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Abstract— Motivated by applications to sensor, peer-to-
peer and ad hoc networks, we study distributed asyn-
chronous algorithms, also known asgossip algorithms, for
computation and information exchange in an arbitrarily
connected network of nodes. Nodes in such networks
operate under limited computational, communication and
energy resources. These constraints naturally give rise to
“gossip” algorithms: schemes which distribute the compu-
tational burden and in which a node communicates with
a randomly chosen neighbor.

We analyze the averaging problem under the gossip con-
straint for arbitrary network, and find that the averaging
time of a gossip algorithm depends on the second largest
eigenvalue of a doubly stochastic matrix characterizing the
algorithm. Using recent results of Boyd, Diaconis and Xiao
(2003), we show that minimizing this quantity to design
the fastest averaging algorithm on the network is a semi-
definite program(SDP). In general, SDPs cannot be solved
distributedly; however, exploiting problem structure, we
propose a subgradient method that distributedly solves the
optimization problem over the network.

The relation of averaging time to the second largest
eigenvalue naturally relates it to the mixing time of a
random walk with transition probabilities that are derived
from the gossip algorithm. We use this connection to
study the performance of gossip algorithm on two popular
networks: Wireless Sensor Networks, which are modeled
as Geometric Random Graphs, and the Internet graph
under the so-called Preferential Connectivity Model.

I. I NTRODUCTION

The advent of sensor, wireless ad hoc and peer-to-peer
networks has necessitated the design of asynchronous,
distributed and fault-tolerant computation and informa-
tion exchange algorithms. This is mainly because such
networks are constrained by the following operational
characteristics: (i) they may not have a centralized entity
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for facilitating computation, communication and time-
synchronization, (ii) the network topology may not be
completely known to the nodes of the network, (iii)
nodes may join or leave the network (even expire),
so that the network topology itself may change, and
(iv) in the case of sensor networks, the computational
power and energy resources may be very limited. These
constraints motivate the design of simple asynchronous
decentralized algorithms for computation where each
node exchanges information with only a few of its
immediate neighbors in a time instance (or, a round).
The goal in this setting is to design algorithms so that
the desired computation and communication is done as
quickly and efficiently as possible.

We study the problem of averaging as an instance
of the distributed computation problem. A toy example
to explain the motivation for the averaging problem is
sensing temperature of some small region of space by
a network of sensors. For example, in Figure 1, sensors
are deployed to measure the temperatureT of a source.
Sensori, i = 1, . . . , 4 measuresTi = T + ηi, where the
ηi are IID, zero mean Gaussian sensor noise variables.
The unbiased, minimum mean squared error (MMSE)
estimate is the averagêT =

P

i
Ti

4 . Thus, to combat

T1 = T + η1

T2 = T + η2

T3 = T + η3

T4 = T + η4

Source

T

Fig. 1. Sensor nodes deployed to measure ambient
temperature.

minor fluctuations in the ambient temperature and the
noise in sensor readings, the nodes need to average their
readings.



Distributed averaging arises in many applications such
as coordination of autonomous agents, estimation and
distributed data fusion on ad-hoc networks, and de-
centralized optimization.1 Fast distributed averaging
algorithms are also important in other contexts; see
Kempe et al [KDG03], for example. For an extensive
body of related work, see [KK02],[KKD01], [HHL88],
[GvRB01], [KEW02], [MFHH02], [vR00], [EGHK99],
[IEGH02], [KSSV00b], [SMK+01], [RFH+01].

This paper undertakes an in-depth study of the design
and analysis of gossip algorithms for averaging in an
arbitrarily connectednetwork of nodes. (By gossip algo-
rithm, we mean specifically an algorithm in which each
node communicates with no more than one neighbour in
each time slot.) Thus, given a graphG, we determine
the averaging time,Tave, which is the time taken for
the value at each node to be close to the average
value (a more precise definition is given later). We find
that the averaging time depends on the second largest
eigenvalue of a doubly stochastic matrix characterizing
the averaging algorithm: the smaller this eigenvalue, the
faster the averaging algorithm. Thefastest averaging
algorithm is obtained by minimizing this eigenvalue over
the set of allowed gossip algorithms on the graph. This
minimization is shown to be a semi-definite program,
which is a convex problem, and therefore can be solved
efficiently to obtain the global optimum.

The averaging time,Tave, is closely related to the
mixing time, Tmix, of the random walk defined by
the matrix that characterizes the algorithm. This means
we can study also averaging algorithms by studying
the mixing time of the corresponding random walk on
the graph. The recent work of Boyd et al [BDX03]
shows that the ratio of the mixing times of the natural
random walk to the fastest-mixing random walk can
grow without bound as the number of nodes increases;
correspondingly, therefore, the optimal averaging algo-
rithm can perform arbitrarily better than the one based
on the natural random walk. Thus, computing the op-
timal averaging algorithm is important: however, this
involves solving a semi-definite program, which requires
a knowledge of the complete topology. Surprisingly, we
find that we can exploit the problem structure to devise a
distributed subgradient method to solve the semidefinite

1The theoretical framework developed in this paper is not merely
restricted to averaging algorithms. It easily extends to the computation
of other functions which can be computed via pair-wise operations;
e.g., the maximum, minimum or product functions. It can also be
extended for analyzing information exchange algorithms, although
this extension is not as direct. For concreteness and for stating
our results as precisely as possible, we shall consider averaging
algorithms in the rest of the paper.

program and obtain a near-optimal averaging algorithm.

