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Chapter 1

Introduction

Representing curved, complicated shape is the fundamental problem of geometric design.

Building data structures and algorithms for generating, representing and manipulating such

shapes is a di�cult problem.

One powerful method for representing shape is based on iterated transformations. Let

F be a function that maps one geometric shape into another geometric shape. If G0 is an

initial shape, then F de�nes the in�nite sequence of shapes,

Gi+1 = F (Gi):

If F is \well-behaved", then there exists a limit shape G that is a �xed point of F ,

G = F (G):

A good example of this technique are the fractal methods of Barnsley [Bar93]. The

function F is a collection of a�ne transformations. If each of the a�ne transformations in

F is contractive (reduces the size of the shape in each dimension), then F has a unique �xed

point,

G = F (G):

G is the fractal associated with F .

The beauty of this method is that very complicated shapes can be create with a small

collection of a�ne transformations. Consider the set of a�ne transformations F that map the

triangle of �gure 1.1 into three shaded copies of its self. The �xed point of this transformation,

shown of the right, is the Serpenski triangle.

Subdivision is another example of an iterated transformation. The geometric domain

is piecewise linear objects, usually polygons or polyhedra. The function F consists of two

distinct phases

5



6 CHAPTER 1. INTRODUCTION

Figure 1.1 The Serpenski triangle

Splitting: Each edge or face is split into two edges or four faces, respectively.

Averaging: Each new vertex introduced by splitting is positioned at a �xed a�ne combi-

nation of its neighbor's positions.

Consider the following examples:

� In �gure 1.2, a polygon is transformed into a new polygon with twice as many segments.

For this particular transformation, the vertices of the new polygon are placed 1
4
and 3

4

of the way between the old vertices. Applying this process repeatedly yields a polygon

with a great number of segments that closely approximate a smooth curve. What is

this smooth curve? Reisenfeld [Rie75] shows that the curve is a uniform quadratic

B-spline whose control points are the original polygon.

� Figure 1.3 depicts piecewise linear subdivision. Each triangular face is split into four

subtriangles. New vertices are placed at the midpoints of old edges.

Figure 1.2 A subdivision method
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Figure 1.3 A linear method

� Figure 1.4 shows a subdivision scheme developed by Loop [Loo87]. Again, each triangle

of a triangular mesh is split into four triangles. However, each new vertex is positioned

using a �xed convex combination of the vertices of the original mesh. The �nal limit

surface has a continuous tangent plane.

� Figure 1.5 shows an extension of Loop's method by Hoppe et al. [HDD+94] that incor-

porates sharp edges into the �nal limit surface. The vertices of the initial polyhedron

of the left are tagged as belonging on a face, edge or vertex of the �nal limit surface.

Based on this tag, di�erent averaging masks are used to produce new polyhedra. In

the example, di�erent averaging masks are used on the white edges to produce sharp

creases on the �nal limit surface on the right.

The bene�ts of subdivision are its simplicity and power.. Implementing a subdivision

scheme is simple because only polyhedral modeling is needed. Each vertex of Gi is tagged,

specifying whether the descendants of the vertex lies on a vertex, edge or face of the �nal

limit surface. During subdivision, the appropriate averaging mask can be chosen based on

this tag. The curved limit shape can be produced to any desired tolerance.

This approach also avoids the need for trimmed surface patches that arises in boundary

representations. During subdivision, each curved face of an object is represented by a portion

of a polyhedron. The topology of the polyhedron automatically ensures correct connectivity

of the object.
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Figure 1.4 The smooth method of Loop
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Figure 1.5 The smooth method of DeRose, Hoppe, et. al. (with creases)

Finally, subdivision automatically is powerful because it produces a hierarchy of polyhe-

dra, G0, G1, ..., that approximate the �nal limit object G. Multi-resolution techniques, such

as wavelets, for representing an object are easily de�ned using this hierarchy.

For subdivision methods, the fundamental question is this:

Given the averaging masks, what are the properties of the limit curve/surface?

This question includes determining whether a limit object exists and whether that object is

smooth. Another problem is identifying those masks that allow the controlled introduction

of edges (creases) into the limit surface.

Given interesting subdivision schemes, another important question is:

What can be computed from this representation?

This class of questions includes converting from other representations such as NURBS or CSG

representation into a subdivision representation. Performing geometric operations such as

intersection, lofting or fairing is another class of problems. Computing physical properties

such as surface area or the solution to di�erential equations is another example.

This text address the �rst class of questions. In general, one would like a theory of

subdivision that includes many of the techniques of B-splines such as knot insertion. This
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new theory should include methods for producing highly smooth surfaces from polyhedra of

arbitrary topology.



Chapter 2

Subdivision methods for uniform

B-splines

This section focuses on a very simple type of geometry, the graph of a function. We de�ne

uniform B-splines and describe a subdivision method for them.

2.1 Degree zero B-splines

The characteristic function U(t) is

U(t) = 1 if 0 � t < 1;

= 0 otherwise:

The functions Ui(t) = U(t� i) are translates of U(t). By construction, these functions are 1

between i and i+ 1. A degree zero B-spline is the sum of translates of U(t).

f(t) =
X
i

piUi(t):

This B-spline is uniform since the breaks between each pair of adjacent constant functions

are evenly spaced.

The piecewise constant functions over the half-integers, quarter-integers, etc, are dilates

of U(t),

U j
i (t) = U(2jt� i):

Subdivision of f(t) involves expressing f(t) in terms of �ner and �ner dilates of U(t).

f(t) =
X
i

pjiU
j
i (t):

11



12 CHAPTER 2. SUBDIVISION METHODS FOR UNIFORM B-SPLINES

If U j(t) denotes the row vector whose ith entry is U j
i (t), then in vector form,

f(t) = U j(t) � pj : (2:1)

This process is possible due to the fact that U(t) can be expressed in terms of its dilates.

The function U(2t) is 1 for 0 � t < 1
2
and the function U(2t� 1) is 1 for 1

2
� t < 1. So,

U(t) = U(2t) + U(2t � 1):

This relation is a subdivision formula for U(t). More generally,

U j
i (t) = U j+1

2i (t) + U j+1
2i+1(t):

In terms of matrices,

U j(t) = U j+1(t)S;

where S is the matrix whose entries (2i; i) and (2i + 1; i) are 1 and zero otherwise. A �nite

portion of S (rows -4 to 3 and columns -4 to 3) is
0
BBBBBBBBBBBBBBBBBBB@

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

1
CCCCCCCCCCCCCCCCCCCA

S is the subdivision matrix associated with this process. If the initial set of coe�cients

p0 are just p, then substituting into equation 2.1 yields the relation

pj+1 = Spj :

Application of the subdivision matrix S to pj produces a new set of coe�cients pj+1.

2.2 Higher degree B-splines

Higher degree B-splines can be de�ned in a variety of ways. Perhaps the simplest de�nition

is through convolution. The continuous convolution of two functions, g(t) and h(t), is

g(t)
 h(t) =
Z
s
g(s)h(t� s)ds:
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We next consider several important properties of convolution.

Theorem 1 If f(t) is a Ck continuous function, then U(t)
 f(t) is Ck+1 continuous func-

tion.

Proof: By de�nition,

f(t)
 U(t) =
Z
s
f(s)U(t� s)ds:

Now, U(t�s) is one exactly when s is between t�1 and t. The convolution can be rewritten

as

U(t)
 f(t) =
Z t

t�1
f(s)ds:

Since integration raises the di�erentiability of a function, the theorem follows. 2

Dilates and translates arise often during our analysis. The next theorem describes the

e�ects of convolution on dilates and translates.

Theorem 2 Let m(t) be the convolution of g(t) and h(t).

g(t� i)
 h(t� j) = m(t� i� j);

g(2t)
 h(2t) =
1

2
m(2t):

Proof: Apply simple changes of variables to the de�ntiion of convolution. 2

A B-spline basis function of degree n, N(t), satis�es

N(t) =
nO
i=0

U(t):

If n = 0, then N(t) = U(t). If n = 1, then N(t) = U(t) 
 U(t) and so on. Next, we list a

few important properties of these functions.

� N(t) is piecewise polynomial function of degree n.

� The support of N(t) lies between 0 and n + 1.

� N(t) is a Cn�1 function (theorem 1).

� The sum of the translates of N(t) is the function 1.

� N(t) is non-negative everywhere.
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If we index the translates and dilates as done for the characteristic function, then

N j
i (t) = N(2jt� i):

A uniform B-spline of degree n is a function f(t)

f(t) =
X
i

p0iN
0
i (t):

We next derive a subdivision formula for the basis function N(t). By de�nition,

N(t) =
nO
i=0

U(t);

=
nO
i=0

(U(2t) + U(2t � 1)):

By the linearity of convolutions, this expression can be rewritten as the sum of various

n+ 1-fold convolutions of U(2t) and U(2t� 1). By theorem 2,

1

2n
N(2t) =

nO
i=0

U(2t):

Replacing several factors of U(2t) by U(2t�1) yields various translates of N(2t). Therefore,

there must exist constants sk such that

N(t) =
X
k

skN(2t� k): (2:2)

In the next section, we derive an exact expression for the sk.

0 1 2 0 1 2 0 1 2 3

0 1 2 0 1 2 0 1 2 3

1/2 3/2 1/2 3/2 1/2 3/2 5/2

U(t)

Figure 2.1 Subdivision of low degree B-spline basis functions
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For dilates and translates of N(t), the subdivision formula is

N j
i (t) =

X
k

skN
j+1
2i+k(t):

In matrix notation, the basis functions are related by

N j(t) = N j+1(t)S;

where S is a matrix whose S2i+k;ith entry is sk and zero otherwise. The columns vectors of

control points pj and pj+1 are related by

pj+1 = Spj : (2:3)

2.3 Subdivision as discrete convolution

In equation 2.3, the subdivision process is expressed as the repeated application of a �xed

subdivision matrix to a set of coe�cients. For B-splines, another view is possible in terms

of discrete convolution.

The discrete convolution of two sequences a and b is a third sequence c such that

ck =
X

i+j=k

aibj:

Discrete convolution can be expressed as polynomial multiplication in the following manner.

Associate with a sequence c a unique generating function C(z) such that

C(z) =
X
k

ckz
k:

(Lowercase letters denote sequences and upper case letters denote generating functions.)

Multiplication of generating functions is equivalent to convolving their associated coe�cient

sequences. In terms of the de�nition of discrete convolution,

C(z) = A(z)B(z):

Discrete convolution can be used to derived the subdivision formula for the continuous

convolution of two basis functions.
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Theorem 3 Let h(t) denote the continuous convolution of two functions, f(t) and g(t), with

subdivision formulas

f(t) =
X
i

aif(2t� i);

g(t) =
X
j

bjg(2t� j):

Then, h(t) has the subdivision formula

h(t) =
X
k

ckh(2t� k);

where C(z) = 1
2
A(z)B(z).

Proof: By the de�nition of continuous convolution

h(t) = f(t)
 g(t);

= (
X
i

aif(2t � i))
 (
X
j

bjg(2t � j));

=
X
k

(
X

i+j=k

aibjf(2t� i)
 g(2t � j)): (2.4)

By theorem 2,

f(2t � i)
 g(2t� j) =
1

2
h(2t� i� j):

Substituting into equation 2.4,

h(t) =
X
k

X
i+j=k

1

2
aibjh(2t� k);

=
X
k

ckh(2t� k);

where C(z) = 1
2A(z)B(z). 2

Using this theorem, the subdivision formula for the B-spline basis function N(t) of degree

n can be derived. The subdivision formula for U(t) is

U(t) = U(2t) + U(2t � 1):

The generating function for this subdivision formula is 1 + z. By theorem 3, the generating

function S(z) associated with the subdivision formula of equation 2.2 is

S(z) =
1

2n
(1 + z)n+1: (2:5)
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The exact coe�cients sk can be derived using the binomial theorem.

In the case of quadratic B-splines, a �nite portion of S is

0
BBBBBBBBBBBBBBBBBBB@

0 1
4

3
4

0 0 0 0 0

0 0 3
4

1
4

0 0 0 0

0 0 1
4

3
4

0 0 0 0

0 0 0 3
4

1
4 0 0 0

0 0 0 1
4

3
4

0 0 0

0 0 0 0 3
4

1
4

0 0

0 0 0 0 1
4

3
4

0 0

0 0 0 0 0 3
4

1
4 0

1
CCCCCCCCCCCCCCCCCCCA

The rows of S specify the position of the new control points pj+1 in terms of the old control

points pj. In this case, the points are placed as speci�ed in Chaikin's algorithm.

2.4 The Lane-Riesenfeld algorithm

The subdivision process of equation 2.3 can be viewed as multiplying the subdivision matrix

S times a vector of coe�cients p. By construction, S2i+k;i = sk, that is each column of S is

shift of its neighboring column by two positions. Let Ŝ denote the matrix with Ŝi+k;i = sk.

Ŝ is a matrix with columns similar to S except each column is shifted by only one entry.

The product Sp can be rewritten as

Sp = Ŝp̂

where p̂2i = pi and p̂2i+1 = 0.

If P̂ (z) is generating function for p̂, then the generating function for Ŝp̂ = Sp is

S(z)P̂ (z):

By construction, P̂ (z) is exactly P (z2). Therefore, the generating function for the sequence

Sp is

S(z)P (z2):

If P j(z) denotes the generating function associated with pj , then in terms of generating

functions, equation 2.3 is

P j+1(z) = S(z)P j(z2):
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Substituting the de�nition of S(z) in equation 2.5,

P j+1(z) = (
1 + z

2
)n((1 + z)P j(z2)): (2:6)

This formula has a simple geometric interpretation. Lane and Riesenfeld's algorithm

[LR80] for subdividing a degree n uniform B-spline is roughly as follows:

� Replicate each coe�cient once.

� Apply midpoint averaging to this new sequence n times.

Equation 2.6 is an algebraic expression of this algorithm. The coe�cients of (1+z)P j(z2) are

coe�cients of P j(z) replicated one. Each multiplication by 1
2
(1 + z) represented a midpoint

averaging pass over the coe�cient sequence.

Chaikin's algorithm is example of this method with n = 2. Given a coe�cient sequence

:::; p0; p1; p2; p3; ::::;

replicating the coe�cients yields the sequence

:::; p0; p0; p1; p1; p2; p2; p3; p3; :::

Applying one round of midpoint averaging yields the sequence

:::; p0;
p0 + p1

2
; p1;

p1 + p2
2

; p2;
p2 + p3

2
; p3; :::

This sequence is equivalent to subdivision for a piecewise linear B-spline. A second round of

averaging yields

::::;
3p0 + p1

4
;
p0 + 3p1

4
;
3p1 + p2

4
;
p1 + 3p2

4
;
3p2 + p3

4
;
p2 + 3p3

4
; :::

This sequence is the one produced by Chaikin's algorithm.



Chapter 3

Convergence analysis for uniform

subdivision

In this section, we formalize the idea of convergence for a subdivision process. Let the matrix

S satisfy S2i+k;i = sk and be zero otherwise. Given an initial vector p0, S de�nes a sequence

of vectors pj satisfying

pj+1 = Spj :

In this section, we de�ne a sequence of functions associated with these vectors and examine

their convergence properties.

3.1 Parameterization of subdivision methods

The key to interpreting pj as a function is to assign each entry of pj a parameter value

and graph pj over these parameter values. In the case of uniform B-splines, the appropriate

parameter values arise naturally. The basis functions N j(t) are piecewise polynomials over

dilates of the integers. The jth dilate, nj, is the vector whose ith entry is i
2j . This dilate n

j

provides a suitable parameterization for pj. After each step of subdivision, the number of

coe�cients is doubled while the parameter spacing is halved.

This parameterization de�nes a piecewise linear function L[nj; pj ](t) satisfying

L[nj; pj ](nji ) = pji

for all i (see �gure 3.1). Under this interpretation, the subdivision process can be viewed as

producing a sequence of piecewise linear functions L[nj; pj ](t) as j ! 1. The rest of this

section addresses two basic questions. Does this sequence of functions have a limit? Is this

limit function continuous? The next section introduces tools for answering these question.

19



20 CHAPTER 3. CONVERGENCE ANALYSIS FOR UNIFORM SUBDIVISION

jp
0

jp
1 jp2jp

−1
jp

−2
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2j

−1

2j
0

2 j
1

2 j

t−axis

2 j
2−3

2j
3

2 j

jp3

−3
jp

Figure 3.1 Parameterizing a coe�cient vector

3.2 Convergence of sequences of functions

First, we recall the de�nition of a convergent sequence. An in�nite sequence

f0; f1; f2; :::

converges to a limit f if for all � > 0 there exist k such that for j � k,

jfj � f j < �:

This limit is denoted

lim
j!1

fj = f

If fj(t) is function of t, then several types of convergence commonly arise. The simplest

type of convergence, pointwise covergence, de�nes the limit

lim
j!1

fj(t) = f(t)

independently for each t.

The main drawback of pointwise convergence is that properties that are true for a se-

quence of functions fj(t) may not be true for their limit function f(t). For example, consider

the sequence of continuous functions fj(t) = tj. In the interval 0 � t � 1, the limit function

f(t) is zero if t < 1 and one if t = 1. This function is discontinuous. Continuity is not nec-

essarily preserved under pointwise convergence. Another drawback is that the derivatives
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of the functions fj(t) do not necessarily converge to the derivative of their pointwise limit.

[Tay55, Ch. 18] gives several good examples of this behavior (and is the source for much of

the material in this subsection).

