs(l') > fS(xk)+<gax_xk>_€k VI} we get the f0||owing
(48)
is the ¢, subdifferential of the objective functiolis at 1
i (9—90)i < W(Qﬁ)Q(zﬂ)Q = 8¢/n”.
Let v, = (1/2)|gk|*vk, and & = Y + €. Then we

. . o 2
have the following theorem from [Kiw04], Summing over allm edges gives uslg — gr[I° <

. o 8me/n?, i.e, e < 8me/n?.
Lemma 6:1f > vy = oo, then Now chooser, = 1/k. From (39), it can be seen

liminf f(2*) < f* + 6, that ||gx||* is bounded above by/m/n, and sovy; in
k Theorem 6 converges ta Therefore if in each iteration

whered = lim sup 8, and f* is the optimal value of the %, the eigenvector is computed to within an errorepf
objective function. ande = lim inf ¢;, we have the following result:



Theorem 4:The distributed subgradient method de- Tave

scribed above converges to a distributiprfor which
Ao (W (p)) is within 8me/n? of the globally optimal
value Ao (W (p*)).

IV. APPLICATIONS

In this section, we briefly discuss applications of our®s"
results in the context of wireless ad-hoc networks and the
Internet. We examine how the performance of averaging
algorithms scales with the size (in terms of the number
of nodes) of the network.

Before we study this, we need the following result,
relating the averaging time of an algoriths(P) and
the mixing time of the Markov chain o&' that evolves
according toW = W(P). (Since W is a positive- Fig. 2. Graphical interpretation of Theorem 5.
semidefinite doubly stochastic matrix, the Markov chain
with transition matrixi¥ has uniform equilibrium distri-
bution.)

Recall that the mixing time is defined as follows: 7 is denoted as7‘(n,r), and is obtained as follows:
placen nodes on al dimensional unit cube uniformly
at random and connect any two nodes that are within dis-
tancer of each other. An example of a two dimensional
graph,G?(n,r) is shown in the Figure3.

Tmix
loglogn logn n

Definition 2 (Mixing Time):For a Markov chain
with symmetric transition matrixiW, let A;(t) =
5201 Wl — +|. Then, thee-mixing time is defined
as

The following is a well-known result about
the connectivity of G%n,r) (for a proof, see

We have the following relation between mixing time&GK00], [GMPS04], [Pen03]):
and averaging times, the proof of which can be found in Lemma 7:For nr? > 2logn, the G(n,r) is con-
[BGPSO04]. nected with probability at least — 1/n2.

Theorem 5:For a symmetric matrix P, the e- Theorem 6:0n the Geometric Random Graph,
averaging time (in terms of absolute time) of the goss@?(n,r), the absolutel /n®-averaging timep > 0, of

algorithm A(P) is related to the mixing time of thethe optimal averaging algorithm i (k;%)
Markov chain with transition matrit” as Proof: In [BGPSO05], the authors show that for=

Tmix(€) = supinf{t: Ay(t') <Vt >t} (49)

Tave (€, P) = O (logn + Thix(€)) - 1/n% a > 0 the e-mixing times for the fastest-mixing
Figure 2 is a pictorial description of Theorem sfandom Walkl on the geometric random gra@H(n, r)
The z-axis denotes mixing time and theaxis denotes 1S Of ordero(=5=). Therefore, using this and the results
averaging time. The scale on the axis is in order notatid¥. Corollaries 1 and 2, we have the theorem. u
As shown in the figure, forP such thatT,,(P) = Thus, in wireless sensor networks with a small radius
o(logn), Tave(%,P) = O(logn); for P such that of communication, distributed computing is necessarily

Toix(P) = Q(logn), Tave (£,P) = O(Tmix). Thus, slow, since the fastest averaging algorithm is itself slow.
knowing mixing property of random walk essentialllHowever, consider the natural averaging algorithm, based
characterizes the averaging time in the order sense. on the natural random walk, which can be described
as follows: each node, when it becomes active, chooses
one of its neighbors uniformly at random and averages
its value with the chosen neighbor. As noted before, in
The Geometric Random Graph, introduced by Guptgeneral, the performance of such an algorithm can be
and Kumar [GKO0O], has been used successfully to modal worse than the optimal algorithm. Interestingly, in
ad-hoc wireless networks. A-dimensional Geometric the case ofG“(n,r), the performances of the natural
Random Graph om nodes, modeling wireless ad-ho@veraging algorithm and the optimal averaging algorithm
networks ofn nodes with wireless transmission radiuare comparable (i.e. they have averaging times of the