Finally, we study the performance of gossip algorithms
on two network graphs which are very important in
practice: Geometric Random Graphs which are used to
model wireless sensor networks, and the Internet graph
under the preferential connectivity model. We find that
for geometric random graphs, the averaging time of
the natural is the same order as the optimal averaging
algorithm, which, as remarked earlier, need not be the
case in a general graph.

We shall state our main results after setting out some
notation and definitions in the next section.

A. Problem Formulation and Definitions

Consider a connected graphG = (V, E), where the
vertex setV containsn nodes andE is the edge set. The
ith component of the vectorx(0) = [x1(0), ..., xn(0)]T

represents the initial value at nodei. Let xave =
P

i
xi(0)
n

be the average of the entries ofx(0) and the goal is to
computexave in a distributed and asynchronous manner.

• Asynchronous time model: Each node has a
clock which ticks at the times of a rate 1 Poisson
process. Thus, the inter-tick times at each node are
rate 1 exponentials, independent across nodes and
over time. Equivalently, this corresponds to a single
clock ticking according to a raten Poisson process
at timesZk, k ≥ 1, where{Zk+1 − Zk} are IID
exponentials of raten. Let Ik ∈ {1, ..., n} denote
the node whose clock ticked at timeZk. Clearly,
the Ik are IID variables distributed uniformly
over {1, . . . , n}. We discretize time according
to clock ticks since these are the only times at
which the value ofx(·) changes. Therefore, the
interval [Zk, Zk+1) denotes thekth time-slot and,
on average, there aren clock ticks per unit of
absolute time. Lemma 1 states a precise translation
of clock ticks into absolute time.

• Synchronous time model:In the synchronous time
model, time is assumed to be slotted commonly
across nodes. In each time slot, each node contacts
one of its neighbors independently and (not neces-
sarily uniformly) at random. Note that in this model
all nodes communicate simultaneously, in contrast
to the asynchronous model where only one node
communicates at a given time. On the other hand,
in both models each node contacts only one other
node at a time.
This paper uses the asynchronous time model
whereas previous work, notably that of [KSSV00a],
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[KDG03], considers the synchronous time model.
The qualitative and quantitative conclusions are
unaffected by the type of model; we choose the
asynchronous time model for convenience.

• Algorithm A(P ): We consider a class of algo-
rithms, denoted byA. An algorithm in this class is
characterized by ann×n matrix P = [Pij ] of non-
negative entries with the condition thatPij > 0 only
if (i, j) ∈ E. For technical reasons, we assume that
P is a stochastic matrix with its largest eigenvalue
equal to1 and all the remainingn − 1 eigenvalues
are strictly less than1 in magnitude. (Such a matrix
can always be found if the underlying graphG
is connected and non-bipartite. We will assume
that the network graphG satisfies these conditions
for the remainder of the paper.) The algorithm
associated withP , denoted byA(P ), is described
as follows:
In the kth time-slot, let nodei’s clock tick and let
it contact some neighboring nodej with probability
Pij . At this time both nodes set their values equal
to the average of their current values. Formally, let
x(k) denote the vector of values at the end of the
time-slotk. Then,

x(k) = W (k)x(k − 1), (1)

where with probability 1
n
Pij ( 1

n
is the probability

that theith node’s clock ticked andPij is the chance
that it contacted nodej) the random matrixW (k)
is

Wij = I − (ei − ej)(ei − ej)
T

2
, (2)

where ei = [0 · · · 0 1 0 · · · 0]T is an n × 1 unit
vector with theith component equal to1.

• Quantity of Interest: Our interest is in determining
the time (number of clock ticks) it takes forx(k)
to converge toxave1, where1 is the vector of all
ones.
Definition 1: For any0 < ε < 1, the ε−averaging
time of an algorithmA(P ) is denoted byTave(ε, P )
and equals

sup
x(0)

inf

{

k : Pr

(‖x(k) − xave1‖
‖x(0)‖ ≥ ε

)

≤ ε

}

,

(3)
where‖v‖ denotes thel2 norm of the vectorv.

Thus theε-averaging time is the smallest number of
clock ticks it takes forx(·) to get withinε of xave1

with high probability, regardless of the initial value
x(0).

The following lemma relates the number of clock ticks
to absolute time.

Lemma 1:For anyk ≥ 1, E[Zk] = k/n. Further, for
any δ > 0,

Pr

(∣

∣

∣

∣

Zk − k

n

∣

∣

∣

∣

≥ δk

n

)

≤ 2 exp

(

−δ2k

2

)

. (4)

Proof: By definition, E[Zk] =
∑k

j=1 E[Zj −
Zj−1] =

∑k
j=1 1/n = k/n. Equation (4) follows directly

from Cramer’s Theorem (see [DZ99], pp. 30 & 35).

As a consequence of the Lemma 1, fork ≥ n,

Zk =
k

n

(

1 +

√

2 log n

n

)

with high probability (i.e.probability at least1 − 1/n2).
In this paper, all the results aboutε-averaging times
are at leastn. Hence, dividing the quantities measured
in terms of the number of clock ticks byn gives the
corresponding quantities when measured in absolute time
(for an example, see Corollary 2).

B. Previous Results

A general lower bound for any graphG and any
averaging algorithm was obtained in [KSSV00b] in the
synchronous setting. Their result is:

Theorem 1:For any gossip algorithm on any graph
G and for 0 < ε < 0.5, the ε-averaging time (in
synchronous steps) is lower bounded byΩ(log n).

For a complete graph and a synchronous averaging
algorithm, [KDG03] obtain the following result.

Theorem 2:For a complete graph, there exists a gos-
sip algorithm such that the1/n-averaging time of the
algorithm isO(log n).