The reason for this weakness is in the de�nition of pointwise convergence. Given an

�, each value of t has a distinct k associated with it. An alternative type of convergence,

uniform convergence, requires that given an �, a common k exists for all t. A sequence of

functions fj(t) converges uniformly to a limit function f(t) if for all � > 0 there exists k such

that for all j � k

jfj(t)� f(t)j < �

for all t Figure 3.2 illustrates this de�nition. For j � k, each function fj(t) must lie in the

ribbon bounded above by f(t) + � and below by f(t)� �.

Uniform convergence is su�cient to ensure that the limit of a sequence of continuous

function is a continuous function.

Theorem 4 Let the fj(t) be a sequence of continuous functions. If the fj(t) are uniformly

convergent to a limit function f(t), then f(t) is continuous.

Proof: We show that f(t) is continuous at an arbitrary point t0.

f(t)� f(t0) = (f(t)� fj(t)) + (fj(t)� fj(t0)) + (fj(t0)� f(t0));

jf(t)� f(t0)j � jf(t)� fj(t)j+ jfj(t)� fj(t0)j+ jfj(t0)� f(t0): (3.1)

Given an � > 0, we must show that jf(t)� f(t0)j < � for t su�ciently close to t0 (this is the

de�nition of continuity). Due to uniform convergence, there exists k, independent of t, such

that for all j � k,

jfj(t)� f(t)j <
�

3

f(t)−ε

+εf(t)

f
j
(t)

t−axis

Figure 3.2 Uniform convergence
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for all t. Applying this inequality to equation 3.1 yields that

jf(t)� f(t0)j < jfj(t)� fj(t0)j+
2

3
�:

Since fj(t) is continuous at t0, jfj(t)�fj(t0)j < �
3
for t su�cient close to t. So, jf(t)�f(t0)j <

�. This completes the proof. 2

To aid in the subsequent analysis, we de�ne the following norms. If f(t) is a function, p

is an in�nite vector, and S is a bi-in�nite matrix, then

jjf(t)jj = max
t
jf(t)j;

jjpjj = max
i
jpij;

jjSjj = max
i
(
X
k

jSikj);

where Si is the ith row of S. A useful property of these norms are that

jjSpjj � jjSjj � jjpjj:

3.3 Uniform convergence to a continuous function

Uniform convergence of a sequence of continuous functions forces a continuous limit function.

We next derive su�cient conditions on S to ensure that the sequence of functions, L[nj; pj](t),

associated with the subdivision process uniformly converge. Our �rst condition is simple.

We require that the row sums of S are equal to one, that is S times the vector of ones, 1,

is 1. This restriction is a natural since it also insures that the subdivision scheme is a�nely

invariant. In chapter 5.2, we show that this condition is actually necessary for convergence

to a continuous limit curve.

The key to this analysis is examining the behavior of the di�erence of adjacent coe�cients,

pji+1 � pji . If � is the matrix whose main diagonal is �1 and whose adjacent upper diagonal

is 1, then �p denotes this di�erence. A �nite portion of � is

0
BBBBBBBBB@

�1 1 0 0 0

0 �1 1 0 0

0 0 �1 1 0

0 0 0 �1 1

0 0 0 0 �1

1
CCCCCCCCCA
: (3:2)
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If the entries of �pj converges to zero as j !1, then intuitively the limit of the sequence

of functions L[nj; pj ](t) should not have any discontinuities. The following theorem makes

this precise.

Theorem 5 If there exists � > 0 and 0 < � < 1 such that

jj�pjjj < ��j

for all j > 0, then as j !1 the sequence L[nj; pj ](t) uniformly converges.

Proof:

L[nj+1; pj+1](t)� L[nj ; pj](t) = L[nj+1; Spj ](t)� L[nj+1; S1p
j](t);

= L[nj+1; (S � S1)p
j](t);

where S1 is the subdivision matrix for linear B-splines. (S1(z) =
1
2
z�1 + 1 + 1

2
z.)

Since both S1 = 1 and S11 = 1, (S � S1)1 = 0. Therefore, each row of S � S1 can be

written as combination of the rows of �. So there exists a matrix A such that S�S1 = A�.

Therefore,

L[nj+1; pj+1](t)� L[nj; pj ](t) = L[nj+1; A�pj](t):

Since L de�nes piecewise linear functions,

jjL[nj+1; A�pj](t)jj � jjA�pjjj;

� jjAjj � jj�pjjj:

Substituting our hypothesis into this equation yields that

jjL[nj+1; pj+1](t)� L[nj; pj ](t)jj < jjAjj��j:

Consider the in�nite sum

L[n0; p0](t) +
X
j

(L[nj+1; pj+1](t)� L[nj; pj ](t)):

By the ratio test, this expression must converge to a limit value, call it F (t), for each

individual value of t. The di�erence between F (t) and its approximations is

jjF (t)� L[nj; pj](t)jj < jjAjj
�

1� �
�j
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for all t. Therefore, the functions L[nj; pj](t) uniformly converge to F (t). 2

One point to note in the theorem is that � depends on the choice of the initial vector p0.

We next derive a subdivision process for the di�erence vectors �pj. The subdivision

matrix D for this process satis�es

�pj+1 = D�pj : (3:3)

Since pj+1 = Spj, this relation implies that

�Spj = D�pj : (3:4)

If equations 3.3 and 3.4 are expressed in terms of generating functions, the relation

between S and D becomes clear. Equation 3.3 is

(1 � z)P j+1(z) = D(z)(1 � z2)P j(z2)

where D(z) is the generating function with coe�cients dk = D2i+k;i. Since P j+1(z) =

S(z)P j(z2), equation 3.4 is

(1 � z)S(z)P j(z2) = D(z)(1 � z2)P j(z2):

Canceling (1� z)P j(z2) on both sides yields that

S(z) = (1 + z)D(z):

Since the row of S sum to one,

S(�1) =
X
k

sk(�1)
k =

X
k

s2k �
X
k

s2k+1 = 1 � 1 = 0:

Thus, S(z) has a factor of 1 + z.

We can now give direct conditions on D to ensure that this subdivision process converges

to zero.

Theorem 6 Let jjp0jj be bounded. If there exists k � 1 such that jjDkjj < 1, then there

exists � > 0 and 0 < � < 1 such that

jj�pjjj < ��j

for all j.
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Proof: Recall that

�pj = �Sjp0 = Dj�p0:

Now, let jjDkjj = � < 1. Then,

jj�pjjj � jjDj jj � jj�p0jj < jj�p0jj�b
j

k
c:

This completes the proof. 2 This condition is also necessary for uniform convergence of the

di�erence process. [DGL91, Theorem 3.1] gives a proof of its necessity.

In the case of B-splines of degree n > 0, this theorem can be used to show that the

function L[nj; pj ](t) converge to the B-spline function. The generating functions for the

subdivision process are S(z) = 1
2n
(1 + z)n+1. The generating function for the di�erence

process is D(z) = 1
2n (1 + z)n. Since jjDjj = 1

2 , this di�erence process converges to zero.

Therefore, the original subdivision scheme converges to a continuous function. Since the

B-spline basis functions are non-negative, locally supported and sum to one, the value of a B-

spline at a parameter value is a convex combination of nearby coe�cients. These coe�cients

are converging to single common value, the value of the B-spline.

3.4 Convergence to a smooth function

The test for whether a subdivision schemeproduces a Ck continuous limit function is straight-

forward.

Theorem 7 Let S(z) de�ne a subdivision scheme producing continuous limit curves. Then,

(1+z2 )kS(z) de�nes a scheme producing Ck continuous limit curves.

Proof: Let C(t) be the basis function satisfying

C(t) =
X
k

skC(2t� k):

Since C(t) is continuous, convolving C(t) by U(t) k times creates a Ck continuous function

(theorem 1). The subdivision mask for this function is exactly (1+z2 )kS(z) by theorem 3. 2

We conclude this chapter with an interesting example. The subdivision mask S(z) =

1
2z

�1+1+ 1
2z de�nes piecewise linear B-splines. (The factor of z

�1 centers this scheme is the

functional setting.) This subdivision scheme is interprelatory since pj+12i = pji . Each control
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polygon interpolates the vertices of previous control polygons. Consider the subdivision

scheme of [DGL87] with generating function

S(z) =
1

16
(�z�3 + 4z�2 � z�1)(1 + z)4:

A portion of subdivision matrix S associated with this process is

0
BBBBBBBBBBBBBBBB@

� 1
16

9
16

9
16 � 1

16 0 0 0

0 0 1 0 0 0 0

0 � 1
16

9
16

9
16

� 1
16

0 0

0 0 0 1 0 0 0

0 0 � 1
16

9
16

9
16 � 1

16 0

0 0 0 0 1 0 0

0 0 0 � 1
16

9
16

9
16

� 1
16

1
CCCCCCCCCCCCCCCCA

:

Figure 3.3 shows the mask used to de�ne the new shaded control point.

This method produces C1 limit curves. To verify this fact, we divide S(z) by 1
2
(1 + z)

and test whether the generating function

1

8
(�z�3 + 4z�2 � z�1)(1 + z)3

produces C0 functions. This scheme produces C0 functions if the di�erence scheme with

generating functions
1

8
(�z�3 + 4z�2 � z�1)(1 + z)2

−1

16

−1

16

16

9

16

9

Figure 3.3 A four point interpolatory scheme
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converges to zero. A �nite portion of the matrix associated with this process is

0
BBBBBBBBB@

�1
8

3
4

�1
8

0 0

0 1
4

1
4

0 0

0 �1
8

3
4 �1

8 0

0 0 1
4

1
4

0

0 0 �1
8

3
4

�1
8

1
CCCCCCCCCA
:

The norm of this matrix is one. However, the norm of the square of this matrix is 3
4
.

Therefore, the original scheme is C1 continuous.
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Chapter 4

Subdivision over irregular knot

sequences

An extensive theory of univariate subdivision has been developed that relates the combi-

nations used to the smoothness of the corresponding limit curve. [CDM91, Dyn92] give a

comprehensive survey of this theory. However, this theory was developed with the assump-

tion that the parameterization underlying the subdivision method is uniform, that is the

ith control point is associated with a parameter value proportional to i. In the parametric

case, this is not a substantial restriction. However, in the functional case, this is a non-

trivial restriction. In the multi-variate case, this restriction is even worse. The uniform

approach cannot deal with the irregular triangulations that often arise during the modeling

of complicated shapes.

We next develop a theory of univariate subdivision for irregularly spaced knot sequences

in the functional setting. The corresponding theory for the parametric case can then be

derived easily. A theory for the irregular, functional case is also useful in applications such

as �nite element analysis that are intrinsically functional. Eventually, we hope that this

theory will be a special case of a general multi-variate theory of subdivision over irregular

triangulations.

Our approach to de�ning subdivision is similar to that of the regular case. A subdivision

method is driven by a sequence of scalar values called knots. We require that there exist

an � > 0 such that the initial knot sequence n = n0 satis�es ni+1 � ni > � for all i. This

restriction ensures that the knots appear in ascending order and �ll the parameter line.

Subsequent knot sequences nj are de�ned by midpoint insertion.

nj+12i = nji ; (4.1)

29
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nj+12i+1 =
nji + nji+1

2
: (4.2)

4.1 De�nition of irregular subdivision schemes

A subdivision scheme is a map from knot sequences n to a collection of subdivision rules

S[n]. Given the sequence of knot vectors nj, the subdivision rules S[nj] may be viewed as a

matrix that maps the jth set of control points pj into a new set of control point pj+1.

pj+1 = S[nj]pj: (4:3)

We restrict our attention to subdivision schemes that satisfy four important properties

Compact support: There exists nonnegative a and b such that, for all k, the kth column

of S[n] is zero except from row 2k � a to 2k + b.

A�ne invariance: For any scaled and translated knot sequence �n+ � with � > 0,

S[n] = S[�n+ �]:

Index invariance: If r(n) is the vectors whose ith entry is ni+1, then

S[r(n)]i;j = S[n]i+2;j+1 8i; j:

Local de�nition: The kth column of S[n] depends only on the knots ni where jk � ij is

bounded independent of k.

Compact support ensures that the in�nite sum in equation 4.3 is well-de�ned. The

number a + b + 1 is the column height of S. The 2-1 slant of S[n] doubles the number

of control points during each step of subdivision. If the knot sequence n is regular (i.e

ni = i), then a�ne invariance ensures the resulting subdivision scheme is stationary, that

is S[n] = S[ n2j ] = S[nj] for all j. For regular knot sequences n, the index shift r(n) is

also an a�ne transformation of n and S[n] = S[r(n)]. In this case, index invariance forces

the subdivision scheme to be uniform (S[n]i;j = S[n]i+2;j+1). Local de�nition is critical in

showing that midpoint subdivision of irregular knot sequences leads to stationary subdivision

schemes.
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As in the uniform case, the control points pj are parameterized by the knot vector nj.

L[nj; pj ](t) denotes the piecewise linear function interpolating the points (nji ; p
j
i ) for all i (see

�gure 4.1). L[nj; pj ](t) can be viewed as a function in t since the nji are indexed in ascending

value. The knot vectors nj provide parameter values for the control points pj.

The natural object to consider here is the limit of these functions L[nj; pj ](t) as j goes

to in�nity. Given an initial set of control points p = p0 and an initial knot vector n = n0,

we de�ne the limit function associated with the process of equation 4.3

F [n; p](t) = lim
j!1

L[nj; pj ](t):

Here, the limit is taken point-wise, that is individually for each distinct t. By construction,

the limit operator F is linear in p. Speci�cally,

F [n; �p](t) = �F [n; p](t);

F [n; p+ q](t) = F [n; p](t) + F [n; q](t):

Scaling the knot vector n is also equivalent to scaling the parameter t,

F [�n; p](t) = F [n; p](
t

�
):

4.2 Basis functions

Let ei be the vector whose ith entry is one with the remaining entries being zero. Given the

knot sequence nj , we associate the function F [nj; ei](t) with each control point pji . By the

n
2−2

n
−1
n

1
n

0
n

jp
0

jp
1

jp2jp
−1jp

−2

t−axis

jjjjj

Figure 4.1 Parameterization
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linearity of F , these functions are basis functions since

F [nj; pj ](t) =
X
i

pjiF [n
j; ei](t):

Just as in the case of B-splines, the knots of nj determines the support of F [nj; ei](t). The

column height, a+ b+ 1, of S[nj] determines the width of the support of F [nj; ei](t).

Theorem 8 F [nj; ei](t) = 0 for t 62 [nji�a; n
j
i+b].

Proof: Without loss of generality, we show that F [n0; e0] is zero for t < n0�a and t > n0b . We

keep track of the range of indices of non-zero coe�cients during subdivision. After one round

of subdivision, the non-zero coe�cients range from p1�a to p
1
b . After k rounds of subdivision,

the non-zero coe�cients range from pk�a(2k�1) to p
k
b(2k�1). The limit of this range is

lim
k!1

nk�a(2k�1) = lim
k!1

nk�a2k = n0�a;

lim
k!1

nkb(2k�1) = lim
k!1

nkb2k = n0b :

2

4.3 Example: Interpolating subdivision

As a running example, we focus on a generalization of the four point, interpolatory scheme

of the previous chapter. Let r be an non-negative integer. Given a knot sequence n, S[n] is

de�ned a row at a time.

S[n]2i = ei;

S[n]2i+1 = mi;

where the mi
k = 0 for k < i� r and k > i+ r + 1. The nonzero entries of mi are de�ned by

0
BBBBBBB@

1 1 � � � 1

ni�r ni�r+1 � � � ni+r+1

� � � � � � � � � � � �

(ni�r)2r+1 (ni�r+1)2r+1 � � � (ni+r+1)2r+1

1
CCCCCCCA

0
BBBBBBB@

mi
i�r

mi
i�r+1

� � �

mi
i+r+1

1
CCCCCCCA
=

0
BBBBBBB@

1

1
2(ni + ni+1)

� � �

(1
2
(ni + ni+1))2r+1

1
CCCCCCCA

The masks mi can be thought of in the following way. Consider the degree 2r+1 polynomial

f(t) that interpolates the value fk at knot nk for i� r � k � i+ r+ 1. The nonzero entries
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of mi are the combinations of the values fk necessary to reproduce the value f(ni+ni+1

2
)

independent of the fk chosen. The masks mi are chosen to force polynomial precision of

degree 2r + 1.

By the construction of S[n], this subdivision scheme is interpolating. pj+12i and pji agree

and share the same parameter value nj+12i = nji . For the case of regularly spaced n, this

subdivision scheme has been heavily analyzed. If r = 0, then the nonzero portion of mi =

(1
2 ;

1
2). This subdivision scheme is simply piecewise linear interpolation. For r = 1, the

nonzero portion of the mask mi is

(
�1

16
;
9

16
;
9

16
;
�1

16
):

This subdivision scheme is the four-point rule of [DGL87]. This method converges to C1

continuous function.

For irregularly spaced n, this scheme has not been studied. Of course for r = 0, the

scheme produces piecewise linear interpolation. For r = 1, this scheme produces an irregular

four point rule that depends on the local knot spacing. Figure 4.2 show an example of the

method. The purpose of this paper is to develop tools for analyzing schemes such as this

one.

-4 -2.5-2 0 0.8 2 3.5 6
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 4.2 An example of the irregular four point method
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4.4 Reduction to the stationary case

The key to analyzing the smoothness of subdivision schemes that are compact, a�nely

invariant, index invariant, and locally de�ned is reducing the scheme locally to an equivalent

stationary scheme. Without loss of generality, we assume that n00 = 0 and focus our analysis

at the origin. Other case can be handled through translation and re-indexing. During

subdivision, larger and larger clusters of knots on either side of nj0 = 0 are regularly spaced.

In particular, the knots from nj�2j to n
j
0 and from nj0 to n

j

2j are regularly spaced.

