
CS348a: Computer Graphics Handout # 9
Geometric Modeling
Stanford University Thursday, 19 February 2004

Homework #4: Planning optimal flying tours over a terrain [190 points]
Due Date: Thursday, 11 March 2004 in class — no late days will be available for

this homework

This is the last homework. It consists of one programming problem composed of four
parts. This is a much more open-ended assignment, allowing you to combine the modeling
and algorithmic tools you have learned about in CS348a in a variety of ways.

Problem 1. [190 points]

Planning flying tours over a terrain

In this problem you will experiment with algorithmic techniques for building triangulated
irregular network (TIN) models of geographical terrains, and then planning smooth sight-
seeing tours by flying over these terrains.

Building a terrain from elevation data

In many applications in Geographical Information Systems (GIS) dealing with surface
terrains, the raw data available is a height field . Such a field consists of a set of surface
elevation data at regularly or irregularly distributed points in the xy-plane: if n such
points are specified, then we are given the triplets (xi, yi, hi), 1 ≤ i ≤ n, where hi denotes
the terrain elevation over the point (xi, yi). From these elevation data we desire to recover
a surface model of what the terrain is like. A useful and commonly used model of the
surface is that of a triangulated irregular network — which is just a triangular mesh
whose vertices are the given points in space (xi, yi, hi) such that no two triangles of the
mesh have overlapping interiors when projected onto the xy-plane.

In general there will be many possible triangular meshes which fit the given data. We
will provide you with a software package from the University of Illinois National Center
for Supercomputing Applications which is useful for building and visualizing such TIN
models of terrains. This package is called MinMaxer, because all the TIN generation
algorithms it uses are based on the edge-insertion paradigm and the goal of minimizing
the maximum cost associated with an edge of the TIN. Such algorithms start from an
arbitrary triangulation of the corresponding planar point set (xi, yi, 0), 1 ≤ i ≤ n, and
repeatedly ‘improve’ the TIN (inherited by the 3-D data points from this planar triangu-
lation) by edge-insertions, until no further improvement is possible. In a single iteration,
the triangulation is improved by adding a new ‘good’ edge (selected according to one of
various criteria), deleting all edges which intersect the new edge, and retriangulating the
resulting regions. More details are provided in the MinMaxer manual, which is available
via the class home-page.



2 CS348a: Handout # 9

You will be asked to construct a TIN terrain model for one or more test sets of
elevation data, and then use that model in the subsequent parts of the problem. Although
you will not have the actual test data to be used for grading until Thursday morning, 4
March 2004, other comparable data sets will be made available.

(a) (25 points)

Get MinMaxer to work on the test data we will provide. Among all the types
of TINs that MinMaxer provides, select one to use for the rest of the assign-
ment. Your selection criteria should be the appropriateness of the method
for terrain modeling, and especially for the tour construction problem, as
discussed below. Explain and justify your choice.

Planning a smooth sightseeing tour over a TIN surface

Suppose we have already settled on a particular TIN T to represent the given elevation
data. A relatively small number m of the given points (xij , yij , hij), 1 ≤ j ≤ m will be
marked as being sights of interest, or sights for short. With each such point Sj we are
given an additional elevation vij , vij ≥ hij , which denotes the optimum viewing altitude
for that sight (for example, this could be related to the size of the sight). The goal in
this part of the assignment is to design a smooth path for flying over the terrain T and
viewing all of the sights Sj.

Such a tour τ is valid if

• τ does not intersect the terrain,

• τ is a quadratic spline (consisting of parabolic arcs) with C1-continuity at all junc-
tions, and

• τ crosses a cube aligned with the x, y and z axes of size 2d, for a given parameter
d, around each of the m optimal viewing positions (xij , yij , vij), 1 ≤ j ≤ m.

The sights are to be visited in the order S1, S2, . . . , Sm. Your goal is to implement
an algorithm for computing good sight-seeing tours over T . The quality of a given valid
tour τ will be judged according to several different measures, as follows:

• The tour should be short; you need to compute and report the euclidean length of
your tour τ , to within an accuracy of 1%.

• The tour should be smooth: you need to compute and report the number of distinct
parabolic arcs your tour uses; you also need to calculate and report the maximum
curvature of your tour τ , to within an accuracy of 1%.

• The tour should be safe: you need to compute and report the closest vertical
distance between τ and T , to within an accuracy of 1%.



CS348a: Handout # 9 3

You will also be judged by how long it takes you to compute a valid tour which
optimizes the above three measures. Please realize that it is impossible to optimize all
these measures simultaneously. What we expect is that you will write a clear program
that attempts to optimize some of the measures given above, preferably in the order
specified below, and does a reasonable job on the rest.

(b) (60 points)

Write a program to compute valid sight-seeing tour which does the best you
can in optimizing the above criteria. We will weigh safety the most, then
length, and then smoothness.