The problem of (synchronous) fast distributed averag-
ing on an arbitrary graph without the gossip constraint
is studied in [XB03]; here,W (t) = W for all t; i.e., the
system is completely deterministic. Distributed averag-
ing has also been studied in the context of distributed
load balancing ([RSW98]), where an analysis based on
Markov chains is used to obtain bounds on the time
required to achieve averaging (upto the integer con-
straint) upto a certain accuracy. However, each iteration
is governed either by a constant stochastic matrix, or a
fixed sequence of matchings is considered. Some other
results on distributed averaging can be found in [BS03],
[Mur03], [LBF04], [OSM04], [JLS03].
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Not much is known about good randomized gossip
algorithms for averaging on arbitrary graphs. The algo-
rithm of [KDG03] is quite dependent on the fact that the
underlying graph is a complete graph, and the general
result of [KSSV00b] is a non-constructive lower bound.

C. Our Results

In this paper, we design and characterize the perfor-
mance of averaging algorithms for arbitrary graphs. Our
main result is the following theorem, which we shall
later (in Section IV) apply to specific types of graphs
that are of interest in applications.

Theorem 3:The averaging time,Tave(ε, P ), of the
algorithmA(P ) is bounded as follows:

Tave(ε, P ) ≤ 3 log ε−1

log λ2(W )−1
, and (5)

Tave(ε, P ) ≥ 0.5 log ε−1

log λ2(W )−1
, (6)

where

W
4
= I − 1

2n
D +

P + P T

2n
, (7)

andD is the diagonal matrix with entries

Di =
n

∑

j=1

[Pij + Pji].

Theorem 3 is proved in Section II.

In Section III we show that the problem of finding
the fastest averaging algorithm can be formulated as a
semidefinite program (SDP). In general, it is not possible
to solve a semidefinite program in a distributed fashion.
However, we exploit the structure of the problem to
propose a completely distributed algorithm that solves
the optimization problem on the network, based on a
subgradient method. The description of the algorithm
and proof of convergence are found in Section III-A.

Section IV relates averaging time of an algorithm on
a graphG with the mixing time of an associated random
walk on G, and uses this result to study applications of
our results in the context of two networks of practical
interest: wireless networks, and the Internet.

II. PROOF OFTHEOREM 3

We prove bounds (5) and (6) in Lemmas 2 and 3 on
the number of discrete times (or equivalently clock ticks)
required to get withinε of xave1 (analogous to (5) and
(6)).

A. Upper Bound

Lemma 2:For algorithmA(P ), for any initial vector
x(0), for k ≥ K∗(ε),

Pr

(‖x(k) − xave1‖
‖x(0)‖ ≥ ε

)

≤ ε,

where

K∗(ε)
4
=

3 log ε−1

log λ2(W )−1
, and (8)

Proof: Recall that under algorithmA(P ), from (1)
and (2),

x(k + 1) = W (k + 1)x(k), (9)

where with probability1
n
Pij the random matrixW (k) is

Wij = I − (ei − ej)(ei − ej)
T

2
. (10)

First note thatW (k) are doubly stochastic matrices for
all (i, j). For doubly stochastic matrices, the vector1

n
1

is the eigenvector corresponding to the largest eigenvalue
1. With this observation, and with our assumptions on
P , it can be shown thatx(k) → xave1. Our interest is
in finding out how fast it converges. In particular, we
would like to obtain bounds on the error random vector
y(k),

y(k) = x(k) − xave1. (11)

Note that,y(k) ⊥ 1 sincey(k)T1 = 0.

Consider the evolution ofy(·):

y(k + 1) = x(k + 1) − xave1

(a)
= W (k + 1)x(k) − xaveW (k)1

= W (k + 1) (x(k) − xave1)

= W (k + 1)y(k). (12)

Here (a) follows from the fact that1 is an eigenvector
for all W (k + 1). Thus y(·) evolves according to the
same linear system asx(·).

To obtain probabilistic bounds ony(k), we will first
compute the second moment ofy(k) and then apply
Markov’s inequality as below.

Computing W :

Let,

W
4
= E[W (0)] = E[W (k)]

=
1

n

∑

i,j

PijWij (13)

Then, the entries ofW are as follows:
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1) for i 6= j, Wij = Pij+Pji

2n
, and

2) Wii = 1 − [
P

n

j=1
(Pij+Pji)]−2Pii

2n
.

This yields theW in (7), that is

W = I − 1

2n
D +

P + P T

2n
, (14)

whereD is the diagonal matrix with entries

Di =





n
∑

j=1

[Pij + Pji]



 .

Note that, if P = P T , then P is doubly stochastic.
This implies thatDi = 2, which in turn implies that
W = I(1 − 1/n) + P/n.

Computing Second MomentE[y(k)T y(k)]:

For eachk, W (k) = Wij with probability Pij

n
, so that

W (k)T W (k) =

(

I − (ei − ej)(ei − ej)
T

2

)2

(15)

=

(

I − (ei − ej)(ei − ej)
T

2

)

(16)

= W (k). (17)

Since this is true for each instance of the random matrix
W ,

E[W (0)T W (0)] = E[W (0)]

= W. (18)

Now, from (12),

E[y(k + 1)T y(k + 1)]

= E[y(k)T W (k + 1)T W (k + 1)y(k)]

= E[y(k)T E[W (k + 1)T W (k + 1)|y(k)]y(k)]

= E[y(k)T Wy(k)], (19)

using (18), and the fact that theW (k + 1) are IID
(independent ofy(k)).

The matrix W is symmetric2 positive-semidefinite
(sinceW = W T W ) and hence it has non-negative real
eigenvalues.