Theorem 9 Let n00 = 0. There exists an integer j and knot sequence n̂ of the form

n̂i = (nj�1)i (8 i < 0); (4.4)

n̂i = (nj1)i (8 i � 0);

such that

F [nj; pj](t) = F [n̂; pj ](t)

for all t 2 (nj�1; n
j
1).

Proof: Track those control points produced after k subsequent subdivisions using nj and n̂

as initial knot sequences. By theorem 8, only those control points whose lower indices are

in the range �b+ 1� 2k and 2k + a� 1 a�ect the limit functions in the parameter range

(nj�1; n
j
1).

We next show that if those control point in this range agree after k subdivision, then

the control points with indices in the range �2k+1 � b+ 1 and 2k+1 + a� 1 agree after k+1

subdivisions. By construction, nj+ki and n̂i
2k agree for �2j+k � i � 2j+k. If j is chosen large

enough, then the subdivision rules generated by nj+k and n̂

2k must agree for all control points

whose indices are in the range �2k+1 � b+ 1 and 2k+1 + a� 1 (independent of k). This fact

is a consequence of the local de�nition of the subdivision scheme.

So by induction, the two scheme agree on all control points assigned to the parameter

range (nj�1; n
j
1) for all subdivisions. Therefore, the two associated limit functions agree. 2

This theorem allows us to focus our analysis on the knot sequence in equation 4.4. Hence-

forth, we take the initial knot sequence n = n0 to be of this form. Applying midpoint

subdivision to this sequence is equivalent to division by two,

nj =
n

2j
:
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Since our subdivision scheme is a�nely invariant,

S[nj] = S[
n

2j
] = S[n]:

Therefore, in a neighborhood of the origin, we may focus on analyzing the stationary subdi-

vision scheme of the form

pj+1 = S[n]pj:

Note that S[n] depends only on the relative spacing on the knots on either side of the origin.

To simplify, we refer to the matrix S[n] as S.
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Chapter 5

Univariate stationary subdivision

5.1 Spectral analysis

Our approach to analyzing the smoothness of F [n; p](t) is to express this function locally as a

linear combination of functions F [n; xi](t) where the xi are eigenvectors of S. At �rst glance,

determining these eigenvectors seems daunting because S is an in�nite matrix. However, in

practice, all of the interesting spectral properties of S are captured by a �nite submatrix of

S.

If the column height of S is a + b + 1, then let the bar operator, �p, select the entries

p�b; :::; pa from the in�nite vector p. These are exactly the entries of p that a�ect the limit

function near the origin. The bar operator applied to the matrix S yields �S, the a + b + 1

by a+ b+ 1 matrix with entries Sij where �b � i; j;� a.

Consider the regular, four point subdivision scheme of section 4.3. Since r = 1, a and b

are 3. So �S is the 7x7 matrix
0
BBBBBBBBBBBBBBBB@

� 1
16

9
16

9
16 � 1

16 0 0 0

0 0 1 0 0 0 0

0 � 1
16

9
16

9
16 � 1

16 0 0

0 0 0 1 0 0 0

0 0 � 1
16

9
16

9
16 � 1

16 0

0 0 0 0 1 0 0

0 0 0 � 1
16

9
16

9
16 � 1

16

1
CCCCCCCCCCCCCCCCA

: (5:1)

The eigenvalues of this matrix are

1;
1

2
;
1

4
;
1

4
;
1

8
;
�1

16
;
�1

16
:

By construction, �S contains exactly the nonzero portion of the main diagonal of S. Thus,

37
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these values are exactly the nonzero eigenvalues of S. The eigenvectors of �S can be extended

to form eigenvectors of S.

Theorem 10 Let � 6= 0 be an eigenvalue of �S with associated eigenvector y. Then S has

eigenvalue � with a unique associated eigenvector x such that �x = y.

The proof of this theorem is simple and left to the reader. The eigenvectors of �S with

eigenvalue zero have no e�ect on the �nal limit curve at the origin since after one round of

subdivision the control points are mapped to zero. For the sake of simplicity, we assume

that �S has no zero eigenvalues.

If �S does not have a full set of eigenvectors, then �S is defective. A non-defective �S has a

full set of linearly independent eigenvectors �x0, ..., �xa+b. The extension of these eigenvectors,

x0, ..., xa+b, can be used in the following manner.

Theorem 11 Let �S be a non-defective matrix with eigenvectors �x0, ..., �xa+b. If

�p =
a+bX
i=0

ci �xi;

then, for all t 2 (n0�1; n
0
1),

F [n; p](t) =
a+bX
i=0

ciF [n; xi](t):

Proof: The vector p�
Pa+b

i=0 cixi is zero for entries �b to a. By theorem 8,

F [n; p�
a+bX
i=0

cixi](t) = 0

for all t 2 (n0�1; n
0
1). The theorem follows by the linearity of the limit operator F . 2

For defective �S, generalized eigenvectors can be used in place of eigenvectors. Each of

the generalized eigenvectors, �x0, ..., �xa+b, is either an eigenvector of �S or satis�es

�S�xi = �i�xi + �xi�1:

These generalized eigenvectors can be extend to a set of in�nite vectors, x0, ..., xa+b, satisfying

Sxi = �ixi + xi�1: (5:2)

The proof of this fact is exactly the same as the proof of theorem 10. Since the generalized

eigenvectors are linearly independent, theorem 11 also holds for these vectors. For subsequent

theorems, we assume that �S is non-defective. Where appropriate, we state the variant of the

theorem that holds for defective �S using generalized eigenvectors.
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5.1.1 A spectral recurrence

The main message of this chapter is that the smoothness properties of a stationary subdivi-

sion scheme are tied to the spectral properties of its subdivision matrix S. In particular, the

limit function associated with an eigenvector of a stationary subdivision scheme satis�es a

fundamental relation.

Theorem 12 Let x be an eigenvector of S satisfying Sx = �x. Then,

�F [n; x](t) = F [n; x](
t

2
): (5:3)

Proof: The proof consist of simply recalling the de�nition of F .

�F [n; x](t) = F [n; �x](t);

= F [n; Sx](t);

= lim
j!1

L[nj; Sj(Sx)](t);

= lim
j!1

L[2nj+1; Sj+1x](t);

= lim
j!1

L[nj+1; Sj+1x](
t

2
);

= F [n; x](
t

2
):

2

If xi is a generalized eigenvector as in equation 5.2, then

�iF [n; xi](t) + F [n; xi�1](t) = F [n; xi](
t

2
): (5:4)

Again, the proof is exactly as above.

5.1.2 Properties of the recurrence

The recurrence of theorem 12 is a powerful tool for analyzing stationary subdivision schemes.

The following lemma illustrates several properties of such recurrences.

Lemma 1 Let g(t) be a function satisfying

�g(t) = g(
t

2
): (5:5)
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1. If g(t) is bounded on the interval (12 ; 1] and j�j <
1
2k
, then the limit as t! 0 of g(t)

tk
is

zero.

2. If � = 1 and g(t) is continuous at the origin, then g(t) is the constant function.

3. If g(d) 6= 0 for d 6= 0 and j�j > 1 then the limit as t! 0 of g(t) diverges.

Proof: For part one, let

v = max
1
2
<t�1

jg(t)j:

If 1
2i+1

< t � 1
2i
, then iterating equation 5.5 yields

jg(t)j = j�ig(2it)j;

� j�jiv:

Dividing the lefthand side of this relation by tk and the righthand side by 1
2k(i+1)

respectively

yields

j
g(t)

tk
j � 2k(i+1)j�jiv;

� (2kj�j)i2kv

Since j�j < 1
2k
, the limit as i!1 and therefore as t! 0 of g(t)

tk
must be zero.

For part two, we observe that if there exists d 6= e such that

g(d) � g(e) = c 6= 0;

then by equation 5.5

g(
d

2i
)� g(

e

2i
) = c 6= 0: (5:6)

As i goes to in�nity, d

2i
and e

2i
approach zero. Equation 5.6 contradicts that fact that g(t) is

continuous at the origin. Therefore, g(d) = g(e) for all d and e.

For part three, we note that by hypothesis there exists d 6= 0 such that g(d) 6= 0. Since

g( d
2i ) = �ig(d) and j�j > 1, g(t) must diverge as i!1 and t = d

2i ! 0. 2

5.2 Necessary conditions for Ck continuity

By theorem 11, we can restrict our smoothness analysis to those limit functions F [n; x](t)

where x is an eigenvector of S with eigenvalue �. If F [n; x](t) is a Ck continuous function,
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then x and � must have special properties. Let F (i)[n; x](t) denote the ith derivative of

F [n; x](t).

Theorem 13 Let Sx = �x with j�j � 1
2k . If F [n; x](t) is C

k continuous and not identically

zero, then there exist 0 � i � k such that

� � = 1
2i
,

� F [n; x](t) = cit
i for ci 6= 0.

Proof: We �rst show that F (k)[n; x](t) is a constant function. Take the kth derivative of

equation 5.3.

(2k�)F (k)[n; x](t) = F (k)[n; x](
t

2
):

If F (k)[n; x](t) is not a constant function, then F (k)[n; x](t) must diverge as t! 0 either by

part two of lemma 1 (2k� = 1) or part three of lemma 1 (j2k�j > 1). However, this contradict

the continuity of F (k)[n; x](t).

Since F (k)[n; x](t) is a constant function, F [n; x](t) is a polynomial function of degree k.

Since F [n; x](t) is not identically zero, choose the minimal i such that F (i)[n; x](0) 6= 0 and

take the ith derivative of equation 5.3.

�F (i)[n; x](t) =
1

2i
F (i)[n; x](

t

2
):

For lefthand and righthand side of this equation to agree at t = 0, � must be 1
2i
. Since

F (i)[n; x](t) is continuous, by part two of lemma 1, F (i)[n; x](t) must be the constant function.

Since the lower order derivatives are zero at the origin, F [n; x](t) is a multiple of ti. 2

If a generalized eigenvector (equation 5.2) produces a Ck limit curve, then its eigenvalue

must have modulus less than 1
2k . Consider the continuous (C0) case. If �0 = 1, then

F [n; x0](t) is the constant function. If x1 were a generalized eigenvector satisfying

Sx1 = �1x1 + x0;

then �0 = �1 = 1. In terms of limit functions,

�1F [n; x1](t) + F [n; x0](t) = F [n; x1](
t

2
);

F [n; x1](t) + 1 = F [n; x1](
t

2
):
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As t! 0, F [n; x1](t) must diverge.

The four point rule is known to yield C1 continuous functions. This theorem states that

the only possible eigenvalues with modulus greater or equal to 1
2
are 1 and 1

2
. Also the

eigenvectors x0 and x1 must produce the limit functions 1 and t up to a constant multiple.

Using matrix 5.1, one can verify that the kth entries of x0 and x1 are 1 and k respectively. The

eigenvector 1
4
has multiplicity two, but has only a single associated eigenvector. Therefore,

this scheme is strictly a C1 continuous.

5.3 Su�cient conditions for Ck continuity

For regularly spaced knot sequences, the subdivision schemes described here generate subdi-

vision matrices whose columns are just shifts of each other. Powerful tools such as Laurent

polynomials are available for analyzing such schemes. For knot sequence whose knots are

regularly-spaced away from the origin, all but a �nite number of columns of the subdivision

matrix must agree with the regular case (due to the local de�nition of the subdivision rules).

If the regular case produces Ck continuous curves, then this irregular case also produces a

Ck curve except possibly at t = 0.

By theorem 11, we need only analyze the smoothness of the functions F [n; x](t) where

x is an eigenvaalue of S. By theorem 13, an eigenvector x with eigenvalue j�j � 1
2k

must

reproduce a polynomial if the scheme is to be Ck continuous. This reproduction is usually

ensured during construction of S (e.g. interpolatory subdivision). Only if j�j < 1
2k does the

smoothness of F [n; x](t) need to be veri�ed.

Theorem 14 Let Sx = �x with j�j < 1
2k . If F [n; x](t) is Ck continuous everywhere except

at t = 0, then F [n; x](t) is Ck continuous everywhere.

Proof: We show that F (i)[n; x](t) exists and is continuous at t = 0 for 0 � i � k. The

proof proceeds by induction on i. For the base case i = 0, we note that F [n; x](0) must be

zero by theorem 12 since j�j < 1. The limit as t goes to zero of F [n; x](t) is also zero by part

one of lemma 1. Therefore, F [n; x](t) is continuous at t = 0.

We proceed with the induction step. First, we show that F (i)[n; x](0) exists and is zero

at t = 0. By de�nition,

F (i)[n; x](0) = lim
t!0

F (i�1)[n; x](t)� F (i�1)[n; x](0)

t
;
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= lim
t!0

F (i�1)[n; x](t)

t
;

since F (i�1)[n; x](0) is zero by the inductive hypothesis. Taking the i � 1st derivative of

equation 5.3 yields

�2i�1F (i�1)[n; x](t) = F (i�1)[n; x](
t

2
):

The (i�1)st derivatives exists by our inductive hypothesis. Now, if j�j < 1
2k

and i � k, then

j�j2i�1 < 1
2. Therefore, by part one of lemma 1, the limit as t goes to zero of F (i�1)[n;x](t)

t

must also be zero.

Given that the ith derivative of F [n; x](t) exists at t = 0, we can take the ith derivative

of equation 5.3. Applying part one of lemma 1 shows that F (i)[n; x](t) is continuous at t = 0.

This step completes the induction and the proof. 2

This theorem also holds for generalized eigenvectors (equation 5.2) whose eigenvalues

have moduli less than 1
2k
. The proof involves modifying part one of lemma 1 to use equation

5.4.

Together theorems 13 and 14 yield necessary conditions for a subdivision scheme to

produce Ck continuous limit functions. If S necessarily produces Ck limit curves and there

exists p such that the ith derivative of F [n; p](0) 6= 0 for all 0 � i � k, then there must exist

eigenvectors of S that reproduce each monomial ti up to degree k. So, the subdivision scheme

de�ned by S can reproduce any polynomial up to degree k. The spectrum of S includes 1,

1
2
, ..., 1

2k
. If the basis functions associated with the scheme are linearly independent, then

these eigenvalues must also be unique.

Under these assumptions, we can summarize the necessary conditions for a Ck continuous

scheme. Indexing the eigenvalues of S in order of decreasing moduli, j�ij � j�i+1j,

1. F [n; xi](t) = cit
i for all 0 � i � k,

2. �i =
1
2i for all 0 � i � k,

3. j�ij <
1
2k for all i > k.

If a full span of derivatives at the origin does not exist, then the spectrum may be missing

certain powers of two. If the scheme has linearly dependent basis functions, several powers of

two may be repeated. This result is a generalization of a similar result for uniform subdivision

in [CDM91].
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Since the regular four point rule produces C1 functions, we can now use theorem 14 to

show that the irregular four point rule also produces C1 functions. For c > 0, consider the

knot sequence n

:::;�3;�2;�1; 0; c; 2c; 3c; :::

where ni = i is i � 0 and ni = ci if i � 0. Then the matrix �S is
0
BBBBBBBBBBBBBBBB@

� 1
16

9
16

9
16

� 1
16

0 0 0

0 0 1 0 0 0 0

0 �(1+2 c)
16 (2+c)

3 (1+2 c)
8 (1+c)

3
8
+ 3

16 c
�3

8 c (2+3 c+c2)
0 0

0 0 0 1 0 0 0

0 0 �3 c3

8 (1+3 c+2 c2)
3 (2+c)

16
3 (2+c)
8 (1+c)

�(2+c)
16 (1+2 c)

0

0 0 0 0 1 0 0

0 0 0 � 1
16

9
16

9
16

� 1
16

1
CCCCCCCCCCCCCCCCA

:

The matrix, parameterized by c, has eigenvalues that are independent of c.

1;
1

2
;
1

4
;
1

4
;
1

8
;
�1

16
;
�1

16
:

The leading eigenvalues are 1 and 1
2
while the remaining eigenvalues have moduli less that

1
2 . Since two leading eigenvectors reproduce 1 and t (by construction), this scheme produces

C1 limit curves.

For interpolatory schemes with higher order polynomial precision, this analysis becomes

more di�cult. For quintic precision (r = 2), Mathematica can be used to derive the char-

acteristic polynomial of �S. This polynomial and its roots vary as a function of c. By

representing the polynomial in various bases, one can show that for c > 0, the spectrum of �S

satis�es the C2 conditions. Unfortunately, this type of analysis fails for r > 2. We conjecture

that such interpolatory schemes with order 2r + 1 polynomial precision are Cr continuous.

5.4 Derivative schemes

Theorem 14 relies on knowing the subdivision scheme is Ck continuous away from the origin.

In this section and the next, we give direct conditions on S for the scheme to be Ck continuous

everywhere. To start, we must �rst establish that S de�nes a continuous scheme. The

analysis technique of section 3.3 can be used to verify the continuity of the scheme. Recall

that we de�ned a di�erence scheme associated with S and show that the di�erence scheme
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uniformly converges to zero. Establishing the smoothness of the scheme is more di�cult.

Since the knot sequence is no longer regularly spaced, theorem 3 cannot be used. The

following provides a method for analyzing the smoothness of an irregular subdivision scheme.

5.4.1 Linear parameterizations

We previously showed that any stationary subdivision scheme that is at least C1 continuous

and that can produce functions with non-zero �rst derivatives at the origin must have linear

precision. In particular, the eigenvector x1 associated with eigenvalue 1
2
must produce a

constant multiple of the function t. Let l denote the multiple of x1 such that

F [n; l](t) = t:

To simplify the following analysis, we restrict our attention to a fairly speci�c class of subdi-

vision schemes, those in which the function t has a locally unique representation l in terms

of coe�cients that form a monotonically increasing sequence. For example, this restriction

rules out schemes that produce linearly dependent basis functions. (However, a similar, but

more complex theory is possible if t has multiple representations.)