A. Wireless Network
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same order). We state the following Theorem, whidine computatioh One implication is that exchanging
is obtained exactly the same way as Theorem 6, usiimjormation on Internet via peer-to-peer network built
a result onTy; for the natural random walk fromon top of it is extremely fast!
[BGPSO05]:

1

Theorem 7:0n the Geometric Random Graph, g o © *

G%(n,r), the absolutel /n®-averaging timepa > 0, of @ . . o

the natural averaging algorithm is of the same order as
the optimal averaging algorithnhg., © (IOT#)

Implication. In a wireless sensor network, Theorem 6 . e @ 5
suggests that for a small radius of transmission, even the T .
fastest averaging algorithm converges slowly; however, . . .,
the good news is that the natural averaging algorithm,
based only on local information, scales just as well as 0 1

the fastest averaging algorithm. Thus, at least in thg 3. An example of a Geometric Random Graph in

order sense, it is not necessary to optimize for the fastggb-dimensions. A node is connected to all other nodes
averaging algorithm in a wireless sensor network.  that are within distance of itself.

B. Internet

V. CONCLUSION
The Preferential Connectivity (PC) model [MPS03] is

one of the popular models for the Internet. In [MPS03], We presented a framework for the design and analy-
it is shown that the Internet is an expander under tisés of a randomized asynchronous distributed averaging
preferential connectivity model. This means that theadgorithm on an arbitrary connected network. We charac-
exists a positive constant > 0 (independent of the terized the performance of the algorithm precisely in the
size of the graph), such that for the transition matriterms of second largest eigenvalue of an appropriate dou-

corresponding to the natural random walk, calPit bly stochastic matrix. This allowed us to find the fastest
averaging of this class of algorithms, by establishing the
§ < (11— Amax(P)) < 1, (50) corresponding optimization problem to be convex. We

established a tight relation between the averaging time
where A\n.x(P) is the second largest eigenvalue Bf of the algorithm and the mixing time of an associated
in magnitude,i.e, the spectral gap is bounded awayandom walk, and utilized this connection to design
from zero by a constant. Le?* be the transition matrix fast averaging algorithms for two popular and well-
corresponding to the fastest mixing random walk on thgudied networks: Wireless Sensor Networks (modeled
Internet graph under the PC model. The random wadls Geometric Random Graphs), and the Internet graph
corresponding toP* must mix at least as fast as thqunder the so-called Preferential Connectivity Model). In
natural one, and therefore, these models, we find that the natural algorithm is as fast

as the optimal algorithm.

0 = (1= Amax(P7)) < L. (51) In general, solving semidefinite programs in a dis-

tributed manner is not possible. However, we utilized the
structure of the problem in order to solve the semidef-
inite program (corresponding to the optimal averaging
Zalgorithm) in a distributed fashion using the subgradient
rhethod. This allows for self-tuning weights: that is,
the network can start out with some arbitrary averaging
Theorem 8:Under the PC model, the optimal averagmatrix, say, one derived from the natural random walk,
ing algorithm on the Internet has an absolet®veraging
time Thve(e) = © (log 671) . SAlthought the asymmetry of th& matrix for the natural random

Implication. The absolute time for distributed COmpuyvalk on the Internet prevents us from exactly quantifying the aver-

. .. . ﬁ\éing time, we believe that averaging will be fast even under the
tation on the Internet is independent of the size of thgral random walk, since the spectral gap for this random walk is

network, and depends only on the desired accuracy tefinded away from by a constant.

It is easy to argue that there exists an optitRélthat is
symmetric (given any optimaby, the matrix1/2(Py +

P[) is symmetric, and leads to the safiélV| as ).

Therefore, from (50), (51), Theorem 3 and Corollary
we obtain the following Theorem.
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