As stated earlier,y(k) ⊥ 1, which is the eigenvector
corresponding to the largest eigenvalueλ1 = 1 of W .
So, from the variational characterization of the second
eigenvalue, we have

y(k)T Wy(k) ≤ λ2(W )y(k)T y(k). (20)

From (18) and (20),

E[y(k + 1)T y(k + 1)] ≤ λ2(W )E[y(k)T y(k)].(21)

2The symmetry ofW does not depend onP being symmetric.

Recursive application of (21) yields

E[y(k)T y(k)] ≤ λ2(W )ky(0)T y(0). (22)

Now,

y(0)T y(0) = x(0)T x(0) − nx2
ave

≤ x(0)T x(0). (23)

Application of Markov’s Inequality:

From (22), (23) and an application of Markov’s in-
equality, we have

Pr

(‖x(k) − xave1‖
‖x(0)‖ ≥ ε

)

= Pr

(

y(k)T y(k)

x(0)T x(0)
≥ ε2

)

≤ ε−2 E[y(k)T y(k)]

x(0)T x(0)

= ε−2λ2(W )k. (24)

From (24), it follows that fork ≥ K(ε)
4
= 3 log ε−1

log λ2(W )−1 ,

Pr

(‖x(k) − xave1‖
‖x(0)‖ ≥ ε

)

≤ ε. (25)

This proves the Lemma, and gives us an upper bound
on theε-averaging time.

B. Lower Bound

Lemma 3:For algorithmA(P ), there exists an initial
vectorx(0), such that fork < K∗(ε),

Pr

(‖x(k) − xave1‖
‖x(0)‖ ≥ ε

)

> ε,

where

K∗(ε)
4
=

0.5 log ε−1

log λ2(W )−1
. (26)

Proof:

From (12) and (18), we obtain

E[y(k)] = W ky(0). (27)

We have shown thatW is a symmetric positive-
semidefinite doubly stochastic matrix.W has (non-
negative real) eigenvalues

1 = λ1(W ) ≥ λ2(W ) ≥ . . . ≥ λn(W ) ≥ 0,

with corresponding orthonormal eigenvectors
1√
n
1, v2, v3, . . . , vn. Choose

x(0) =
1√
2

(

1√
n
1 + v2

)

⇒ y(0) =
1√
2
v2.
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For this choice ofx(0), ‖x(0)‖ = 1. Now from (27),

E[y(k)] =
1√
2
λk

2(W )v2. (28)

For this particular choice ofx(0), we will lower bound
theε−averaging time by lower boundingE[‖y(k)‖2] and
using Lemma 4 as stated below.

By Jensen’s inequality and (28),

E[
n

∑

i=1

yi(k)2] ≥
n

∑

i=1

E2[yi(k)]

= E[y(k)]T E[y(k)]

=
1

2
λ2k

2 (W )vT
2 v2

=
1

2
λ2k

2 (W ). (29)

Lemma 4:Let X be a random variable such that0 ≤
X ≤ B. Then, for any0 < ε < B,

Pr(X ≥ ε) ≥ E[X] − ε

B − ε
.

Proof:

E[X] ≤ ε Pr(X < ε) + B Pr(X ≥ ε)

= Pr(X ≥ ε)(B − ε) + ε.

Rearranging terms gives us the lemma.

From (28),‖y(k)‖2 ≤ ‖y(0)‖2 ≤ 1/2. Hence Lemma
(4) and (29) imply that fork < K∗(ε)

Pr (‖y(k)‖ ≥ ε) > ε. (30)

This completes the proof of Lemma 3.

The following corollaries are immediate.

Corollary 1: For largen and symmetricP , Tave(ε, P )
is bounded as follows:

Tave(ε, P ) ≤ 3n log ε−1

(1 − λ2(P ))

4
= T ∗(ε, P ) (31)

Tave(ε, P ) ≥ 0.5n log ε−1

(1 − λ2(P ))

4
= T∗(ε, P ). (32)

Proof: By definition, λ2(W ) =
(

1 − 1
n
(1 − λ2(P ))

)

. For large n, 1
n
(1 − λ2(P ))

is very small, and hence

log

(

1 − 1

n
(1 − λ2(P ))

)

≈ − 1

n
(1 − λ2(P )).

This along with Theorem 3 completes the proof.

Corollary 2: For a symmetricP , the absolute time,
ZT ∗(ε,P ), it takes forT ∗(ε, P ) clock ticks to happen is
given by

ZT ∗(ε,P ) =
T ∗(ε, P )

n

(

1 ± 2√
n

)

, (33)

with probability at least1 − 2ε.

Proof: For δ =

√
2(1−λ2(P ))√

3n
andk = T ∗(ε, P ) and

using (31), the right hand side of (4) evaluates to

2 exp

(

−2(1 − λ2(P ))

3n
?

3n log ε−1

2(1 − λ2(P ))

)

= 2ε.

Since −1 ≤ λ2(P ) ≤ 1 for a non-negative doubly
stochastic symmetric matrixP , δ = 2√

n
is larger than

the above choice ofδ. This completes the proof.

III. O PTIMAL AVERAGING ALGORITHM

From Theorem 5, we see that the averaging time is a
monotonically increasing function of the second largest
eigenvalue ofW =

∑n
i,j=1

1
n
PijWij . Thus, finding the

fastest averaging algorithm corresponds to findingP
such thatλ2(W ) is the smallest, while satisfying con-
straints onP . Thus, we have the optimization problem

minimize λ2(W )
subject to W =

∑n
i,j=1

1
n
PijWij

P ≥ [0], Pij = 0 if {i, j} /∈ E,
∑

j Pij = 1, ∀i.