Our functional scheme can also be expressed as the parametric curve

(t; F [n; p](t)) = (F [n; l](t); F [n; p](t)):

Applying the subdivision matrix S repeatedly to the initial parametric control polygon (l; p)T

produces the appropriate functional limit curve. This observation suggests that the spacing

given by Sjl might be a more appropriate linear parameterization for the piecewise linear

function de�ned by pj . After j subdivisions, this linear parameterization satis�es

Sjl =
l

2j
= lj:

Note that the knot sequence nj is still used to de�ne the subdivision matrices S[nj]. Only

the parameter values associated with the pj are changed.

The following example highlights the main reason for using this parameterization. Con-

sider cubic B-splines over the initial knot sequence n

:::;�9;�6;�3; 0; 6; 12; 18; :::
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Applying midpoint subdivision to this knot sequence leads to a stationary subdivision scheme

with matrix �S 0
BBBBBBBBB@

1
8

25
32

3
32 0 0

0 5
8

3
8

0 0

0 5
24

29
40

1
15 0

0 0 3
5

2
5

0

0 0 3
20

29
40

1
8

1
CCCCCCCCCA
:

The derivative of F [n; p](t) is a C2 function. The derivatives of L[nj; Sjp](t) (de�ned using

the knot parameterization) do not converge to a C1 function. The eigenvector l for this

scheme is

:::;�9;�6;�3; 1; 6; 12; 18; :::

The derivatives of L[lj; Sjp](t) (de�ned using the linear parameterization) do converge to

a C1 function. In fact this function is the derivative of F [l; p](t). In summary, only the

linear parameterization ensures that the limit of the derivatives of control polygons is the

derivative of the �nal limit curve. Section 5.4.3 proves this result.

Parameterizing by either n or l produce the same results as long as the convergence is

uniform.

Theorem 15 Let jjpjj be bounded. If L[nj; Sjp](t) uniformly converges to a continuous

function as j !1, then

F [n; p](t) = F [l; p](t)

Proof: We �rst show that the di�erence between ni and li is bounded for all i. If n is

regularly spaced, then S[n] must be uniform due to a�ne and index invariance. Since the

subdivision rules are locally de�ned and n has a single non-uniformity, only a �nite number

of columns of S[n] can deviate from the uniform case. For the uniform case, [CDM91] and

[DGL94] show that the polynomial t can be reproduced by a vector that is a sample of a

linear function over a regular knot sequence. Since this representation is unique (as assumed

at the start of the section), li must agree with the uniform analysis for large jij. Therefore,

there must exist k such ni = li + c0 for all i � �k and ni = li + c1 for all i � k. So, the

di�erence jjn� ljj must be bounded.

The ith entry of p is plotted at either ni or li depending on the parameterization chosen.

The maximum deviation between the two functions L[n; p](t) and L[l; p](t) at t = li is

bounded by the number of knots in n between ni and li and the maximumchange in L[n; p](t)
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between a pair of knots. If d is the maximum number of knots between li and ni over all i

(d exists since jjn � ljj is bounded), then this di�erence is bounded by djj�upjj: Repeating

this argument after j subdivisions,

jjL[nj; Sjp](t)� L[lj; Sjp](t)jj � djj�uS
jpjj;

� djj(Du)
j�upjj;

� djj(Du)
jjj � jj�upjj:

Since jjpjj is bounded, jj�upjj must be bounded. By the converse of theorem 6, jj(Du)jjj

converges to zero as j !1. Therefore, the di�erence between these two function converges

to zero and the two functions uniformly converge to the same limit. 2

5.4.2 Non-uniform di�erencing operator

Our ultimate goal is to build a subdivision matrixD whose limit functions are the derivatives

of limit functions produced by S. To this end, we use an approach similar to that of Gregory

and Qu in [GQ92, GR94]. The key is to construct a di�erencing operator � that behaves

like a discrete derivative. � maps a set of control points for S to a new set of control points

for D. S, D, and � satisfy a commutative relation. Di�erencing a set of subdivided control

points, Sp, should produce the same results as subdividing (using D) a set of di�erenced

control points, �p. In terms of �, S, and D,

D� = (2�)S: (5:7)

The cause of the extra factor of 2 will become clear momentarily.

If � is to act as a derivative, � should annihilate the vector 1 since the derivative of the

function one is zero. Applied before any subdivision, � should map l to the vector 1 since

the derivative of t is one. Thus, we want

�1 = 0;

�l = 1:

Let �u denote the uniform di�erencing operator of equation 3.2. If we let � be the diagonal

matrix whose (i; i)th entry is 1=(li+1 � li), then � can be expressed as

� = ��u:
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�u annihilates the vector 1 and � scales �ul to yield 1.

Note that � behaves correctly only if appled before subdivision. After j rounds of

subdivision, the function t is represented by the control points l
2j
. Therefore, the correct

di�erencing operator in this case is 2j�. This observation explains the factor of two in

equation 5.7.

Given �, we can explicitly construct D. Let

�� = ��
u�

�1:

�� is a left and right inverse of �. Now, the matrix D satis�es

D = 2�S��:

If S has column height a+ b+ 1, then it is easy to show D has column height a+ b.

5.4.3 Derivative schemes

D de�nes a stationary subdivision scheme with associated limit functions

lim
j!1

L[lj;Djq](t):

It remains to show that these functions are derivatives of those produced by S.

Theorem 16 Let the sequence L[lj;Djq](t) uniformly converge to a continuous function for

all bounded jjqjj. Then, for all bounded jjpjj,

lim
j!1

L[lj;Dj(�p)](t)

is the derivative of F [l; p](t) with respect to t.

Proof: Recall that by de�nition F [l; p](t) = g(t) is the limit of the functions

gj(t) = L[lj; Sjp](t):

The derivatives, g0j(t), of the gj(t) are piecewise constant functions over the knot sequence

lj with piecewise values (2j�)Sjp. By the construction of D,

(2j�)Sj = Dj�:



5.4. DERIVATIVE SCHEMES 49

So, the g0j(t) have piecewise values D
j(�p).

By hypothesis, the sequence

hj(t) = L[lj;Dj(�p)](t)

uniformly converges to a continuous function, call it h(t). By the converse of theorem 5, the

di�erence between the function g0j(t) and hj(t) must uniformly converge to zero. Therefore,

the sequence g0j(t) uniformly converges to h(t). Figure 5.1 illustrates this process.

We next prove that
R t
0 g

0
j(s)ds is point-wise convergent to

R t
0 h(s)ds for any t. Fix t. By

the uniform convergence of the g0j(t) to h(t), for all � > 0, there exist an n such that for all

j � n

jg0j(t)� h(t)j < �:

In terms of the integrals, for all j � n,

j
Z t

0
g0j(s)ds�

Z t

0
h(s)dsj �

Z t

0
jg0j(s)� h(s)jds;

� �t:

Therefore, gj(t)�gj(0) converges to
R t
0 h(s)ds for any t. However, gj(t)�gj(0) also converges

to g(t)� g(0). So,

g(t) =
Z t

0
h(s)ds+ g(0)

for any t. Thus, h(t) is the derivative of g(t). 2

This theorem is a slight variant of theorem IV on page 599 of [Tay55]. Figure 5.2 shows

the derivative curve associated with the irregular four point curve of �gure 4.2. The control

points for this curve were computed from the original control points by applying �.

t−axis
g

j
(t)’

h
j
(t)

Figure 5.1 Convergence of g0j(t) and hj(t)
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Figure 5.2 The derivative of an irregular scheme

The previous analysis can be repeated with D in place of S. Since D is a stationary sub-

division scheme, theorem 5 can determine whether the new scheme is uniformly convergent

to a continuous function. If D satis�es the necessary conditions for a C1 scheme, then a new

linear parameterization for its limit curves can be computed. If F [n; x2](t) =
1
2
t2 for S, then

�x2 is the correct linear parameterization for D. A new non-uniform di�erence operator

can be de�ned with this parameterization. Finally, theorem 16 can be applied to build a

derivative scheme for D.

5.5 Parametric analysis

Given a control polyon (p1; p2)T , we can apply the stationary subdivision matrix S to each

component separately and build a sequence of polygons (Sjp1; S
jp2)T . When does a limit

polygon exist and when is it smooth?

The spectral properties of S can be used to give conditions for smoothness. Given

subdivision matrix S, we can compute in descending order its eigenvalues 1; 
; ::: and their

associated eigenvectors x0; x1; :::;. If 0 < 
 < 1, then the eigenvector l = x1 provides the

natural parameterization for this subdivision scheme. Note that 
 need not be 1
2 .

1
2 arose in

the preceeding functional analysis due to our use of binary subdivision. The only restriction
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placed on l is that

li+1 � li � � � 0

for all i. This restriction guarantees that the parameterization is 1�1 and �lls the parameter

line. (Here the ordering of the control points determines the ordering of the rows and columns

of S and thus, the ordering of the entries of l.)

Given a parameterization for our control polygon, we now can apply the functional anal-

ysis of the previous section to each component of our parametric curve (with 1
2
replaced by


). If each component is a Ck function, then the parametric curve

(F [l; p1](t); F [l; p2](t))

is a Ck curve for those t such the derivative of F [l; p1](t) or F [l; p2](t)is non-zero.
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Chapter 6

Multi-variate subdivision over

regular grids

We next turn our attention to the problem of generalizing subdivision from the univariate

domain to the multi-variate domain. As in the univariate case, we �rst investigate subdivision

methods over regular (uniform) grids. Given a set of coe�cients p0 attached to each vertex

of an initial grid T 0, a multi-variate subdivision should produce a sequence of coe�cient

sets pj attached to �ner and �ner grids T j. As in the univariate case, we defer the formal

presentation of these details to subsequent chapters. Instead, we concentrate on a simple

generalization of uniform B-splines to the multi-variate setting.

6.1 B-splines as cross-sectional volumes

Univariate B-splines were de�ned through convolution. However, there are a variety of

alternative de�nitions. One particularly nice de�nition involves taking cross sections of high

dimensional boxes.

Let B be a point set in Rn with coordinates x = (x1; :::; xn). We wish to construct

a function N(t) in d-dimensional parameter domain using B. Consider the restriction of

B to the d-dimensional subspace of Rn such that the �rst d coordinates of x agree with

t = (t1; :::; td). If we graph the d-dimensional volume of this restriction as a function of t, a

function N(t) results.

N(t) = volumed(B \ (x1::d = t1:::d)):

Partitioning B into several disjoint pieces and applying this construction yields several

new functions whose sum is N(t). If this partition is into pieces that are scaled translates of

53
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B, then the cross sectional areas of these pieces are just translates and dilates of N(t). The

partition of B yields a subdivision formula for N(t).

In �gure 6.1, B is square (n = 2). The cross sectional area of B in its �rst coordinate

is the piecewise linear hat function. Subdividing this square into 4 subsquares partitions

this function into three distinct translates and dilates. Note that the middle pair of square

project onto the same central basis function. This pattern is re
ected in the subdivision

formula

N(t) =
1

2
N(2t) +N(2t � 1) +

1

2
N(2t � 2)

is exactly the subdivision formula for a uniform quadratic B-spline.

In �gure 6.2, B is a cube (n = 3). Graphing the cross sectional area in the �rst coordinate

yields a di�erent function. Subdividing B into eight subcubes and projecting yields four

distinct basis functions. Three cubes project onto the second basis function. Three cubes

project onto the third basis function. This relation yields the subdivision formula

N(t) =
1

4
N(2t) +

3

4
N(2t � 1) +

3

4
N(2t � 2) +

1

4
N(2t� 3)):

This subdivision formula is exactly that of cubic B-splines.

These observation gives us a general prescription for creating subdividable basis functions

in d dimensions. Given a set of directions D in Rd, de�ne a box in RjDj whose edges project

0 1 2 0 1 21/2 3/2

1 2 1

Figure 6.1 The cross sectional area of a square
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0 1 2 31/2 3/2 5/2

1 3 3 1
0 1 2 3

Figure 6.2 The cross sectional area of a cube

into Rd along the directions speci�ed by D. The graph of the d-dimensional cross-sectional

area is a function that has a subdivision formula. Linear combinations of translates of this

basis function yields a type of spline known as a box spline.

6.2 Box splines

The basis functions for box splines are determined by a set of direction vectors D. Each

entry � of D is a d-tuple whose entries are integers. The simplest box spline has a set of

direction vectors D consisting of each of the unit direction fe1; :::; edg. The basis function

for this set of direction vectors is

ND(t) = 1 if 0 � ti < 1 8i;

= 0 otherwise:

This functions is the d-variate generalization of the univariate step function U(t).

Like the univariate step function, the multi-variate step function has a subdivision for-

mula,

ND(t) =
1X

i1=0

:::
1X

id=0

ND(2t� i)



56 CHAPTER 6. MULTI-VARIATE SUBDIVISION OVER REGULAR GRIDS

where i = (i1; :::; id). As in the univariate case, the coe�cients of this subdivision formula

de�ned a generating function. If S(z) is the generating function associated with this subdi-

vision formula, then S(z) satis�es

S(z) =
dY

j=1

(1 + zj): (6:1)

For larger sets of direction vectors, adding a new direction vector � to an existing set of

direction vectors D yields a new basis function that satis�es

ND [ �(t) =
Z 1

0
ND(t� u�)du: (6:2)

If ND(t) has a subdivision formula, then ND [ f�g(t) has a subdivision formula. If z� =
Qd

j=1 z
�j
j , then the next theorem relates the generating functions for these two formulas.

Theorem 17 Let f(t) have a subdivision formula with associated generating function S(z).

If

g(t) =
Z 1

0
f(t� u�)du;

then g(t) has the subdivision formula with generating function

1

2
S(z)(1 + z�):

Proof: By hypothesis,

g(t) =
Z 1

0
f(t� u�)du;

=
Z 1

0
(
X
i

sif(2(t� u�)� i))du;

=
1

2

Z 2

0
(
X
i

sif(2t � u� � i))du;

=
1

2

Z 1

0
(
X
i

sif(2t � u� � i)) + (
X
i

sif(2t� u� � i� �))du;

=
1

2

Z 1

0
(
X
i

(si + si��)f(2t� u� � i))du;

=
1

2

X
i

(
X
i

(si + si��)
Z 1

0
f(2t � u� � i))du;

=
1

2

X
i

(si + si��)g(2t � i):

The generating function associated with this subdivision formula is exactly 1
2S(z)(1+ z

�). 2
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Let ND(t) have the subdivision formula

ND(t) =
X
i

siND(2t � i):

In the base case where D = fe1; :::; edg, the generating function SD(z) for this formula

satis�es

SD(z) = 2d
dY

j=1

1

2
(1 + zej ):

Recursively applying theorem 17 to larger sets of direction vectors, we note that the gener-

ating function is

SD(z) = 2d
Y
�2D

1

2
(1 + z�):

The generating function SD(z) is indepedent of the order in which the direction vectors

in D are processed. Therefore, the subdivision formula for ND(t) is independent of the

order in which its de�ning direction vectors were processed. Since this subdivision formula

uniquely determines the function ND(t), the de�nition of box splines using equation 6.2 is

order independent.

This expression describes how box spline basis functions subdivide. A box spline is a

linear combination of translates of these basis functions

f(t) =
X
i

piND(t� i):

Subdividing the basis functions ND(t) allows the function f(t) to be expressed in terms

of denser and denser sets of coe�cients. The subdivision process for the coe�cients can

expressed very compactly using generating functions. If P 0(z) is the generating function

P 0(z) =
X
i

piz
i;

then the generating functions P j(z) for successive sets of coe�cients can be generated as

follows:

P j+1(z) = SD(z)P
j(z2):

Here, z2 denotes the vector (z21; :::; z
2
d).

Box spline subdivision can be interpreted in a manner similar to that of the Lane-

Reisenfeld algorithm for univariate B-splines. The generating function SD(z) consists of

two parts,
Qd

j=1(1 + zej ) and subsequent factors introduced by convolution. The actions of

these parts are as follows:
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Replicate Multiplying the factor
Qd

j=1(1 + zej ) and P j(z2) yields a generating function

where coe�cients in P j(z) are replicated 2d times.

Average Multiplying each of the remaining factors 1
2
(1+ z�) times this expression averages

the replicated coe�cients in the direction �.

Section 6.4 gives several examples of this subdivision algorithms in practice.

6.3 Properties of box splines

Before showing several examples of box-splines, we �rst describe some basis properties of

box splines. We begin with a characterization of the degree and the support of box spline

basis function.

Theorem 18 The basis function ND(t) is a piecewise polynomial function of degree jDj � d

with support

f
X
�i2D

�i�ij0 � �i � 1g: (6:3)

Proof: If jDj = d, then the box spline has direction vector D = fe1; :::; edg. By de�nition,

the associated basis function is just a piecewise constant function supported over the unit

box. Of course, this is also the region de�ned in equation 6.3

Given a set of direction vectors D, we next explore the e�ect of adding a direction vector

� to D. By equation 6.2, the basis function ND [ f�g(t) is the integral of ND(s) as s varies

from t to t��. If ND(t) has degree jDj�d, then ND [ f�g(t) has degree jDj+1�d. Moreover,

if ND(t) has supported as in equation 6.3, then the new basis function is also supported over

any point t in this region plus its translates of the form t+ �� where 0 � � � 1. 2

The actual extent of each polynomial piece of the basis function can characterized using a

�ner analysis. Extend each direction vector into an in�nite line and take all integer translates

of these lines. The corresponding box spline basis function is polynomial over the resulting

partition of the plane. The next section shows the supports for various types of box splines

and their partition into polynomial pieces.

In the univariate case, the smoothness of the B-spline increased with each convolution.

