
CS348a: Computer Graphics Handout # 7
Geometric Modeling
Stanford University Tuesday, 10 February 2004

Homework #3: NURBS; programming in OpenGL [50 points]
Due Date: Tuesday, 17 February 2004 (one week away! )

Theory and implementation

This is a mixed theory/implementation homework: the assignment asks you to develop
the theory of and implement in OpenGL the viewing of a NURBed torus. Problem 2 is
the programming part and, as explained in the guidelines given with Homework 1, you
may work on this programming part in groups of up to three students and hand in a joint
write-up. You must still hand in individual solutions to problem 1, however.

Problem 1. [20 points]

Let r and R be real numbers with 0 < r < R. As the angles α and β vary, the varying
point V = (X, Y, Z) given by

X := (R + r cosα) cosβ

Y := (R + r cosα) sinβ

Z := r sinα

traces out a torus, that is, the surface of an ideal bagel. The torus has rotational sym-
metry about the Z axis, which passes through the middle of the torus hole. Any plane π
through the Z axis cuts the torus in two circles of radius r, whose centers lie along the
line where π cuts the XY plane, R units on each side of the origin. Varying α moves the
point V around one of those circles. Varying β rotates the plane π around the Z axis.

Find a biquadratic, rational parameterization of this torus. That is, express each of
the homogeneous coordinates [w;x, y, z] of the varying point V as a polynomial in two
parameters that has degree at most 2 in each parameter when the other is held fixed.
For consistency in notation, use Q and T as your two parameters, writing

V (Q;T ) = [w(Q;T );x(Q;T ), y(Q;T ), z(Q;T )]

for certain polynomials w, x, y, and z. Hint: Let Q := tan(α/2) and T := tan(β/2).
Homogenize and polarize your parameterization. You may carry out these two steps

in either order; the result will be the same. If you homogenize first, use p as the weight
coordinate for the Q parameter, writing Q = q/p, and use s as the weight coordinate
for the T parameter, writing T = t/s. If you polarize first, split the T parameter into
two separate parameters T1 and T2, and split the Q parameter into Q1 and Q2. The
homogenized polar form v of V will have the form

v((p1; q1), (p2; q2); (s1; t1), (s2; t2)) = [w;x, y, z],



2 CS348a: Handout # 7

where each coordinate w, x, y, and z is a polynomial in the eight variables p1, q1, p2, q2,
s1, t1, s2, and t2.

One quarter of the torus consists of points that have Y and Z positive. (If you followed
the hint above, those points will correspond, under your parameterization, to parameter
pairs (Q;T ) where both Q and T are positive.) Describe this portion of the torus as a
biquadratic, rational Bézier surface patch, that is, as a rectangular, tensor-product patch
of degree (2; 2). In particular, give the coordinates of the nine Bézier sites of this patch.
(If you followed the hint above, the patch will be V ([0 ..∞]× [0 ..∞]).) Hint: Don’t be
distressed if one of the nine Bézier sites turns out to be the zero site, that is, the site all
four of whose coordinates are zero.

Problem 2. [30 points]

In the previous problem, you developed a representation of a torus by using a splined
surface consisting of four biquadratic, rational Bézier surface patches. In this problem you
will implement a slightly more general toroidal surface, using the facilities of the OpenGL
graphics library on Linux, SGI, Windows, or possibly other workstations. In addition to
modeling the torus, you will use the OpenGL API to render an image of the torus on
the screen and to set up a rudimentary user interface for playing with the parameters
defining this generalized torus, as well as controlling the viewer’s position relative to
the torus. Unlike the previous theoretical problems, in this problem the emphasis is on
implementing things that you already know in the context of a widely available (and very
nice to use) graphics platform.

In this problem you must use the C programming language. OpenGL will give you
access to a set of graphics libraries that you can use to implement modeling and rendering
operations. In particular, OpenGL provides very good NURB support, so to specify your
spline you need do nothing more than calculate the appropriate Bézier control sites.
But since your goal is to produce and interact with an image, you must also become
familiar with some of the OpenGL facilities dealing with rendering. Specifically, you
will need to understand how to set up lights illuminating your model, how to define the
material properties of the surface of your model, how to specify the viewpoint, and how
to use z-buffering (the depth buffer) for hidden-surface elimination and double-buffering
to create smooth animations. OpenGL provides excellent facilities for dealing with all
these issues — each of them will require only a few additional lines of code in your
program. Nevertheless, especially if you are unfamiliar with basic graphics concepts, you
may want to spend a couple of hours just browsing through the rendering chapters of
any standard graphics text. The OpenGL manual itself is a pretty good reference —
the course reader contains the NURBS section of the older GL manual (the precursor to
OpenGL). Numerous books exist that describe OpenGL in detail; a few of these are in
the recommended book list handed out earlier. A more precise description of what you
will need to use is given later in this handout.