(34)

The objective function, which is the second largest eigen-
value of a doubly stochastic matrix, is a convex function
on the set of symmetric matrices, and therefore we
have a convex optimization problem. This problem can
be reformulated as the following semidefinite program
(SDP):

minimize s
subject to W − 11T /n ¹ sI,

W =
∑n

i,j=1
1
n
PijWij

P ≥ [0], Pij = 0 if {i, j} /∈ E,
∑

j Pij = 1, ∀i.

(35)

For general background on SDPs, eigenvalue optimiza-
tion, and associated interior-point methods for solving
these problems, see, for example, [BV03], [WSV00],
[LO96], [Ove92], and references therein. Interior point
methods can be used to solve problems with a thousand
edges or so; subgradient methods can be used to solve
the problem for larger graphs with upto a hundred thou-
sand edges. The disadvantage of a subgradient method
compared to a primal-dual interior point method is that
the algorithm is relatively slow (in terms of number of
iterations), and has no simple stopping criterion that can
guarantee a certain level of suboptimality.

Thus, given a graph topology, we can solve the
semidefinite program (35) to find theP ∗ for the fastest
averaging algorithm.
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A. Distributed Optimization

Finding the fastest averaging algorithm is a convex
optimization problem, and can therefore be solved ef-
ficiently to obtain the optimal distributionP ∗. Unfor-
tunately, aP ∗ computed via a centralized computation
is not very useful in our setting. It is natural to ask
if in this setting, the optimization (like the averaging
itself), can also be performed distributedly;i.e., is it
possible for the nodes on the graph, possessing only
local information, and with only local communication,
to compute the probabilitiesPij that lead to the fastest
averaging algorithm?

In this section, we outline a completely distributed al-
gorithmS based on anapproximate subgradient method
which converges to a neighborhood of the optimalP ?.
The algorithm uses distributed averaging to compute
a subgradient; the accuracy to which the averaging is
performed determines the size of the neighbourhood.
The greater the accuracy, the smaller the neighbourhood,
i.e., the better the approximation to the optimalP ?. The
exact relation between the accuracy of the distributed
averaging and the size of the neighbourhood is stated in
Theorem 4 at the end of this section. First we start with
some notation.

Notation: It will be easier to analyze the subgradient
method if we collect the entries of the matrixPij into a
vector, which we will callp. Since there is no symmetry
requirement on the matrixP , the vectorp will need to
have entries corresponding toPij as well asPji (this
corresponds to replacing each edge in theundirected
graphG by two directed edges, one in each direction).

The vectorp corresponds to the matrixP as follows.
Let the total number of (non self-loop) edges inG bem.
Assign numbers to the edges(i, j) from 1 throughm.
If i < j then pl = Pij , wherel is the number assigned
to (the undirected) edge(i, j) (which we will denote by
l ∼ (i, j)); if i > j thenp−l = Pij . (Recall that we are
not considering self-loop edges.)

We will also introduce the notationpi corresponding
to the non-zero entries in theith row of P (we do this to
make concise the constraint that the sum of elements in
each row should be1). That is, we define for1 ≤ i ≤ n,

pi = [Pij ; (i, j) ∈ E ]. (36)

Define also the matricesEl, l ∼ (i, j) as follows:
Elij

= Elji
= +1, Elii

= Eljj
= −1, and all other

entries ofEl are zero. Then, we have that

El = 2(Wij − I).

Finally, denote the degree of nodei by mi.

1) Subgradient method:We will describe the subgra-
dient method for the optimization problem restated in
terms of the variablep. We can state (35) in terms of
the variablesp = [p−m, . . . p−1, p1, . . . pm] as follows:

minimize λ2(I + 1
2n

∑m
l=1 plEl + p−lE−l)

subject to 1Tpi ≤ 1, ∀i
pl ≥ 0, 1 ≤ |l| ≤ m,

(37)

wherepi is as defined in (36).

We will use the subgradient method to solve this
problem distributedly. The use of the subgradient method
to solve eigenvalue problems is well-known; see for
example [BDX03], [OW93], [Lew96], [Lew99] for ma-
terial on non-smooth analysis of spectral function, and
[Cla90], [HUL93], [BL00] for more general background
on non-smooth optimization.

Recall that asubgradientof λ2 at W is a symmetric
matrix G that satisfies the inequality

λ2(W̃ ) ≥ λ2(W ) + 〈G, W̃ − W 〉
= λ2(W ) + TrG(W̃ − W )

for any feasible,i.e., symmetric stochastic matrix̃W . Let
u be a unit eigenvector associated withλ2(W ), then the
matrix G = uuT is a subgradient ofλ2(W ) (see, for
example, [BDX03]).

Using

W (p) = I+
1

2n
(

m
∑

l=1

(plEl+p−lE−l)) = I+
1

2n
(

m
∑

|l|=1

plEl),

in terms of the probability vectorp, we obtain

λ2(W (p̃)) ≥ λ2(W (p)) +
m

∑

|l|=1

(vT (
1

2n
El)v)(p̃l − pl),

(38)

so that the subgradientg(p) is given by

g(p) =
1

2n

(

uT E−mu, . . . , uT Emu
)

, (39)

with components

gl(p) =
1

2n
uT Elu = − 1

2n
(ui − uj)

2, l ∼ (i, j),

where|l| = 1, . . . , m.

Observe that if each nodei knows its own component
ui of the unit eigenvector, then this subgradient can be
computed locally, using only local information.

The following is the projected subgradient method for
(40):
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• Initialization: Initialize p to some feasible vector,
for example,p corresponding to the natural random
walk. Setk := 1.