Unfortunately, this result does not follow in the multi-variate case. Adding a new direction

vector � increases the smoothness of the new basis function in the direction �. However, the
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smoothness is other directions is not necessarily increased. The next theorem characterizes

the smoothness of box spline basis functions.

Theorem 19 Let D̂ � D be a maximal set of direction vectors that do not span Rd. Then,

the basis function ND(t) is a Ck function where

k = jDj � jD̂j � 2:

For a proof, we refer the interested reader to [dBHR93]. If every set of d vector in D are

linearly independent , then jD̂j = d�1 and ND(t) has smoothness of order jDj�d�1. Note

that this smoothness is maximal since the basis function is a piecewise polynomial of degree

jDj � d. Only if a subset of d � 1 direction vectors are linearly dependent (e.g. a repeated

direction vector) does ND(t) fail to have maximal smoothness.

6.4 Examples

Our �rst example consists of the three direction vectors

D = f(1; 0); (0; 1); (1; 1)g:

By de�nition, two direction vectors yields a piecewise constant function. Three direction vec-

tors yield a piecewise linear basis function. The generating function S(z) for the subdividing

this basis function is

S(z) =
1

2
(1 + z1)(1 + z2)(1 + z1z2):

Figure 6.3 shows the support of a single hat function. The bold lines separate the polynomial

pieces of the function. The thin lines are the similar partition after subdivision. Each label

is the coe�cient of one term of the subdivision formula normalized to be an integer. The

label is placed over the corresponding basis function.

This subdivision formula can be interpreted as an instance of a replicate and average.

Consider an initial set of coe�cients

::: ::: ::: :::

::: p q :::

::: r s :::

::: ::: ::: :::
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t1

t2

f

t1

t2

1 2

1 1

1

11

Figure 6.3 Piecewise linear hat functioun

After replicating each coe�cient

::: ::: ::: ::: ::: :::

::: p p q q :::

::: p p q q :::

::: r r s s :::

::: r r s s :::

::: ::: ::: ::: ::: :::

Finally, averaging in the (1; 1) direction yields

::: ::: ::: ::: :::

::: p p+q
2 q :::

::: r+p
2

r+q
2

s+q
2 :::

::: r r+s
2

s :::

::: ::: ::: ::: :::

Our second example has four direction vectors

D = f(1; 0); (0; 1); (1; 1); (1;�1)g:

This basis function is piecewise quadratic. Since any pair of vectors is linearly independent,

the basis function is C1 continuous. The generating function S(z) for the subdividing this

basis function is

S(z) =
1

4
(1 + z1)(1 + z2)(1 + z1z2)(1 + z1z

�1
2 ):
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Figure 6.4 shows support of a single basis function and its partition into polynomial pieces.

The labels re
ect the subdivision formula.

Our third example has six direction vectors

D = f(1; 0); (0; 1); (1; 1); (1; 0); (0; 1); (1; 1)g:

(Note that each direction vector is repeated twice.) This basis function is piecewise quartic.

In this case D̂ has a maximal size of two. Therefore, the basis function is C2 continuous.

The generating function S(z) for the subdividing this basis function is

S(z) =
1

16
(1 + z1)

2(1 + z2)
2(1 + z1z2)

2:

Figure 6.5 shows support of a single basis function and its partition into polynomial pieces.

The labels re
ect the subdivision formula.

One standard way to build bivariate basis functions that can be subdivided is take the

tensor product of two univariate basis function with subdivision formulas. For example, if

N1(t1) =
P

i1
s1i1N1(2t1 � i1) and N2(t2) =

P
i2
s2i2N2(2t2 � i2), then the tensor product of

these two basis function had the subdivision formula

N(t1; t2) = N1(t1)N2(t2);

=
X
i1;i2

s1i1s
2
i2
N1(2t1 � i1)N2(2t2 � i2);

=
X
i1;i2

s1i1s
2
i2
N(2t1 � i1; 2t2 � i2):

t1

t2

f

t1

t2

2 2

22

1 1

1

1

1

1

1

1

Figure 6.4 C1 four direction quadratic box spline
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t1

t2

f

t1

t2

11

1

1 1

1

6 6

6

66

6 10

2

2

22

2

2

Figure 6.5 C2 three direction quartic box spline

Tensor product B-splines can be expressed as box splines. For example, the set of six

direction vectors

D = f(1; 0); (0; 1); (1; 0); (0; 1); (1; 0); (0; 1)g

yields a box spline basis function that are total degree quartic. The generating function

associated with this box spline is

S(z) =
1

16
(1 + z1)

3(1 + z2)
3:

Factoring this generating function into 1
4
(1+ z1)3 and

1
4
(1+ z2)3 illustrates that the resulting

function is actually the tensor product of two quadratic B-splines. Therefore, the basis func-

tions are C1 continuous. (Note this agrees with theorem 19 of the previous section.) Figure

6.6 shows the actual subdivision formula and the support of the resulting basis function.

Summary Box splines are a very natural extension of the uniform B-splines to the multi-

variate setting. Of course, other types of multi-variate subdivision processes are possible

besides box splines. In the case of box splines, the generating function S(z) always split into

linear factors. If S(z) does not factor, what properties does the subdivision scheme possess?

[Dyn92] gives a nice analysis of this case using matrix subdivision.

If one wishes to derive the box spline basis functions are the limit of the subdivision pro-

cess, then the coe�cients are assigned parameter values over a regular grid. Are subdivision

methods over irregular grids possible? The next chapter attempts to answer this question.
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t1

t2

f

t1

t2

1 3

9

9 9

9

3

3

3

33

3

3

1 1

1 1

Figure 6.6 Bi-quadratic B-spline
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Chapter 7

Subdivision over irregular

triangulations

7.1 Bivariate subdivision schemes

A bivariate subdivision scheme can be viewed as being driven by a sequences of triangulations

T j. Given an triangulation T , let D(T ) denote the new triangulation in which each triangle

of T is subdivided into four similar copies of itself. Figure 7.1 illustrates this process. Given

an initial triangulation T = T 0, we de�ne a sequence of triangulations T j as follows:

T j+1 = D(T j):

A triangular subdivision scheme is map from triangulations T to subdivision matrices

S[T ]. S[T ] maps a set of control points associated with the vertices of T to a new set of

control points associated with the vertices of D(T ). Given an initial set of control points

Triangulation T

Triangulation T

Triangulation T

0

1

2

Figure 7.1 Regular subdivision of an irregular grid

65
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p = p0, we de�ned the sequence of new control points

pj+1 = S[T j]pj: (7:1)

The m-disc of a vertex v in T is the set of all points in T that lie in a triangle at most

m � 1 vertex adjacent triangles away from v. Figure 7.2 shows the black vertex v (its own

0-disc). Each colored region is the di�erence between a disc and the next inner disc. We

restrict our attention to subdivision schemes that produce matrices satisfying the following

three properties.

Compact support There exists m such that for all k the support of the kth column of

S[T ] lies in the m-disc in D(T ) of vertex nk (in T ). Compact support ensures that the

in�nite sum in equation 7.1 is bounded.

A�ne invariance For any non-degenerate a�ne transformation A,

S[T ] = S[A(T )]:

If the triangulation T is self-similar under subdivision (i.e. D(T ) = A(T )), then the resulting

subdivision scheme is stationary, that is S[T ] = S[A(T )] = S[D(T )] = S[Dj(T )] for all j.

Local de�nition The kth column of S[T ] depends only on a bounded disc of T centered

at nk. Local de�nition is critical in showing that the resulting scheme is locally stationary.

Figure 7.2 Various discs of a vertex in a triangulation
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Although we will not use this property, we also assume that the subdivision scheme is

index invariant, that is renumbering the vertices of T does not a�ect the subdivision process.

Together with a�ne invariance, this property is su�cient to show the subdivision scheme is

uniform on regular triangulations.

The vertices, n, of the triangulation T are the analog of knots in the univariate case. We

associate with each vector pj a piecewise linear function with vertices over the knots nj of

the triangulation T j,

L[nj; pj ](nji ) = pji :

These linear functions are the control polyhedra de�ned by the subdivision process. Taking

the limit of this sequence of functions yields the limit function associated with the initial

data p

F [n; p](t) = lim
j!1

L[nj; pj ](t):

Here, the limit is taken point-wise, that is individually for each distinct t. By construction,

the limit operator F is linear in p. Speci�cally,

F [n; �p](t) = �F [n; p](t);

F [n; p+ q](t) = F [n; p](t) + F [n; q](t):

Scaling the vector n is also equivalent to scaling the parameter t,

F [�n; p](t) = F [n; p](
t

�
):

7.1.1 Basis functions

Let ei be the vector whose ith entry is one with the remaining entries being zero. Given

the knot sequence nj , the basis function associated with the control point pji is F [n
j; ei](t).

The edges of T j bound the support of F [nj; ei](t). The size of the support of the columns of

S[T j] determines the size of the support of F [nj; ei](t).

Theorem 20 The support of F [nj; ei](t) is the m-disc of nji in T
j.

Proof: Without loss of generality, we show that the support of F [n0; e0] is the m-disc of

n00 in T
0. We keep track of the range of indices of non-zero coe�cients during subdivision.

After one round of subdivision, the non-zero coe�cients lie in the m-disc of n00 in T
1. After
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k rounds of subdivision, the non-zero coe�cients lie in the m(2k � 1)-disc centered at n00 in

T k. Note that the m-disc of n00 in T
0 is exactly the m2k-disc of n00 in T

k. As k !1, these

two disc agree. 2

7.1.2 Reduction to the stationary case

The key to analyzing the smoothness of a subdivision scheme is to reduce the scheme locally

to an equivalent stationary scheme. For triangulations that are self-similar under subdivision,

the subdivision process is stationary since S[T ] = S[A(T )] = S[D(T )]. Of course, not every

triangulation T is self-similar under subdivision.

However, compact support and local de�nition ensure the limit function F [n; p](t) de-

pends only on a �nite portion of the triangulation near the dyadic point t. After a su�cient

number of subdivisions, the mesh local to t is self-similar under subdivision. Speci�cally,

there are three possible case:

� t lies in the interior of a triangle of T 0. After a su�cient number of subdivisions, the

mesh around t is a regular three direction mesh.

� t lies on the interior of an edge of T 0. After a su�cient number of subdivisions, the

mesh around t consists of the edge in T 0 separating two regular triangulations.

� t lies at a vertex of valence k of T 0. The mesh around t consist of k edges emanating

from t that separate k distinct regular meshes.

The shaded regions in �gure 7.3 illustrates these three possible cases. In each case, the

resulting mesh is locally self-similar under subdivision.

In each of these three case, if t is translated to the origin, then D(T ) is a scaled version

of itself, 1
2T . This observation allows us to focus our analysis on triangulations that satisfy

D(T ) = 1
2
T . The resulting stationary schemes are centered at the origin. Note that the

stationary subdivision matrix S[T ] still depends on the triangulation T . To simplify, we

refer to the matrix S[T ] as S.
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Part a Part b Part c

Figure 7.3 Portions of a triangulation that are self-similar under subdivision

7.2 Spectral conditions for irregular subdivision

7.2.1 Spectral analysis

As in the case of curves, our approach to analyzing the smoothness of F [n; p](t) is to ex-

press this function locally as a linear combination of functions F [n; xi](t) where the xi are

eigenvectors of S. Again, the interesting spectral properties of S are captured by a �nite

submatrix of S.

Let the bar operator, �p, select the entries pi from the in�nite vector p such the ni lie in

the m-disc of the origin in T . By theorem 20, these are the only entries of p that a�ect the

limit function in the 1-disc of the origin. The bar operator applied to the matrix S yields �S,

the square matrix with entries Sij where ni lies in the m-disc of the origin in T and nj lies

in the m-disc of the origin in D(T ). The eigenstructure of S and �S are related as follows.

Theorem 21 Let � 6= 0 be an eigenvalue of �S with associated eigenvector y. Then S has

eigenvalue � with a unique associated eigenvector x such that �x = y.

The proof of this theorem is simple and left to the reader. The eigenvectors of �S with

eigenvalue zero have no e�ect on the �nal limit function at the origin since after one round

of subdivision the control points are mapped to zero. For the sake of simplicity, we assume

that �S has no zero eigenvalues.
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If �S does not have a full set of eigenvectors, then �S is defective. A non-defective �S has a

full set of linearly independent eigenvectors �x0, ..., �xk. The extension of these eigenvectors,

x0, ..., xk, can be used in the following manner.

Theorem 22 Let �S be non-defective matrix with eigenvectors �x0, ..., �x. If

�p =
kX

i=0

ci �xi;

then, for all t in the 1-disc of the origin,

F [n; p](t) =
kX

i=0

ciF [n; xi](t):

Proof: The vector p �
Pk

i=0 cixi is zero for entries in the m-disc of the origin. By theorem

20,

F [n; p�
kX

i=0

cixi](t) = 0

for all t in the 1-disc of the origin. The theorem follows by the linearity of the limit operator

F . 2

For defective �S, generalized eigenvectors can be used in place of eigenvectors. Each of

the generalized eigenvectors, �x0, ..., �xk, is either an eigenvector of �S or satis�es

�S�xi = �i�xi + �xi�1:

These generalized eigenvectors can be extend to a set of in�nite vectors, x0, ..., xk, satisfying

Sxi = �ixi + xi�1: (7:2)

The proof of this fact is exactly the same are the proof of theorem 21. Since the generalized

eigenvectors are linearly independent, theorem 22 also holds for these vectors. For subsequent

theorems, we assume that �S is non-defective. Where appropriate, we state the variant of the

theorem that holds for defective �S using generalized eigenvectors.

7.2.2 A spectral recurrence

As in the case of curves, the smoothness properties of a stationary subdivision scheme are

tied to the spectral properties of its subdivision matrix S. In particular, the limit function

associated with an eigenvector of a stationary subdivision scheme satis�es a fundamental

relation.
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Theorem 23 Let x be a vector satisfying Sx = �x. Then,

�F [n; x](t) = F [n; x](
t

2
): (7:3)

Proof: The proof consist of simply recalling the de�nition of F .

�F [n; x](t) = F [n; �x](t);

= F [n; Sx](t);

= lim
j!1

L[nj; Sj(Sx)](t);

= lim
j!1

L[2nj+1; Sj+1x](t);

= lim
j!1

L[nj+1; Sj+1x](
t

2
);

= F [n; x](
t

2
):

2

If xi is a generalized eigenvectors as in equation 7.2, then

�iF [n; xi](t) + F [n; xi�1](t) = F [n; xi](
t

2
): (7:4)

Again, the proof is exactly as above.

7.2.3 Properties of the recurrence

The recurrence of theorem 23 is a powerful tool for analyzing stationary subdivision schemes.

The following lemma illustrates several properties of such recurrences. (Note jtj denotes the

distance from t to the origin 0.)

Lemma 2 Let g(t) be a function non-zero away from the origin satisfying

�g(t) = g(
t

2
): (7:5)

1. If g(t) is bounded on the annulus 1
2 < jtj � 1, then the limit as t! 0 of g(t)

jtjk is zero.

2. If � = 1 and g(t) is continuous at the origin, then g(t) is the constant function.

3. If g(d) 6= 0 for d 6= 0 and j�j > 1 then the limit as t! 0 of g(t) diverges.
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Proof: For part one, let

v = max
1
2<jtj�1

jg(t)j:

If 1
2i+1

< jtj � 1
2i
, then iterating equation 7.5 yields

jg(t)j = j�ig(2it)j;

� j�jiv:

Dividing the lefthand side of this relation by jtjk and the righthand side by 1
2k(i+1) respectively

yields

j
g(t)

jtjk
j � 2k(i+1)j�jiv;

� (2kj�j)i2kv

Since j�j < 1
2k
, the limit as i!1 and therefore as t! 0 of g(t)

jtjk must be zero.

For part two, we observe that if there exists d 6= e such that

g(d) � g(e) = c 6= 0;

then by equation 7.5

g(
d

2i
)� g(

e

2i
) = c 6= 0: (7:6)

As i goes to in�nity, d

2i and
e

2i approach zero. Equation 7.6 contradicts that fact that g(t) is

continuous at the origin. Therefore, g(d) = g(e) for all d and e.

For part three, we note that by hypothesis there exists d 6= 0 such that g(d) 6= 0. Since

g( d

2i ) = �ig(d) and j�j > 1, g(t) must diverge as i!1 and t = d

2i ! 0. 2

7.2.4 Necessary conditions for Ck subdivision

By theorem 22, we can restrict our smoothness analysis to those limit functions F [n; x](t)

where x is an eigenvector of S with eigenvalue �. If F [n; x](t) is a Ck continuous function,

then x and � must have special properties. Let F (i)[n; x](t) denote the ith derivative of

F [n; x](t) in any set of i directions.

Theorem 24 Let Sx = �x with j�j � 1
2k . If F [n; x](t) is C

k continuous and not identically

zero, then there exists 0 � i � k such that

� � = 1
2i ,
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� F [n; x](t) is a homogeneous polynomial of degree i.

Proof: We �rst show that F (k)[n; x](t) is a constant function. Take the kth derivative of

equation 7.3.

(2k�)F (k)[n; x](t) = F (k)[n; x](
t

2
):

If F (k)[n; x](t) is not a constant function, then F (k)[n; x](t) must diverge as t ! 0 either

by part two of lemma 2 (2k� = 1) or part three of lemma 2 (j2k�j > 1). However, this

contradicts the continuity of F (k)[n; x](t).

Since F (k)[n; x](t) is a constant function, F [n; x](t) is a polynomial function of degree

k. Since F [n; x](t) is not identically zero, choose the minimal set of i directions such that

F (i)[n; x](0) 6= 0 and take the ith derivative with respect to these directions of equation 7.3.