In order to interact with your image, you will build a set of interactors using OpenGL
and a forms package provided for you. You will not need anything but menus and sliders,



CS348a: Handout # 7 3

the latter for inputting real parameters to your program. While your program is running
you should be able to interactively modify the parameters defining the generalized torus,
as well as the position of the view point, and immediately see the results. Documentation
on the forms package is contained in the course reader. We will be using a version of
forms that has support for OpenGL canvasses, and the forms manual will be available
in the class directory and in the web page of the course.

Specifying a generalized torus

As in Problem 3, we consider the torus given by the equations

X := (R + r cosα) cosβ

Y := (R + r cosα) sinβ

Z := r sinα,

where 0 < r < R and α and β are free parameters. As you discovered in Problem 3, we
can decompose the surface of that torus into four rational, biquadratic surface patches,
according to the signs of Y and Z. The middle Bézier site of each of the resulting four
patches turns out to be the zero site — the site whose four coordinates are all 0.

For this problem, we will generalize that torus in two ways. First, we remove the
restriction that r < R; we allow both of the radii r and R to be arbitrary positive
numbers. Second, we consider replacing the middle Bézier site — which, for the true
torus, is the zero site — with the mid-point of the surface patch, scaled by some mul-
tiplier m. For example, consider the patch in which Y and Z are both positive. The
mid-point of that patch corresponds to the parameter values α = β = 90 and has the
coordinates (X, Y, Z) = (0, R, r). We place the middle Bézier site of that patch at the
site (w;x, y, z) = (m; 0,mR,mr), for some real number m.

Note that choosing r > R leads to a torus that intersects itself at a cone-like singular
point on the Z axis. Note also that choosing any value of m different from 0 leads to a
surface that is not a torus, even though the boundary curves of each patch don’t move.
In fact, the resulting surface doesn’t even have tangent continuity.

Viewing the torus

Your torus will be illuminated by two lights placed in the scene. Please see the header
file /usr/class/cs348a/source/pp1/pp1.h for the position and characteristics that you
should use for the light sources. The torus itself will be made up of a material whose
characteristics are also defined in that header file. Please use this header file as part of
your code.

You should open and paint two windows: a main window, where the torus itself is
displayed, and a secondary smaller window, where the coordinate axes, the torus, and
the viewpoint are all displayed. The latter window is there to help you in understanding
how to move the viewpoint around the torus.



4 CS348a: Handout # 7

Interacting with the view

You need to implement two kinds of interactions. First of all, your users should be able
to modify any of the free parameters r, R, and m defining the torus. They will do this
by moving sliders corresponding to the free parameters. They should also be allowed to
change the viewpoint by moving three additional sliders corresponding to the coordinates
of the viewpoint in the natural (X, Y, Z) coordinate frame of the torus.

Sample program

In the directory /usr/class/cs348a/source/pp1 there is a sample program called
pp1.c that implements part of the functionality of the program that you need to write.
In this sample program, a sphere is visualized instead of the torus. We suggest that
you modify this code, including the information to create and visualize the torus. An
interface defined using forms can be found at the file pp1 ui.fd. Just type fdesign

pp1 ui to see what the interface looks like, and use fdesign to modify the interface
as desired. The output of fdesign is a C program with appropriate calls to the forms
library. The forms library can be found in Linux machines at Sweet Hall in the directory
/usr/class/cs348a/source/xforms

OpenGL has a special way to tesselate NURBS, and in order to have reasonable
performance, change the following properties of the NURB object you create in OpenGL
in the following way:

gluNurbsProperty(theNurb,GLU SAMPLING METHOD, GLU DOMAIN DISTANCE);

gluNurbsProperty(theNurb,GLU U STEP,15);

gluNurbsProperty(theNurb,GLU V STEP,15);

These properties control how fine the tesselation will be. A performance penalty will
be added if the step values are increased, and the default values tesselate the nurbs in
great detail.

What to hand in

Remember that for programming assignments you are allowed to work in teams of up to
three students. To submit your code, please make an .tar or .zip archive of all your
files and e-mail it to the TA. Be sure to include a README file that gives the names of
your group members and and an index to your program files and functions. In addition,
please hand in with your paper-and-pencil homework a short write-up about how your
code works. We will set up a time in Sweet Hall during which you will be able to demo
your program to the instructor and TA.