• Repeat for k ≥ 1,

– Subgradient step.Compute a subgradientg(k)

at p, and set

p := p − νkg
(k)

– Projection onto feasible set.At each nodei,
project pi obtained from the subgradient step
onto 1T q ≤ 1, q º 0. This is achieved as
follows:

1) If
∑mi

j=1 max{0,pij} ≤ 1, then setpi =
max{0,pi}, stop.

2) If not, then use bisection to findx ≥ 0
such that

∑mi

j=1 max{0,pij − x} = 1; set
pi = max{0,pij − x}, stop.

In this algorithm, Step 1 movesp in the direction of
the subgradient with stepsizeνk; we will discuss the
stepsizes a little later in this section. Step 2 projects the
vector p onto the feasible set. Since the constraints at
each node are separable, the variablespi corresponding
to nodesi are projected onto the feasible set separately.

The projection method is derived from the optimality
conditions of the projection problem

minimize
∑mi

j=1(qj − pij)
2

subject to 1T q ≤ 1, q º 0
(40)

as shown.

Introduce Lagrange multipliersλ ∈ Rm
i for the

inequality q º 0, and ν for 1T q − 1 ≤ 0. The
KKT conditions for optimal primal and dual variables
q∗, λ∗, ν∗ are

q∗ º 0, 1T q∗ ≤ 1

λ∗ º 0, ν∗ ≥ 0

ν∗(1T q∗ − 1) = 0, λ∗
jq

∗
j = 0, j = 1, . . . , mi,

2(q∗j − pij) + ν∗ − λ∗
j = 0, j = 1, . . . , mi.

Eliminating the slack variablesλj , we get the equivalent
optimality conditions

q∗ º 0, 1T q∗ ≤ 1, (41)

ν∗ ≥ 0, ν∗(1T q∗ − 1) = 0, (42)

q∗j (2(q∗j − pij) + ν∗) = 0, j = 1, . . . , mi, (43)

2(q∗j − pij) + ν∗ ≥ 0, j = 1, . . . , mi. (44)

If ν∗ < 2pij , then from the last condition, necessarily
q∗i > 0. From (43), this gives usq∗j = pij − ν∗/2. If
on the other handν∗ ≥ 2pij , thenν∗ ≥ 2pij − 2q∗j as

well sinceq∗j ≥ 0, and so to satisfy (43), we must have
q∗j = 0. Combining these gives us that

q∗j = max{0,pij −
ν∗

2
}. (45)

The q∗j must satisfy1T q∗ ≤ 1, i.e.,
∑

max{0, qj −
ν∗/2} ≤ 1. However, we must also satisfy the com-
plementary slackness conditionν∗(1T q∗ − 1) = 0.
These two conditions combined together lead to a unique
solution for ν∗, obtained either atν∗ = 0, or at the
solution of

∑

max{0, qj − ν∗/2} = 1; from ν∗ the q∗j
can be found as described.

2) Decentralization: Now consider the issue of de-
centralization. Observe that in the above algorithm,g
can be computed locally at each node ifu, the unit
eigenvector corresponding toλ2(W ), is known; more
precisely, if each nodei is aware of its own component
of u and that of its immediate neighbours. The projection
step can be carried out exactly at each node using local
information alone.

The rest of the section proceeds as follows: first we
will discuss approximate distributed computation of the
eigenvectoru of W , and then show that the subgradient
method converges to a certain neighborhood of the
optimal value in spite of the error incurred during the
distributed computation ofu at each iteration.

The problem of distributedly computing the top-k
eigenvectors of a matrix on a graph is discussed in
[KM04]; a distributed implementation of and error anal-
ysis for orthogonal iterations is described. By distributed
computation of an eigenvectoru of a matrixW , we mean
that each nodei is aware of theith row of W , and can
only communicate with its immediate neighbours; given
these constraints, the distributed computation ensures
that each node holds its valueui in the unit eigenvector
u.

Since the matrixW is symmetric and stochastic (it
is a convex combination of symmetric stochastic matri-
ces), we know that the first eigenvector is1. Therefore
orthogonal iterations takes a particularly simple form (in
particular, we do not need any Cholesky factorization
type of computations at the nodes). We describe orthog-
onal iterations for this problem below:

• DecentralOI: Initialize the process with some ran-
domly chosen vectorv0; for k ≥ 1, repeat

– Setvk = Wvk−1

– (Orthogonalize)vk = vk − (
∑n

i=1
1
n
vki

)1
– (Scale to unit norm)vk = vk/‖vk‖

Here, the multiplication byW is distributed, sinceW
respects the graph structure,i.e., Wij 6= 0 only if (i, j) is
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an edge. So entryi of vk can be found using only values
of vk−1 corresponding to neighbours of nodei, i.e., the
computation is distributed. The orthogonalize and scale
steps can be carried out distributedly using the gossip
algorithm outlined in this paper, or just by distributed
averaging as described in [XB03] and used in [KM04].
Observe that the very matrixW can be used for the
distributed averaging step, since it is also a probability
matrix. We state the following result (applied to our
special case) from [KM04], which basically states that it
is possible to compute the eigenvector upto an arbitrary
accuracy:

Lemma 5: If DecentralOI is run for
Ω(tτmix log(16/ε)) iterations, producing orthogonal
vectoru, then

‖u − ur‖ ≤ O

(

(

λ3

λ2

)t

n

)

+ 3ε4t, (46)

where‖u − ur‖ is the L2 distance betweenu and the
eigenspace ofλ2; ur is the vector in the eigenspace
achieving this distance.