�F (i)[n; x](t) =
1

2i
F (i)[n; x](

t

2
):

For lefthand and righthand side of this equation to agree at t = 0, � must be 1
2i . Since

F (i)[n; x](t) is continuous, by part two of lemma 2, F (i)[n; x](t) must be the constant function.

Since all lower order derivatives are zero at the origin, F [n; x](t) is a homogeneous polynomial

of degree i. 2

If a generalized eigenvector (equation 7.2) produces a Ck limit curve, then its eigenvalue

must have modulus less than 1
2k . Consider the continuous (C0) case. If �0 = 1, then

F [n; x0](t) is the constant function. If x1 were a generalized eigenvector satisfying

Sx1 = �1x1 + x0;

then �0 = �1 = 1. In terms of limit functions,

�1F [n; x1](t) + F [n; x0](t) = F [n; x1](
t

2
);

F [n; x1](t) + 1 = F [n; x1](
t

2
):

As t! 0, F [n; x1](t) must diverge.

Theorem 24 (in conjunction with theorem 28) yield necessary conditions for a bivariate

subdivision scheme to produce Ck continuous limit functions. If there exist initial data p

such that the all possible directional derivatives of F [n; p](t) up to order k are nonzero, then

there must exist eigenvectors of S that reproduce each monomial (t1)i(t2)j for all i+ j � k.
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Speci�cally, the subdivision scheme de�ned by S can reproduce any polynomial up to degree

k. The spectrum of S includes

1;
1

2
;
1

2
;
1

4
;
1

4
;
1

4
;
1

8
; :::

If the basis functions associated with the scheme are linearly independent, then these eigen-

values must also be unique. If a full span of derivatives at the origin does not exist, then the

spectrum may be missing certain powers of two. If the scheme has linearly dependent basis

functions, several powers of two may be repeated.

7.3 Convergence conditions for irregular subdivision

To show that an irregular subdivision scheme is convergent or has a particular order of

smoothness, we derive a di�erence operator � that annihilates a set of eigenvectors X

corresponding to low degree polynomials and then build a subdivision operator D for that

di�erence scheme satisfying

�S = D�:

7.3.1 Di�erence schemes

In the case of C0 continuity, the di�erence operator annihilates the eigenvector x0 = 1. Using

essentially the same proof as in chapter 3, one can show that the di�erence scheme de�ned

by D uniformly converges to zero if and only if the scheme de�ned by S uniformly converges

to a continuous function.

A bivariate function f(t) = f(t1; t2) is C1 continuous if the partial derivatives of f(t) in

two independent directions are themselves C0 functions. To show that a subdivision scheme

produces C1 continuous functions, we must construct a subdivision scheme for the direc-

tional derivatives and then show that the resulting scheme is continuous. By the necessary

conditions, a C1 continuous scheme with non-zero derivatives at the origin must reproduce

the linear functions t1 and t2.

To simplify the subsequent analysis, we assume the t1 and t2 components of the knot

vector n uniquely reproduce the linear functions t1 and t2. Stated another way, these two

components are x1 and x2, the two eigenvectors of S with associated with the eigenvalue 1
2.

Note that this condition is one of convenience, not necessity. Reasonable subdivision schemes
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are possible that do not satisfy this condition. We simply know of no irregular subdivision

schemes that do not satisfy this property.

The di�erence operator � that computes the directional derivative of F [n; p](t) in the t2

direction should satisfy

�1 = 0;

�x1 = 0;

�x2 = 1:

In particular, we construct a � whose ith row, �i, has nonzero entries corresponding to

the three vertices of the ith triangle in T = T 0. These three entries are chosen so that �ip
0

return the directional derivative of L[n0; p0](t) in the t2 direction over the ith triangle of T 0.

Since each triangulation T j is similar to T 0, � also acts as a di�erence operator on T j. We

need only scale � by 2j to re
ect the fact that 1
2jx2 reproduces t2 on T

j.

Given �, we desire a subdivision matrix D that satis�es

(2�)S = D�: (7:7)

Figure 7.4 illustrates this relation in the case of piecewise linear subdivision. This relation

states that subdividing the original scheme and then taking the discrete derivative is equiv-

alent to taking the discrete derivative and then subdividing the derivative scheme. Given

such matrices � and D, the following theorem holds.

Theorem 25 Let the sequence L[nj;Djq](t) uniformly converge to a continuous function

for all bounded jjqjj. Then, for all bounded jjpjj,

lim
j!1

L[nj ;Dj(�p)](t)

is the directional derivative of F [n; p](t) with respect to t2.

Proof: Recall that F [n; p](t) = g(t1; t2) can be expressed as the limit of the functions

gj(t1; t2) = L[nj; Sjp](t):

The directional derivatives, g0j(t1; t2), of the gj(t1; t2) are piecewise constant functions over

the triangulation T j with piecewise values (2j�)Sjp. By the construction of D,

(2j�)Sj = Dj�:
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∆

S

D

∆2

Figure 7.4 A derivative scheme for piecewise linear interpolation

So, the g0j(t1; t2) have piecewise values D
j(�p).

By hypothesis, the sequence

hj(t1; t2) = L[nj;Dj(�p)](t)

uniformly converges to a continuous function, call it h(t1; t2). The di�erence between the

function g0j(t1; t2) and hj(t1; t2) uniformly converge to zero. Therefore, the sequence g0j(t1; t2)

uniformly converges to h(t1; t2).

We next prove that
R t2
0 g0j(t1; s)ds is point-wise convergent to

R t2
0 h(t1; s)ds for any t2. Fix

t2. By the uniform convergence of the g0j(t1; t2) to h(t1; t2), for all � > 0, there exist an n

such that for all j � n

jg0j(t1; t2)� h(t1; t2)j < �:

In terms of the integrals, for all j � n,

j
Z t2

0
g0j(t1; s)ds�

Z t2

0
h(t1; s)dsj �

Z t2

0
jg0j(t1; s)� h(t1; s)jds;

� �t2:

Therefore, gj(t1; t2) � gj(t1; 0) converges to
R t2
0 h(t1; s)ds for any t2. However, gj(t1; t2) �

gj(t1; 0) also converges to g(t1; t2)� g(t1; 0). So,

g(t1; t2) =
Z t2

0
h(t1; s)ds + g(t1; 0)
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for any t2. Thus, h(t1; t2) is the derivative of g(t1; t2) with respect to t2. 2

To show that S produces C1 schemes, one must still show that directional derivative

scheme D de�nes a continuous scheme. This requires showing that the di�erence scheme

associated with D uniformly converges to zero. If one wishes to verify the smoothness of the

scheme de�ned by S directly, the following method can be used.

Construct � that annihilates x0, x1, and x2 and whose rows are supported over each pair

of edge adjacent triangles in T . If the subdivision matrix D satis�es

(2�)S = D�; (7:8)

then the following theorem holds.

Theorem 26 If the sequence L[nj;Djq](t) uniformly converges to zero for all bounded jjqjj,

then F [n; p](t) is C1 continuous for all bounded jjpjj.

Proof: Let �1 be the directional derivative operator in the t2 direction. �1 annihilates x0

and x1 and maps x2 to 1. Let �0 be the di�erence operator for the directional derivative

scheme that annihilates 1 and whose rows are supported over pairs of edge adjacent triangles

in T .

Note that �0�1 annihilates x0, x1, and x2 and has rows whose support correspond to

pairs of adjacent triangles in T . If T has no edges parallel to the t2 direction, then none of

these rows are identically zero. (Otherwise, we take the derivative in a di�erent direction.)

Therefore, the rows of � and �0�1 must agree up to multiplication by a constant

� = C�0�1;

where C is a diagonal matrix.

Substituting into equation 7.8 yields that

(2C�0�1)S = D(C�0�1):

If we let D0 = C�1DC, then

(2�0�1)S = D0(�0�1): (7:9)

By construction, there exists a subdivision scheme D1 for the derivative in the x2 direction

satisfying

(2�1)S = D1�1:
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Substituting into equation 7.9 yields

(�0D1)�1 = (D0�0)�1:

So, for all input �1p, D0 is the di�erence scheme for D1.

To conclude, D uniformly converging to zero implies that D0 uniformly converges to

zero and D1 converges to a continuous function. Repeating this proof for the direction t1,

S de�nes a C1 scheme. 2

Note that this theorem does not state that the intermediate directional derivative schemes

are continuous for all input. These schemes are guaranteed to be continuous only for input

�1p.

7.3.2 A local construction for di�erence schemes

The previous section assumed the existence of D given � and S. Next, we give a very general

construction for building such di�erence schemes D. The input is a stationary subdivision

matrix S and a �nite set of eigenvectors X satisfying

SX = X�:

Given a � such that �X = 0, we wish to construct a subdivision matrix D for the di�erence

scheme such that

�S = D�:

(Note that any extra scaling factor for � can be absorbed into D.)

The following theorem gives a su�cient condition on the rows of � for the matrix D to

exist. If �i is the ith row of �, then this theorem allows the ith row of D, Di to be be

constructed locally.

Theorem 27 Let � be the support of �iS. Let 
 be the set of k such that the support of

�k is in �. If the restriction of vectors in X to � are linearly independent and

RowRank(�
) = j�j � jXj;

then there exists Di with support 
 such that

�iS = Di�:
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Proof: The non-zero entries of the rows of �
 form a j�j-dimensional space. Since the

vectors in X are linearly independent on � and �
X = 0, the rows of �
 lie in a j�j � jXj-

dimensional subspace. By the hypothesis, these rows span that space.

Since �iS has non-zero entries in the same position and

(�iS)X = �iX� = 0;

�iS must also lie in the subspace spanned by the rows of �
. Therefore, there exists a linear

combination, Di, of these rows that reproduce �iS. 2

This theorem explains the choice of supports for rows of � in the previous section. These

support were

� An edge in T if � annihilates x0,

� A triangle in T if � annihilates x0 and x1,

� A pair of edge adjacent triangles in T if � annihilates x0, x1, and x2.

In each of these cases, � has the appropriate row rank for any � consistent with S having

compact support. For these �, the matrix D always exists independent of the size of the

support of the rows of S.

If S has compactly supported subdivision rules, then its associated di�erence scheme also

has compactly supported rules. Figure 7.5 gives an example of this theorem applied to the

subdivision rules for the three direction, C2 quartic box-spline. The di�erence rule is the

directional derivative rule supported over the triangles of T . The top portion of the �gure

shows the subdivision rules for this scheme. The middle portion of the �gure shows the

neighborhood � in T arising from a row of � for D(T ). There are two types of rows, those

corresponding to triangles inD(T ) that contain a vertex of T (right) and those corresponding

to triangles in D(T ) that do not contain a vertex of T (left). Each neighborhood gives rise to

a di�erent subdivision rule for the derivative scheme. The lower portion of the �gure shows

the two types of subdivision rules associated with the derivative scheme. This derivative

scheme is the C1 cubic half-box spline described in [Goo90, pp. 359].

Theorem 27 gives a very general method for constructing di�erence schemes. Of course,

we still must prove that these schemes converge to the appropriate set of derivatives. Un-

fortunately, we have a proof of such convergence only in the C0 and C1 cases. One might



80 CHAPTER 7. SUBDIVISION OVER IRREGULAR TRIANGULATIONS
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Old coefficients
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Figure 7.5 Subdivision rules for directional derivatives
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try to iterate this process of taking directional derivatives in theorem 25. Unfortunately, the

directional derivative of a triangular scheme has control points over the dual of the trian-

gulation. In other words, the mesh for the derivative scheme has a hexagonal connectivity.

The directional derivative of such a mesh is unclear.

7.4 An approximating C1 scheme

We conclude this chapter by constructing an approximating scheme that is C1 for a large

class of irregular triangulations. To the best of the author's knowledge, this scheme is the

�rst instance of a smooth functional subdivision scheme over irregular triangulations.

The building block for this scheme is piecewise linear interpolation. The subdivision

matrix for piecewise linear interpolation nearly satis�es the necessary conditions for C1

continuity. In the valence six case, this matrix is0
BBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0

1
2

1
2 0 0 0 0 0

1
2 0 1

2 0 0 0 0

1
2

0 0 1
2

0 0 0

1
2

0 0 0 1
2

0 0

1
2

0 0 0 0 1
2

0

1
2 0 0 0 0 0 1

2

1
CCCCCCCCCCCCCCCCA

:

The scheme has linear precision and a spectrum of the form 1; 1
2
; 1
2
; 1
2
; :::. Our approach is to

perturb S so that j�3j <
1
2
while maintaining linear precision.

7.4.1 Perturbation using �

If � is the di�erence operator that annihilates x0, x1, and x2, then perturbing the rows of

S by a combination of rows of � maintains linear precision . The support for the ith row of

�, �i, is a pair of triangles on either side of the ith edge of T . We normalize each row of

� to be of the form in �gure 7.6. a and b are chosen so that �ix1 = 0 and �ix2 = 0. For

regular, three direction meshes, a and b are zero.

The subdivision rules for the new scheme are now as follows:

� The subdivision rule for the midpoint of the ith edge of T is the linear subdivision rule

for edge i plus 1
8�i.
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1+a
1−a

−1+b

−1−b

Figure 7.6 Di�erence mask for convergence to a C1 scheme

� The subdivision rule at a vertex v of T is the linear subdivision rule for vertex v plus

1
16

P
i�i where i varies over the indices of those edges incident on v.

If T is a regular, three direction mesh, then these rules reproduce the rules for the C2 quartic

box-spline with direction vectors f(1; 0); (0; 1); (1; 0); (0; 1); (1; 0); (0; 1)g.

7.4.2 Proof of C1 continuity

We next characterize the class of triangulations for which this scheme produces C1 limit

functions. The smoothness analysis decouples into three case.

Interior of faces in T 0 In the interior of faces of T 0, the meshes T j are three direction

meshes (see part a of �gure 7.3). As observed above, the subdivision rules de�ne the three

direction, C2 quartic box-spline.

Interior of edges in T 0 Along the interior of an edge e of T 0, the mesh T j consists of two

regular, three direction meshes separated by the edge e (see part b of �gure 7.3). If the pairs

of triangles sharing the edge e have a di�erence mask as in �gure 7.6, then the subdivision
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matrix S for this scheme is

1

16

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

10 1 + b 1 + a 1 + a 1� b 1� a 1� a 0 0 0 0 0 0

6� 2 b 6 + 2 b 2 + 2 a 0 0 0 2� 2 a 0 0 0 0 0 0

6 2 6 2 0 0 0 0 0 0 0 0 0

6 0 2 6 2 0 0 0 0 0 0 0 0

6 + 2 b 0 0 2 + 2 a 6� 2 b 2� 2 a 0 0 0 0 0 0 0

6 0 0 0 2 6 2 0 0 0 0 0 0

6 2 0 0 0 2 6 0 0 0 0 0 0

2 6 6 0 0 0 0 2 0 0 0 0 0

2 0 6 6 0 0 0 0 2 0 0 0 0

2 0 0 6 6 0 0 0 0 2 0 0 0

2 0 0 0 6 6 0 0 0 0 2 0 0

2 0 0 0 0 6 6 0 0 0 0 2 0

2 6 0 0 0 0 6 0 0 0 0 0 2

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Here, S is de�ned over a neighborhood large enough to include any non-uniformities in the

resulting di�erence scheme. (Figure 7.7 shows this neighborhood (shaded) and its indexing

into S.) The di�erence matrix � for this neighborhood is

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�1� b �1 + b 1 + a 0 0 0 1� a 0 0 0 0 0 0

�1 1 �1 1 0 0 0 0 0 0 0 0 0

�1 0 1 �1 1 0 0 0 0 0 0 0 0

�1 + b 0 0 1 + a �1 � b 1� a 0 0 0 0 0 0 0

�1 0 0 0 1 �1 1 0 0 0 0 0 0

�1 1 0 0 0 1 �1 0 0 0 0 0 0

1 �1 �1 0 0 0 0 1 0 0 0 0 0

1 0 �1 �1 0 0 0 0 1 0 0 0 0

1 0 0 �1 �1 0 0 0 0 1 0 0 0

1 0 0 0 �1 �1 0 0 0 0 1 0 0

1 0 0 0 0 �1 �1 0 0 0 0 1 0

1 �1 0 0 0 0 �1 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Note that each of the twelve rows of � correspond to a pair of adjacent triangles. Since

the rows of � are linearly dependent, the di�erence matrix D is not unique. However, using
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Figure 7.7 The neighborhood of S (shaded)

Mathematica, one can show that the matrix D

1

8

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

3 + b 0 0 1� b 0 0 0 0 0 0 0 0

1 4 0 �1 0 0 0 0 0 0 0 0

�1 0 4 1 0 0 0 0 0 0 0 0

1 + b 0 0 3� b 0 0 0 0 0 0 0 0

�1 0 0 1 4 0 0 0 0 0 0 0

1 0 0 �1 0 4 0 0 0 0 0 0

�1 0 2 1 0 0 2 0 0 0 0 0

1 0 0 1 0 0 0 2 0 0 0 0

1 2 0 �1 0 0 0 0 2 0 0 0

1 0 0 �1 0 2 0 0 0 2 0 0

1 0 0 1 0 0 0 0 0 0 2 0

�1 0 0 1 2 0 0 0 0 0 0 2

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

satis�es (2�)S = D�.

If pairs of triangles sharing the edge of T 0 form a convex quadrilateral, then it is straight-

forward to show that �1 � a; b � 1. For a and b in this range, the matrix D has norm 3
4.

Therefore, the scheme associated with D uniformly converges to zero. By theorem 26, the

rules of S produces C1 functions locally. Note that in this case, the resulting subdivision

rules are also non-negative.