Viewing your tour over the terrain

You need to provide a visualization of the terrain you constructed and an animation of
the sight-seeing tour you computed over it. You must provide at least a wire-frame view
of your terrain; a false color image is also highly recommended (for example, you can
choose to color areas of high elevation white, lower elevations green, then yellow, and so
on, to simulate the way actual terrains look). Mark the sights of interest on the terrain
in a distinctive way. Then, for the tour animation please, provide two views (figure 1):

an observer’s view: this is the view from a distant stationary observer over the terrain,
watching you execute the tour, and

a pilot’s view: this is the view looking straight down within a certain angular frustum,
as you execute the tour.

(c) (30 points)

Provide an animation of your tour, as outlined above.

Support for on the fly changes in the itinerary

Your algorithm should be able to adapt the tour to a small change in itinerary on the fly,
without having to recompute the whole tour path from scratch. What we mean by this
is that your tour should be able to avoid a sight of interest which was part of the original
tour itineray (an operation called a shortcut), or go through a new sight of interest
which was not a part of the orignal tour itinerary (an operation called a detour) on the
fly, without having to restart/recompute the whole tour again. The place of modification
in the itinerary by either a shortcut or a detour will be specified. You will get notice of
the change in the itinerary as you pass a sight of interest, in advance of the shortcut or
detour in the itinerary, during the course of your tour. The exact format of this will be
specified letter.

(d) (30 points)

Demonstrate this capability of your program. You might want to design your
algorithm in part (b), keeping this local update requirement in mind.



4 CS348a: Handout # 9

Figure 1: Pilot’s and Observer’s view.

Tours for unordered sights

Suppose now that the sights Sj can be visited in any order (but each must be visited
exactly once). Reimplement the part of your algorithm which finds the tour τ to take
advantage of this new freedom.

(e) (45 points)

Show your new tour and outline the advantages of the method you chose.
When the optimum sequence of sight visits is obvious, do you follow that
sequence?

There are many possible approaches to this problem, as it is clearly related to
the famous traveling salesman problem (TSP). For a possible approach based
on guillotine rectangular subdivisions (a kind of BSP tree), see [Mit99, MM95].

What you will be given

Height-field data

The height-field data will be given to you as a file of points (one per line) in the format:

site x-coord y-coord z-coord

This is the format accepted by MinMaxer. Note: MinMaxer also requires that all coordi-
nates be integers.



CS348a: Handout # 9 5

Tour data

Tour data will be given as a file of points (one per line) in the format:

x-coord y-coord z-coord

The x- and y-coordinates will be the same as certain points in the height-field, but the
z-coordinate will be an arbitrary floating point number.

MinMaxer package

The MinMaxer package is installed in the directory:

/usr/class/cs348a/source/minmaxer

The program minmaxer, responsible for generating triangulations of data sets, is lo-
cated in the subdirectory source.minmaxer. Try running minmaxer with some sample
data files, and test different triangulation algorithms. A pre-compiled binary version of
minmaxer (placed at directory minmaxer.bin) contains a graphical interface (SGI only),
which allows the visualization of the triangulation algorithms in progress. Documenta-
tion of the package is located in the subdirectory doc, containing descriptions on how to
use the package, and formats for input and output files.

The triangulation functions of MinMaxer may also be incorporated into an applica-
tion program. Internally, triangulations are stored in a quad-edge data structure, and
operators that access and modify the data structure are provided in the package.

In order to implement the algorithm that computes the tour, you may find it nec-
essary to traverse the quad-edge representation of the triangulation. In other words,
you will need to write an application program that access MinMaxer functions, and learn
how quad-edge traversal operators work. In the directory source.triangulation the
file triangulation.c has an instructive procedure that outputs all triangles defined
by a given quad-edge. Look at the procedure copyGraphToListOfTriangles(), which
illustrates how the quad-edge operators are used to visit the complete triangulation.

Computing spline properties

In the directory:

/usr/class/cs348a/source/farin

you will find the source code that comes with one of the recommended books for the class
[Far93]. Some useful code is implemented there, like the de Casteljau algorithm, or code
to compute the curvature at a given point of the curve.



6 CS348a: Handout # 9

What to hand in

Remember that in programming assignments you are allowed to work in teams of up to
three students, and that each team need hand in only a single write up. On Thursday
morning, 4 March 2004, you will receive the actual test data that will be used for grading.
On or before the due date, you must submit the following information:

• Final version of your source code.

• Tour generated by your program:

– Control Polygon: coordinates of the quadratic spline control polygon.

– Evaluation measures computed (length, curvature, safety)

• Paper write-up: Give an overview of your program, explain how your algorithm(s)
work, and inform which triangulation algorithm was used by MinMaxer to build
your TIN .

We will set up a time in the graphics lab during which you will have to demo your
program to the instructor and the TA.

References

[Far93] Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design. Aca-
demic Press, 1993.

[Mit99] Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdi-
visions: A simple polynomial-time approximation scheme for geometric TSP,
k-MST, and related problems. SIAM J. Comput., 28:1298–1309, 1999.

[MM95] C. Mata and J. S. Mitchell. Approximation algorithms for geometric tour and
network design problems. In Proc. 11th Annu. ACM Sympos. Comput. Geom.,
pages 360–369, 1995.