It is therefore clear that an approximate eigenvector,
and therefore an approximate subgradient can be com-
puted distributedly.

3) Convergence analysis:It now remains to show that
the subgradient method converges despite approximation
errors in computation of the eigenvector, which spill over
into computation of the subgradient. To show this, we
will use a result from [Kiw04] on the convergence of
approximatesubgradient methods.

Given an optimization problem with objective function
f and feasible setS, the approximate subgradient method
generates a sequence{xk}∞k=1 ⊂ S such that

xk+1 = PS(xk − νkg
k), gk ∈ ∂εk

fS(xk), (47)

wherePS is a projection onto the feasible set,νk > 0 is
a stepsize, and

∂εk
fS(xk) = {g : fS(x) ≥ fS(xk)+〈g, x−xk〉−εk ∀x}

(48)
is the εk subdifferential of the objective functionfS at
xk.

Let γk = (1/2)|gk|2νk, and δk = γk + εk. Then we
have the following theorem from [Kiw04],

Lemma 6: If
∑

νk = ∞, then

lim inf
k

f(xk) ≤ f∗ + δ,

whereδ = lim sup δk, andf∗ is the optimal value of the
objective function.

Consider thek-th iteration of the subgradient method,
with current iteratep(k), and let

√
ε be the error

in the (approximate) eigenvectoru corresponding to
λ2(W (p(k))). (By error in the eigenvector, we mean
the L2 distance betweenu and the (actual) eigenspace
corresponding toλ2). Again, denote byur the vector in
the eigenspace minimizing the distance tou, and denote
the exact subgradient computed fromur by gr.

We have‖u − ur‖2 ≤ ε. First we findεk in terms of
ε as follows:

λ2(W (p)) ≥ λ2(W (p(k))) + 〈gr, p − p(k)〉
= µ(W (p(k))) + 〈g, p − p(k)〉

− 〈g − gr, p − p(k)〉
This implies,

εk = sup
p
〈g − gr, p − p(k)〉

= c‖g − gr‖2,

wherec is a scaling constant.

Next, we will find ‖g− gr‖2 in terms ofε as follows:

‖u − ur‖2 ≤ ε ⇒
n

∑

i=1

(ui − uri
)2 ≤ ε

⇒ (ui − uri
)2 ≤ ε, 1 ≤ i ≤ n.

Now, the lth component ofg − gr is

(g − gr)l =
1

2n

(

(ui − uj)
2 − (uri

− urj
)2

)

=
1

2n
((ui − uri

) − (uj − urj
)((ui − uj)

+ (uri
− urj

).

Combining the facts that

|ui − uri
| ≤

√
ε, ∀i;

and (since‖u‖ = 1)

|ui − uj | ≤
√

2, ∀i, j

we get the following

(g − gr)
2
l ≤ 1

4n2
(2
√

ε)2(2
√

2)2 = 8ε/n2.

Summing over allm edges gives us‖g − gr‖2 ≤
8mε/n2, i.e., εk ≤ 8mε/n2.

Now chooseνk = 1/k. From (39), it can be seen
that ‖gk‖2 is bounded above by

√
m/n, and soγk in

Theorem 6 converges to0. Therefore if in each iteration
i, the eigenvector is computed to within an error ofεi,
and ε = lim inf εi, we have the following result:
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Theorem 4:The distributed subgradient method de-
scribed above converges to a distributionp for which
λ2(W (p)) is within 8mε/n2 of the globally optimal
valueλ2(W (p∗)).

IV. A PPLICATIONS

In this section, we briefly discuss applications of our
results in the context of wireless ad-hoc networks and the
Internet. We examine how the performance of averaging
algorithms scales with the size (in terms of the number
of nodes) of the network.

Before we study this, we need the following result,
relating the averaging time of an algorithmA(P ) and
the mixing time of the Markov chain onG that evolves
according toW = W (P ). (Since W is a positive-
semidefinite doubly stochastic matrix, the Markov chain
with transition matrixW has uniform equilibrium distri-
bution.)

Recall that the mixing time is defined as follows:

Definition 2 (Mixing Time):For a Markov chain
with symmetric transition matrixW , let ∆i(t) =
1
2

∑n
j=1 |W t

ij − 1
n
|. Then, theε-mixing time is defined

as

Tmix(ε) = sup
i

inf{t : ∆i(t
′) ≤ ε,∀ t′ ≥ t}. (49)

We have the following relation between mixing times
and averaging times, the proof of which can be found in
[BGPS04].

Theorem 5:For a symmetric matrix P , the ε-
averaging time (in terms of absolute time) of the gossip
algorithm A(P ) is related to the mixing time of the
Markov chain with transition matrixP as

Tave (ε, P ) = Θ (log n + Tmix(ε)) .

Figure 2 is a pictorial description of Theorem 5.
The x-axis denotes mixing time and they-axis denotes
averaging time. The scale on the axis is in order notation.
As shown in the figure, forP such thatTmix(P ) =
o(log n), Tave

(

1
n
, P

)

= Θ(log n); for P such that
Tmix(P ) = Ω(log n), Tave

(

1
n
, P

)

= Θ(Tmix). Thus,
knowing mixing property of random walk essentially
characterizes the averaging time in the order sense.

A. Wireless Network

The Geometric Random Graph, introduced by Gupta
and Kumar [GK00], has been used successfully to model
ad-hoc wireless networks. Ad-dimensional Geometric
Random Graph onn nodes, modeling wireless ad-hoc
networks ofn nodes with wireless transmission radius

���� ���� ����

����

Tave

log n

n

Tmix

log log n log n n

Fig. 2. Graphical interpretation of Theorem 5.

r, is denoted asGd(n, r), and is obtained as follows:
placen nodes on ad dimensional unit cube uniformly
at random and connect any two nodes that are within dis-
tancer of each other. An example of a two dimensional
graph,G2(n, r) is shown in the Figure3.