Vertices of T 0 Analyzing the smoothness of the subdivision scheme at vertices of T 0

takes a di�erent approach. Parameterizing S and � by the local mesh geometry and solving
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symbolically for D appears to be beyond the capabilities of packages such as Mathematica.

Instead, we prove a generalization of theorem 14 for the bivariate case.

By the previous analysis, the subdivision scheme is C1 continuous everywhere except at

vertices of T 0. Local to these vertices, the subdivision scheme S is stationary. By theorem

22, the �nal limit function F [n; p](t) can be expressed as a linear combination of limit

functions F [n; x](t) associated with eigenvectors of S. The eigenvectors associated with

the three dominant eigenvalues reproduce polynomials. The next theorem characterizes the

smoothness of the functions associated with remaining eigenvectors.

Theorem 28 Let Sx = �x with j�j < 1
2
. If F [n; x](t) is C1 continuous everywhere except

at t = 0, then F [n; x](t) is C1 continuous everywhere.

Proof: We �rst show that F [n; x](t) exists and is continuous at t = 0. We note that

F [n; x](0) must be zero since j�j < 1
2 . The limit as t goes to zero of F [n; x](t) is also zero by

part one of lemma 2. Therefore, F [n; x](t) is continuous at t = 0.

We next show that the directional derivative of F [n; x](t) in the t1 direction, F 0[n; x](t),

exists and is zero at t = 0. By de�nition,

F 0[n; x](0; 0) = lim
t1!0

F [n; x](t1; 0)� F [n; x](0; 0)

t1
;

= lim
t1!0

F [n; x](t1; 0)

t1
;

since F [n; x](0; 0) is zero. Since j�j < 1
2 , by part one of lemma 2, the limit as t1 goes to zero

of F [n;x](t1;0)
t1

must also be zero.

Given that the partial derivative of F [n; x](t) exists at t = 0, we can take the partial

derivative of equation 7.3. Applying part one of lemma 2 shows that F 0[n; x](t) is continuous

at t = 0. Repeating this argument with t2 in place of t1 �nishes the proof. 2

This theorem can be generalized in several ways. The theorem also holds for higher

orders of continuity as in theorem 14. This theorem also holds for generalized eigenvectors

(equation 7.2) whose eigenvalues have moduli less than 1
2
. The proof involves modifying part

one of lemma 2 to use equation 7.4.

For the subdivision scheme at hand, the spectrum of S in the case of a regular mesh has

eigenvalues �3, �4, ... whose moduli are less than or equal to 1
4
. Since S is a continuous

function of the local mesh geometry, these eigenvalues are also a continuous function of the

local mesh geometry. Thus, small perturbations of T away from the regular case do not
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a�ect the smoothness of the scheme. The di�culty with this analysis is that it gives no

geometric characterization of those triangulations that produce C1 schemes. Determining

whether the scheme is C1 requires the computation of eigenvalues of S.

In practice, the eigenvalue appear to well-behaved for a large range of triangulations.

The author is currently investigating possible improvement to this situation. One possibility

would be to weight the rows of � by di�erent amounts, depending on the geometry of T .

The result would be a scheme whose eigenvalues �3, �4, ... always have moduli less than 1
2
.

Such schemes would be guaranteed to be C1 at vertices of T 0. Another possibility would be

to develop better tools for computing the eigenvalues of parameterized matrices and improve

the previous analysis. Figures 7.8 and 7.9 show two examples of functional subdivision over

irregular meshes.
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Figure 7.8 A basis function for a valence six vertex
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Figure 7.9 A basis function for a valence �ve vertex



Chapter 8

Subdivision schemes for triangular

meshes

In the previous chapters, we have studied methods for creating Ck continuous functions over

an in�nite domain using subdivision. These functional techniques can be used to create

parametrically de�ned, unbounded surfaces. Of course, these surfaces are just deformations

of the plane. If one wishes to model closed surfaces (e.g. a sphere), then a purely functional

approach will not always su�ce. Fortunately, subdivision can be applied purely in the

geometric domain with out recourse to globally de�ned functional domain. One might also

like to model objects with boundaries. Using the notion of tagging, one can de�ne special

rules that produce boundary curves and vertices for surface patches. These extensions allows

us to model complicated 3D shapes with a minimum amount of overhead.

8.1 C
k manifolds

One of our goals is to de�ne closed, smooth surfaces purely through subdivision. In the

functional case, we measured the smoothness of a function by noting the number of its

partial derivatives that were continuous. In the geometric case, the notion of a global partial

derivative is unde�ned. Instead, we measure the smoothness of the surface locally. A surface

S is a Ck manifold if for every point p 2 S there exists an open neighborhood Up of p such

that S \ Up is the graph of a Ck function. This de�nition applies to closed surfaces, that is

those surface without boundaries. The next chapter deals with boundaries.

The next theorem provides our primary tool for showing that a surface is a locally the

graph of a Ck function. If f(t) is a vector valued function

f(t) = (f1(t); f2(t); ::; fm(t))

89
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where t = (t1; :::; tn) (with m � n), then the di�erential of f(t), Df(t), is the m by n matrix

whose (i; j)th entry is @fi(t)
@tj

.

Theorem 29 If f(t) is Ck continuous and Df(0) has full rank, then there exist a neighbor-

hood U of 0 such that ff(t)jt 2 Ug is locally the graph of a Ck function.

Proof: IfDf(t) has full rank, then there exists an n by n submatrix with full rank. Without

loss of generality, we assume one such submatrix consists of the �rst n rows. By the inverse

function theorem, the transformation f̂(t) = (f1(t); :::; fn(t) has a local inverse f̂�1(s) that

is Ck continuous on a neighborhood Û of f̂(0). Replacing (t1; :::; tn) by f̂�1(s) yields that

f(t) = (s1; :::; sn; fn+1(f̂
�1(s)); :::; fm(f̂

�1(s)))

on Û \ f̂(U). Since the composition of two Ck functions is a Ck function, f(t) is locally the

graph of a Ck function. 2

Given this de�nition of smoothness, we next investigate methods for constructing such

smooth surfaces via subdivision in the geometric domain.

8.2 Limitations of regular meshes

Given an initial triangular mesh T 0 in R3, we can subdivide each triangular face of T 0 into

four subfaces and position the new vertices based on some subdivision rules. (See �gure 1.3.)

The vertices of this new mesh, T 1, have valence six except for non-valence six vertices of T 0.

If one uses the subdivision rules of the quartic box spline of section 6.4, then the limit of

this subdivision process is a C2 manifold everywhere except near the vertices of T 0. To see

this, we note that in regions where the mesh has the connectivity of a three direction mesh,

we can view each coordinate function as being graphed over a regular three direction mesh.

Since the quartic box spline rules produce C2 functions over a regular three direction mesh,

each coordinate function is C2 continuous for this particular parameterization. Therefore,

in this neighborhood, the surface is a C2 manifold.

The non-valence six vertices of T 0 are extraordinary points of the the mesh. One might

ask if it is possible to avoid having exceptional points in the initial mesh? To answer this

question, we must recall Euler's formula for polyhedra. It states that if v, e, and f are the

number of vertices, edges, and faces in a closed polyhedron T , then

v � e+ f = 2� 2g;
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where g is the genus of T . Roughly, g measures the number of distinct handles of T . For

example, a sphere has zero handles and a doughnut (or co�ee cup) has one handle.

If our initial mesh had no extraordinary points, then every vertex of the mesh must have

valence six and the mesh is globally a three direction mesh. Thus, for every vertex there are

three edges and two faces. So, the lefthand side of Euler's formula is zero. Therefore, the

mesh must have genus one. If our initial mesh is topological a sphere (it has genus zero),

then we must have extraordinary points.

8.3 C
1 subdivision methods for closed meshes

The solution to the problem of extraordinary vertices is to de�ne special subdivision rules

for these vertices. Of course, these rules should produce a limit surface that is locally the

graph of a Ck function. In practice, creating a C1 manifold at the extraordinary points is

relatively straightforward. [Loo87] gives one such rule for use with the three direction quartic

box spline rules mentioned above. [DS78, CC78] give rules for extraordinary points arising

during the subdivision of quadrilateral meshes.

Proving that the resulting limit surface is a C1 manifold is fairly di�cult. A reliable

proof for quadrilateral method was only recently given in [Rei94]. We next derive a class

of subdivision masks for extraordinary points that includes Loop's rule. We then sketch a

proof that these rules produce a C1 manifold in a neighborhood of the extraordinary point.

Our rule for subdivision at an extraordinary vertex of valence n is as shown in �gure 8.1.

The coe�cient for each adjacent vertex is multiplied by some weight a. The coe�cient at

the extraordinary vertex itself is multiplied by 1 � an. For any choice of a, this rule has

constant precision.

Consider a single extraordinary vertex surrounded by an in�nite mesh of regular valence

six vertices. The subdivision process centered at this extraordinary vertex is a stationary

process since the rules used at each step of subdivision are the same. If we treat the coe�cient

vector and subdivision matrix as being in�nite, then

pj+1 = Spj :
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1−an

Figure 8.1 Subdivision for valence n extraordinary vertex

The restriction of S to the 1-disc around a valence �ve extraordinary vertex is

S =

0
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: (8:1)

As observed in the previous chapter, the spectrum of a stationary subdivision process

is directly related to the smoothness of the resulting scheme. We next characterize the

spectrum of S. Let �S be the restriction of the in�nite matrix S to the the 1-disc of the

extraordinary point as in equation 8.1. By inspection of S, the nonzero eigenvalues of S

consist of eigenvalues of �S and the eigenvalues 1
8 and 1

16, each with multiplicity n.

To determine the eigenvalues of �S, delete the �rst row and column of �S. The resulting

matrix C is an n by n whose main diagonal is 3
8
and whose adjacent diagonals are 1

8
. C is a

circulant matrix, that is a a matrix in which

Ci;1 = C(i+k�1 mod n)+1;k

for all 0 � k < n. The spectral properties of circulant matrices are well-understood.

Theorem 30 [Dav]

Let ! be the nth root of unity. Then the circulant matrix C has eigenvalues
Pn

i=1Ci;1(!j)i�1
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with associated eigenvector

(1; (!j); (!j)2; :::; (!j)n�1)

for 1 � j � n.

The nth root of unity can be expressed in terms of trigonometric functions as

! = cos(
2�

n
) + sin(

2�

n
)i:

The eigenvalue of C associated with ! (j = 1) is

� =
3

8
+
1

4
cos(

2�

n
):

This eigenvalue appears with multiplicity two since !n�1 also produces the same eigenvalue.

In general, the eigenvalue associated with !j for 1 < j < n� 1 are real and lie in the range

1
8
to �. If we extend the eigenvectors of C associated with these eigenvalues by appending

an intial zero, the new vectors

(0; 1; (!j); (!j)2; :::; (!j)n�1)

are also eigenvector of �S for all j 6= n.

The remaining two eigenvalues of �S are eigenvalues of the 2 by 2 system

0
B@ 1� an an

3
8

5
8

1
CA

The eigenvalues of this matrix are 1 and 5
8 � an. The following theorem summarizes this

analysis.

Theorem 31 For an extraordinary vertex of valence n, the spectrum of S includes 1, �, �

and 5
8
� an with the remaining eigenvalues having modulus less than �.

If we restrict a to lie in the range

1� cos(2�
n
)

4n
< a <

4 + cos(2�
n
)

4n
; (8:2)

then the spectrum of S has leading eigenvalues 1, �, �. As we shall see in the next section,

this condition is su�cient to ensure that the limit surface is a C1 manifold.
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Several speci�c choices for a suggest themselves. Loop chooses a such that

a =
1

n
(1� �2):

This choice forces 1 � an = �2 and is intended to mimic the spectrum of C2 subdivision

process. For n > 3, a simpler choice that avoids the computation of trigonometric functions

is

a =
3

8n
:

Under this rule, the weight for the extraordinary vertex is always 5
8
. Figure xxxx shows an

example of a closed surface produced using this rule.

8.4 C
1 continuity at extraordinary vertices

Let x1 and x2 be the eigenvectors of S associated with eigenvalue �. To de�ne the limit surface

produce by S at the extraordinary vertex, we will use x1 and x2 to de�ne a parameterization

n = (x1; x2) associated with the coe�cient vector p. However, before proceeding, we must

verify that the parameterization given by (x1; x2) de�nes 1�1 tiling of the parameter plane.

Theorem 32 If a satis�es the bounds of equation 8.2, then triangulation produce by (x1; x2)

is a 1� 1 covering of the parameter plane.

Proof: Since proving this fact is remarkably involved, we sketch the major steps of this

proof.

� Consider the annular portion Ak of the triangulation de�ned by (x1; x2) that is the

di�erence of the 2k � 1-disc and the 2k+1 + 1-disc centered at the origin. Applying S

to Ak and scaling by 1
�
uniquely determines the next larger annulus Ak+1 since x1 and

x2 are eigenvectors of S.

� Find a k such that every 2-disc in Ak is within � of lying on a regular mesh for a

su�ciently small �. To see that such a k exists, let p be position of the vertices of

a 2-disc in Ak. If we express p in terms of the eigenvectors xi, p =
P
anxn, then

subdividing p and scaling by 1
�
yields

a0
�
x0 + a1x1 + a2x2 +

X
i>2

�i
�
aixi:
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Multiplying a0x0 by
1
�
induces a translation on the 2-disc away from the origin. The

next two terms a1x1 + a2x2 form a regular 2-disc and are una�ected by subdivision.

The magnitude of the remaining terms decreases since �i
�
< 1 for i > 2. As k goes to

in�nity, the contribution of these last terms becomes in�nitesimal.

� If every 2-disc in Ak is within � of being regular, then no pair of adjacent triangles in

Ak can fold back on each other. Therefore, the triangulation in Ak must be 1 � 1. A

similar argument applies to larger annuli. Small annuli can be checked by hand.

2

Checking whether the triangulation forms a 1� 1 covering of the parameter plane is the

equivalent of Reif's Jacobian condition in [Rei94]. We can now precisely characterize the �nal

limit surface. Let L[n; p](t) be the piecewise linear function de�ned by the parameterization

n = (x1; x2). We construct a sequence of related parameterizations nj where n0 = n and

nj+1 = �nj :

If we take the limit of the piecewise linear functions associated with these parameterization

L[nj; pj ](t), then the limit surface is

F [n; p](t) = lim
j!1

L[nj; pj ](t):

Theorem 33 If a is in range of equation 8.2, then F [n; p](t) is a C1 function.

Proof: Away from the origin, F [n; p](t) is a C2 manifold and can locally be reparameteriza-

tion using the inverse function theorem to be the graph of a C2 function. Next, we express

F [n; p](t) in terms of F [n; xi](t) where the xi are eigenvectors of S (as in theorem 22).

The �rst three eigenvectors x0, x1, and x2 produce the associated limit functions 1, t1

and t2. The eigenvalues for the remaining eigenvectors have magnitude less than �. A slight

generalization of theorem 28 su�ces to show that the remaining function F [n; xi](t) for i > 2

are C1 at the origin. 2

Theorem 33 shows that the coordinate functions are C1 functions. By theorem 29, if the

di�erential of F [n; p](t) has full rank at t = 0, then the resulting parametric surface is a C1

manifold. The entries of this di�erential are simply the coe�cient vectors a1 and a2 of the

eigenvectors x1 and x2 used in the expansion of p. For almost all choices of p, these two

vectors are linearly independent.
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To conclude, we make a few observation about the current state of research on subdivision

methods for closed surfaces. De�ning a rule for extraordinary vertices that yields a C2

manifold for closed surfaces has resisted the best e�orts of current researchers. The proof

of theorem 33 illustrates the di�culty. The eigenvectors x1 and x2 were used to de�ne the

parameterization for the coe�cient vector p. This choice automatically forced the subdivision

method to have linear precision, a necessary condition for a C1 scheme. However, for such as

a scheme to be C2, it must have quadratic precision. The eigenvectors x3, x4, and x5 must

produce quadratic function over the parametrization de�ned by x1 and x2. This is a much

more stringent condition that is very di�cult to satisfy.

8.5 Subdivision along boundaries

We extended the subdivision methods developed in the functional case to the purely geomet-

ric domain. The motivation for this extension was practical, not all geometric objects can be

described as the graph of a function. Likewise, realistic geometric objects often have bound-

aries. We next describe some general techniques for introducing boundaries and measuring

their smoothness.

The key to introducing a boundary during subdivision is to use di�erent subdivision rules

along the boundary. A simple approach to this process is tagged subdivision. Given a control

polyhedron pj , each control point in pj is tagged as to whether it lies on a face, edge or vertex

of the �nal limit surface. The rules for producing a vertex of the new, re�ned polyhedron

pj+1 depend on the tags associated with its ancestors. The tags for the vertices of pj+1 also

depend on the tags of its ancestors.

The other guiding principal is de�ning subdivision rules for boundaries is the �nal limit

curves and vertices along the boundaries should depend only on the initial data along the

boundaries. This property insures that if two initial polyhedron share the same boundary

data, then the corresponding limit objects share the same boundary.

8.5.1 Boundaries for curves

We start with a simple example of a curve segment in two dimensions. For example, consider

the control polygon in �gure 8.2. The two endpoints of the polygon are tagged as corner

vertices, they correspond to endpoints of the �nal limit curve. The remaining vertices are
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tagged as edgevertices, they correspond to interior points of the limit curve. One possible

set of subdivision rules for this curve segment is:

� The new corner vertices agree with the old corner vertices.

� A new edge vertex is introduced midway between a corner vertex and its edge neighbor.

� Two edge vertices are introduced 1
4
and3

4
of the way between a pair of adjacent edge

vertices.