The following is a well-known result about
the connectivity of Gd(n, r) (for a proof, see
[GK00], [GMPS04], [Pen03]):

Lemma 7:For nrd ≥ 2 log n, the G(n, r) is con-
nected with probability at least1 − 1/n2.

Theorem 6:On the Geometric Random Graph,
Gd(n, r), the absolute1/nα-averaging time,α > 0, of
the optimal averaging algorithm isΘ

(

log n
r2

)

.

Proof: In [BGPS05], the authors show that forε =
1/nα, α > 0 the ε-mixing times for the fastest-mixing
random walk on the geometric random graphGd(n, r)
is of orderΘ( log n

r2 ). Therefore, using this and the results
of Corollaries 1 and 2, we have the theorem.

Thus, in wireless sensor networks with a small radius
of communication, distributed computing is necessarily
slow, since the fastest averaging algorithm is itself slow.
However, consider the natural averaging algorithm, based
on the natural random walk, which can be described
as follows: each node, when it becomes active, chooses
one of its neighbors uniformly at random and averages
its value with the chosen neighbor. As noted before, in
general, the performance of such an algorithm can be
far worse than the optimal algorithm. Interestingly, in
the case ofGd(n, r), the performances of the natural
averaging algorithm and the optimal averaging algorithm
are comparable (i.e. they have averaging times of the
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same order). We state the following Theorem, which
is obtained exactly the same way as Theorem 6, using
a result onTmix for the natural random walk from
[BGPS05]:

Theorem 7:On the Geometric Random Graph,
Gd(n, r), the absolute1/nα-averaging time,α > 0, of
the natural averaging algorithm is of the same order as
the optimal averaging algorithm,i.e., Θ

(

log n
r2

)

.

Implication. In a wireless sensor network, Theorem 6
suggests that for a small radius of transmission, even the
fastest averaging algorithm converges slowly; however,
the good news is that the natural averaging algorithm,
based only on local information, scales just as well as
the fastest averaging algorithm. Thus, at least in the
order sense, it is not necessary to optimize for the fastest
averaging algorithm in a wireless sensor network.

B. Internet

The Preferential Connectivity (PC) model [MPS03] is
one of the popular models for the Internet. In [MPS03],
it is shown that the Internet is an expander under the
preferential connectivity model. This means that there
exists a positive constantδ > 0 (independent of the
size of the graph), such that for the transition matrix
corresponding to the natural random walk, call itP ,

δ ≤ (1 − λmax(P )) ≤ 1, (50)

where λmax(P ) is the second largest eigenvalue ofP
in magnitude,i.e., the spectral gap is bounded away
from zero by a constant. LetP ∗ be the transition matrix
corresponding to the fastest mixing random walk on the
Internet graph under the PC model. The random walk
corresponding toP ∗ must mix at least as fast as the
natural one, and therefore,

δ ≤ (1 − λmax(P
∗)) ≤ 1. (51)

It is easy to argue that there exists an optimalP ∗ that is
symmetric (given any optimalP0, the matrix1/2(P0 +
P T

0 ) is symmetric, and leads to the sameE[W ] asP0).
Therefore, from (50), (51), Theorem 3 and Corollary 2,
we obtain the following Theorem.

Theorem 8:Under the PC model, the optimal averag-
ing algorithm on the Internet has an absoluteε-averaging
time Tave(ε) = Θ

(

log ε−1
)

.

Implication. The absolute time for distributed compu-
tation on the Internet is independent of the size of the
network, and depends only on the desired accuracy of

the computation3. One implication is that exchanging
information on Internet via peer-to-peer network built
on top of it is extremely fast!
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Fig. 3. An example of a Geometric Random Graph in
two-dimensions. A node is connected to all other nodes
that are within distancer of itself.

V. CONCLUSION

We presented a framework for the design and analy-
sis of a randomized asynchronous distributed averaging
algorithm on an arbitrary connected network. We charac-
terized the performance of the algorithm precisely in the
terms of second largest eigenvalue of an appropriate dou-
bly stochastic matrix. This allowed us to find the fastest
averaging of this class of algorithms, by establishing the
corresponding optimization problem to be convex. We
established a tight relation between the averaging time
of the algorithm and the mixing time of an associated
random walk, and utilized this connection to design
fast averaging algorithms for two popular and well-
studied networks: Wireless Sensor Networks (modeled
as Geometric Random Graphs), and the Internet graph
(under the so-called Preferential Connectivity Model). In
these models, we find that the natural algorithm is as fast
as the optimal algorithm.

In general, solving semidefinite programs in a dis-
tributed manner is not possible. However, we utilized the
structure of the problem in order to solve the semidef-
inite program (corresponding to the optimal averaging
algorithm) in a distributed fashion using the subgradient
method. This allows for self-tuning weights: that is,
the network can start out with some arbitrary averaging
matrix, say, one derived from the natural random walk,

3Althought the asymmetry of theP matrix for the natural random
walk on the Internet prevents us from exactly quantifying the aver-
aging time, we believe that averaging will be fast even under the
natural random walk, since the spectral gap for this random walk is
bounded away from1 by a constant.
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and then locally, without any central coordination, con-
verge to the optimal weights corresponding to the fastest
averaging algorithm.

The framework developed in this paper is general and
can be utilized for the purpose of design and analysis of
distributed algorithms in many other settings.
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