These rules are exactly the subdivision rules for a uniform quadratic B-spline with double

knots at the endpoints. The limit of these subdivision process is a C1 curve that interpolates

the boundary vertices. Since the limit curve interpolates the boundary vertices, connecting

two such limit curves requires only that the corresponding boundary curves coincide.

If we restrict our attention to subdivision schemes of the type in chapter 4, the intro-

duction of a boundary corresponds to restriction of the parameter domain to t � 0. Using

this tagged subdivision, the subdivision process is still locally stationary. The subdivision

process at a boundary vertex satis�es

pj+1 = Spj :

The di�erence here is pj is in�nite vector with entries pji for i � 0. The knot vectors nj are

similarly indexed with nji � 0 for all i; j � 0.

If the subdivision process produces Ck continuous curves away from the boundary vertex,

then necessary and su�cient conditions on S for the limit curve to be Ck continuous at the

boundary vertex are very similar to those of section 5.3. Let �i be an eigenvalue of S with

Old/new corner vertex

Old edge vertex

New edge vertex

Figure 8.2 Tagged subdivision for a curve segment
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associated eigenvector xi (with j�ij � j�i+1j for all i). If the subdivision process produces

a full span of derivatives at the endpoint and linearly independent basis functions, then

necessary and su�cient conditions for S to produce Ck limit curves at the boundary vertex

are:

1. �i =
1
2i
for all 0 � i � k,

2. j�ij <
1
2k for all i > k.

3. The eigenvectors x0, x1, ..., xk reproduce constant multiples of the polynomials 1, t,

..., tk on the parameter range t � 0.

The proof of this result follows those of theorems 13 and 14 with the modi�cation that the

parameterization vector n spans only half of the parameter domain t � 0.

8.5.2 Boundaries for surfaces

Tagging can be used to incorporate boundaries in higher dimensions. Each tag re
ects the

dimension of boundary element that the tagged vertex lies on. In the case of a surface patch,

each vertex of a control polyhedron is tagged as a face vertex (dimension two), an edge vertex

(dimension one) or a corner vertex (dimension zero). (See �gure 8.3 for an example.) New

vertices are formed by taking a a�ne combination of the positions of parent vertices. The

tag for this new vertices usually corresponds the highest dimension tag of its parents. For

example, an a�ne combination of edge and corner vertices yields a new edge vertex.

Boundary of triangulation

Corner vertex

Edge vertex

Face vertex

Figure 8.3 Tagged subdivision for a 2D region
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Typically, the subdivision rules are chosen so that the patch interpolates its corner ver-

tices. Moreover, the subdivision rules for an edge of the patch are chosen to depend only on

the vertices along that edge. For a �xed subdivision scheme, this restriction guarantees that

if two patches share the same vertices along an edge, then the corresponding limit surface

share a common limit edge.

Analyzing the smoothness of such subdivision schemes involves many variables. If we

restrict ourselves to the functional setting of chapter 7, then the analysis of section 7.2.4 is

applicable. Let the subdivision process at particular boundary point be locally stationary

pj+1 = Spj ;

and produce Ck limit functions. If the subdivision scheme produces a space of functions

with a full span of derivative of up to order k, then the spectrum of S include the eigenvalue

1
2j
with at least multiplicity j for 0 � j � k. Moreover, the limit functions corresponding to

the associated eigenvectors span the space of all polynomials of degree k.

It is important to note that the spectrum of a C1 stationary subdivision matrix S need

not always have leading eigenvalues 1, 1
2
, 1
2
or even 1, �, �. For example, consider a tensor

product C1 subdivision scheme in which binary subdivision is applied along one axis and

ternary subdivision is applied along the other axis. The leading eigenvalues for this scheme

will be 1, 1
2
, and 1

3
. In general, it is possible to have stationary subdivision scheme is which

the parameterization vector n is non-uniformly scaled by a factor of � in one direction and


 in another direction. Such scheme can be C1 and have leading eigenvalues 1, �, and 
.

To show that a set of subdivision rules leads to a Ck limit surface, we fall back on the

approach of section 7.3. The idea is to build an appropriate di�erence scheme and then

show that the di�erence scheme uniformly converges to zero. To illustrate this approach, we

extend the irregular C1 subdivision scheme of section 7.4.2 to allow boundaries. We then

prove that the modi�ed rules produce C1 functions along the boundaries.

Let T 0 be a triangulation whose boundary is simple polygon. As mentioned previously,

we tag vertices of the triangulation. Vertices of T 0 interior to T 0 are tagged as being face

vertices. Vertices on the boundary of T 0 are tagged as being either edge vertices or corner

vertices. An exterior vertex of T 0 is tagged as an edge vertex if its incident exterior edges are

colinear. Otherwise, the vertex is tagged as a corner vertex. Figure 8.3 obeys this tagging

rule.
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The general rule for determining the irregular C1 subdivision rules was to perturb the

rules for linear interpolation by the di�erence masks generated by pairs of edge adjacent

triangles. The subdivision rules for face vertices still follows this rule. There are three types

of new subdivision rules for vertices on the boundaries:

� New corner vertices interpolate old corner vertices.

� New edge vertices are introduced midway between adacent pairs of boundary (corner

or edge) vertices.

� Old edge vertices are replaced by new edge vertices using the following rule. If v is

an edge vertex whose neighbors on the boundary are vl and vr, then position the new

edge vertex at
1

4(dr + dl)
(drvl + 3(dl + dr)v + dlvr)

where dr and dl are the distances from v to vr and vl respectively.

The subdivision rules for interior vertices yields a C1 limit function exactly as charac-

terized in section 7.4.2. Smoothness along the boundary can characterized using similar

techniques to those in that section. We �rst consider the smoothness of the �nal limit sur-

face on an exterior edge between two vertices of the initial grid T 0. Locally, the subdivision

process centered at one these vertices is shown in �gure 8.4. Note that the triangulation is

locally a three-direction grid. Along the edge, dr and dl are equal and therefore, the subdivi-

sion rules along that edge are those of a cubic B-spline. The subdivision rules for the interior

edges are the three direction, quartic box spline rules. A �nite portion of S numbered as in

�gure 8.4 is 0
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3 4
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Vertices of T

0

Figure 8.4 Subdivision along the interior of a boundary edge

To show that the limit surface is C1, we can apply theorem 26. Given the di�erence rules

� for this neighborhood

0
BBBBBBBBB@

1 �1 �1 0 0 1 0 0

�1 1 �1 1 0 0 0 0

1 0 �1 �1 0 0 1 0

�1 0 1 �1 1 0 0 0

1 0 0 �1 �1 0 0 1

1
CCCCCCCCCA
;

we need only show that subdivision matrix D satisfying

(2�)S = D�

has row norm less than one. Using Mathematica, we can solve for D

0
BBBBBBBBB@

1
4

0 0 1
4

0

0 1
2 0 0 0

0 0 1
4 0 0

0 0 0 1
2 0

0 1
4 0 0 1

4

1
CCCCCCCCCA
:

The row norm of D is 1
2 . Therefore, the subdivision scheme is C1 on exterior edge between

original vertices of T 0.

At exterior vertices of T 0, the analysis is again similar to that of section 7.4.2. The

subdivision process at these vertices is stationary and can be characterized by a subdivision

matrix S. The smoothness of the resulting functions can be captured by theorem 28. The



102 CHAPTER 8. SUBDIVISION SCHEMES FOR TRIANGULAR MESHES

limit functions are C1 if and only if S has leading eigenvalues 1, 1
2
, 1
2
with remaining eigen-

values of smaller moduli. As in the unbounded case, we have no geometric characterization

of when this spectral condition is satis�ed.

In the pure geometric case, more general types of subdivision rules are possible along

boundaries. Hoppe et al. [HDD+94] give an interesting extension of Loop's method. A

simple chain of edges on the boundary of a triangular mesh is tagged. Subdivision rules for

cubic B-splines are applied on the interior of this chain. The endpoints are interpolated.

Hoppe et al. show that if the standard Loop rules are used for the interior of the mesh, then

the resulting surface is C1 along the resulting boundary.

A chain of boundary edges may also introduce in the interior of the triangular mesh by

treating the mesh on each side of a chain of edges as separate meshes. The resulting limit

surface has a sharp crease corresponding to the limit curve associated with this chain of

edges. Figure 1.5 gives an example of this method applied to a distributor cap. White edges

on the initial polyhedron at the right yield sharp creases on the smooth limit surface at the

left.



Chapter 9

Multiresolution analysis based on

subdivision

Multi-resolution analysis (MRA) produces a hierarchical, orthogonal basis for representing

functions. This basis can be used to improve the e�ciency of many algorithms for computing

with those functions. Traditionally, these basis functions are translates and dilates of a single

function. Next, we outline a generalization of MRA to functions de�ned by subdivision over

irregular triangulations.

9.1 Overview

Although the mathematical underpinnings of MRA are somewhat involved, the resulting

algorithms are quite simple. We start with a brief intuitive description of how the method

can be applied to decompose the polyhedral object shown in Figure 9.1(a).

...
A A A

Wavelet coefficients

B

Wavelet coefficients

B ...(a) (b) (c)

Figure 9.1 (a) Polyhedron in V 4, (b) Projection into V 3, (c) Projection into V 0.

103
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The main idea behind MRA is the decomposition of a object, in this case a polyhedron,

into a low resolution part and a \detail" part. The low resolution part of the polyhedron in

Figure 9.1(a) is shown in Figure 9.1(b). The vertices in (b) are computed as certain weighted

averages of the vertices in (a). These weighted averages essentially implement a low pass �lter

denoted as A. The detail part consists of a collection of fairly abstract coe�cients, called

wavelet coe�cients, that are also computed as weighted averages of the vertices in (a), the

weights forming a high-pass �lter B. The decomposition process, technically called analysis,

can be used to further split (b) into an even lower resolution version and corresponding

wavelet coe�cients. This cascade of analysis steps is often referred to as a �lter bank

algorithm.

The use of multi-resolution representations for curve editing was recently demonstrated

by Finkelstein and Salesin [FS94]. The idea is to allow for changes in the overall sweep of

the curve by modifying broad-scale wavelet coe�cients; �ne-scale changes can similarly be

made by modifying only �ne-scale wavelet coe�cients, as shown in �gure 9.2.

9.2 Nested spaces

We next derive the general components of multi-resolution analysis. Traditionally, MRA

has been formulated by taking translates and dilates of a single basis function. [?, ?] give a

mathematical introduction to this approach. [?] give a more applied introduction. However,

our goal to de�ne a variant of MRA that works without resort to translation and dilation.

Our motivation in this case is be able to apply MRA to function spaces de�ned over irregular

triangulations.

(a) Original curve. (b) Overall sweep. (c) Modified sweep. (d) Modified curve.

Figure 9.2 Multi-resolution editing



9.2. NESTED SPACES 105

Our starting point is setting of chapter 7. Given an initial triangulation T = T 0, we

associate a sequence of triangulation T j related by

T j+1 = D(T j)

where D splits each triangle into four similar triangles. Associated with each triangulation

T j is a a set of basis functions. These basis functions

�ji (t) = F [nj; ei](t)

are often referred to as scaling functions. For a �xed j, these functions, �j(t), are the basis

functions associated with the jth level of the subdivision process. The span of these basis

function is a spline space, V j ,

V j := Span(�j(t))

The subdivision process forces these spaces to be nested; that is,

V 0 � V 1 � � � � :

The result is a hierarchy of linear spaces de�ned over the initial triangulation T 0. The basis

functions for these spaces are related by the matrix equation:

�j(t) = �j+1(t)Sj (9:1)

where Sj is shorthand for S[T j].

We next wish to form a basis for V j+1 that is an extension of �j(t), the basis for V j . To

this end, we write �j+1(t) in block form as

�j+1(t) = (Oj+1(t) N j+1(t)): (9:2)

were the Oj+1(t) consists of all scaling functions �j+1i (t) associated with the \old" vertices

of T j and N j+1(t) consists of the remaining scaling functions associated with the \new"

vertices of T j+1 added at midpoints of edges of T j. Equation 9.1 can also be expressed in

block form:

�j(t) = (Oj+1(t) N j+1(t))

0
B@ Sj

O

Sj
N

1
CA : (9:3)

Instead of using Oj+1(t) and N j+1(t) as the basis for V j+1, we use �j(t) and N j+1(t) as

the new basis. This basis is hierarchical since a function f j+1(t) in V j+1 is expressed as

f j+1(t) = f j(t) + f j� (t)
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where f j(t) is in the span of �j(t) and f j�(t) is in span of N j+1(t). Using this hierarchical

representation, projection of f j+1(t) in to the lower detail space V j consists of forming f j(t).

9.3 Orthogonal spaces

Hierarchical bases provide a convenient means of building multi-resolution approximations

to a function. Recall that the goal of MRA is to provide a low resolution version of the

object that is a good approximation to the original object with the magnitude of each

wavelet coe�cient measuring the error introduced by that coe�cient. If the \detail" space

is orthogonal to the low resolution space, then the low resolution approximation is \best" in

a least squares sense. Let us brie
y explain why.

The inner product of a pair of functions f; g is

hf; gi :=
Z
t
f(t)g(t)dt

Given a high resolution space V j+1 and a low resolution space V j, let the \detail" space be

the space orthogonal to V j in V j+1,V j
?,

V j
? = ff 2 V j+1 j hf; gi = 0 8g 2 V jg:

For f j+1(t) is in V j+1, denote the projection of f j+1(t) into the space V j and V j

?,

f j+1(t) = f j(t) + f j?(t):

f j(t) is the best approximation to f j+1(t) in the sense that it minimizes the least squares

residual

hf j+1 � f j; f j+1 � f ji:

To ensure the \best" projection in V j, we orthogonalize our hierarchical basis. Specif-

ically, we replace the basis functions N j+1(t) by their projection into V j

?. The resulting

functions 	j(t) form a basis for V j
?. Expressed in matrix form,

	j(t) = N j+1(t)� �j(t)��j : (9:4)

The resulting functions 	j(t) are pre-wavelets since they span V j
? but they are not mutually

orthogonal. If f j+1(t) is expanded in terms of the �j(t) and the 	j(t), then the restriction
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of f j+1(t) to the �j(t) is guaranteed to be the best approximation to f j+1(t) in V j in a least

squares sense.

The coe�cients ��j are the solution to the linear system formed by taking the inner

product of each side of equation 9.4 with �j(t).

h�j(t);�j(t)i��j = h�j(t);N j+1(t)i;

= (Sj)T h�j+1(t);N j+1(t)i: (9.5)

The second line follows from the �rst by equation 9.1 and the linearity of inner products.

h�j(t);�j(t)i is a matrix whose entries are inner products of pairs of elements in �j+1(t).

h�j+1(t);N j+1(t)i is a similar matrix. [DLW94] give a direct method for computing entries

of these matrices.

9.4 Filter banks

The analysis �lters and their inverse synthesis �lters can be conveniently expressed using

block matrix equations. Let 	j(t) denote the row matrix of pre-wavelets spanning V j
?.

Expand �j+1(t) into (Oj+1(t) N j+1(t)) as in equation 9.2. By equations 9.3 and 9.4, these

bases must related by:

�
�j(t) 	j(t)

�
=
�
Oj+1(t) N j+1(t)

�0B@ Sj
O �Sj

O��
j

Sj
N 11� Sj

N��
j

1
CA : (9:6)

The synthesis �lters Sj and Qj are the columns of the change of basis matrix. The rows of

the inverse of this matrix are exactly the analysis �lters Aj and Bj.

From a practical standpoint, it is critical that the analysis and synthesis matrices are

sparse. To achieve linear time decomposition and reconstruction, they must each have a

constant number of non-zero entries in each row. If Sj and ��j are sparse, then Qj is sparse.

Unfortunately, the analysis �lters derived from the inverse of the matrix need not be sparse.

For interpolating subdivision schemes such as linear subdivision and the C1 \butter
y"

scheme of Dyn et. al. [DGL90], the situation is much improved. Such interpolating schemes

have the property that Sj
O is exactly the identity matrix. In this case, equation 9.6 simpli�es

greatly. The resulting synthesis �lters are:

�
Sj Qj

�
=

0
B@ 11 ���j

Sj
N 11 � Sj

N��
j

1
CA :
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The inverse analysis �lters Aj and Bj are:

0
B@ Aj

Bj

1
CA =

0
B@ 11 � ��jSj

N ��j

�Sj
N 11

1
CA

If Sj and ��j are sparse, then all of these �lters are also sparse. The situation is less desirable

for B-spline like schemes such as Loop's scheme and Catmull-Clark surfaces. For these

schemes, the synthesis �lters are sparse, but the analysis �lters are dense. Making these

schemes e�cient for multiresolution analysis is a topic of future research.

Having determined the analysis �lters, they can be used to decompose a function f j+1(t)

in V j+1 given by

f j+1(t) =
X
i

f j+1i �j+1i (t) (9:7)

into a lower resolution part in V j plus a detail part in V j
?

f j+1(t) =
X
i

f ji �
j
i (t) +

X
i

gji 
j
i (t)

as follows. Let F j and Gj denote the matrices of coe�cients corresponding to the f ji and the

gji . We now write Equation 9.7 in matrix form and substitute the de�nition of the analysis

�lters:

f j+1(t) = �j+1(t) F j+1

=
�
�j(t) 	j(t)

�0B@ Aj

Bj

1
CAF j+1

= �j(t)Aj F j+1 +	j(t)Bj F j+1

and therefore

F j = Aj F j+1 Gj = Bj F j+1:

Of course, the analysis �lters Aj�1 and Bj�1 can now be applied to F j to yield F j�1 and

Gj�1 and so on. A similar argument shows that F j+1 can be recovered from F j and Gj using

the synthesis �lters:

F j+1 = Sj F j +Qj Gj:
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