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Last Time:
Neural Generative Models
for Shapes




Generative Model (Unconditional)

Given training data, generate new samples from the same distribution:

Training data ~ p4a4(X) Generated samples™ p,  4ei(X)

Objective: learn a p,  4.(X) that matches p4,..(x).



Conditional Generative Model

e Data: (x, y) where x is a condition and y is the corresponding content.

Scene Graph
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Objective: learn a p,, 4.(Y|x) that matches p ... (y[x).



How to Learn Generative Models

Explicitly modeling data
probabilistic density,

learn a network pg(x) that
maximize data probability

Implicitly modeling
probabilistic density,

e.g. learn a network that
scores the “realness” of
the data, f4(x)

=)

Markov chain
Autoregressive models
Variational autoencoder
(VAE)

Flow-based models
Energy based models

Generative adversarial
network (GAN)
Score-based generative



Auto-Encoder

Reconstructed
11— Ideally they are identical. ------------------ > input
x ~ x’
Bottleneck!

Encoder Decoder ,
* 9¢ fo | ==

An compressed low dimensional
representation of the input.

Task: Learn to encode the input and decode itself
Reconstruction loss: measuring the distance between the input/output



Volumetric AE
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CoRR 2016

Generative and Discriminative Voxel Modeling with Convolutional Neural Networks
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Point Cloud AE

Encoder: PointNet (N*3 - L)
Decoder: MLP (L 2 3N - N*3)

ICML, 2018, Learning Representations and Generative Models for
3D Point Clouds, Panos Achlioptas, et. al.



Decoding/Generation

Latent vectors z Generated Shapes

Generator/Decoder: generating shapes from latent vectors



Making the Network Generative

 VVariational Auto-Encoder (VAE): Learn a distribution that
approximates the data distribution of true 3D structures

P(X) = Pg(X)

maximize P(X) = / P(X|z; 0)P(z)dz
-

maximize E..o [log P(X|z)]|— D [Q(z|X)||P(z)]

z should reconstruct
X, given that it was
drawn from Q(z|X)

Assuming z’s follow a
normal distribution
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Variational Auto-Encoder

Sample x|z from $|Z ~ Ma:|za Ea:|z)

2N

y’x|z mlz

Decoder network

po(z|2)

(parameters )

Z

Decoder

Image Credit: Stanford CS231N .



Generating New Samples & Interpolation
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Generative and Discriminative Voxel Modeling with Convolutional Neural Networks




Parametric Decoder: AtlasNet

representation 3D points representation
. % —| M  |—
— MLP T e 00 Sampled E
'S X ] L
o o 2D point

Given that the output points form a smooth surface, enforce such a
parametrization in input. For each point (u, v) on the parameterization,
MLP([z, uv]) -> point

Generated
Latent shape Generated Latent shape H 3D point

Also, you can get Mesh!

AtlasNet: A Papier-Mach”e Approach to Learning 3D Surface
Generation, CVPR 2018 13



AutoEncoding SDF: Deep SDF

Comparison with Octree

Code

SDF

(x,y,2)

Decoder

TNl

(1L
| | ,.

(a) Ground-truth  (b) Our Result (c) [22]-25 patch  (d) [22]-sphere

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019 14



Issues for Autoencoders

- bl
w  —> Encoder = F4d => Decoder —>| 4w .;

Sample from P(z)
Standard Gaussian

Suffered from blurry issues.

Why? Loss function (L2).
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Generative Adversarial Networks (GANSs)

Real / Fake

Distinguish real samples from fake

D
samples
G Transform noise into a realistic
T ERL I'Y. e
IIIIIIIIIII r;\:\;er armchair straight chair straight chair club chair deck chair rex chair | o Ifi. - o R
ol IPERFER
Str a\gm chair club chair club chair swivel chair bt:'[r::?\f armchair armchair club chair Z

:::::

ITBAI AL

Real data

cantilever ! § E g z
recliner 3 swivel chalr  swivel chair  armchair  folding chair rocking chair  club chair

Generator G and
discriminator D are
jointly trained
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Voxel GAN
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Figure 1: The generator of 3D Generative Adversarial Networks (3D-GAN)
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Figure 2: Shapes synthesized by 3D-GAN

Wu et. al., Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial

Modeling, NeurlPS 2016 .



Point Cloud GANSs

Ground Truth

R “?l;' ¢d:0.0028
?iﬁ'?'.{;;‘a?‘ﬂ emd:0.1649
~ L. e .

r-GAN I-GAN (AE-CD)

Lo i a s ¢d:0.0027
iy emd:0.0714

¢d:0.0010
emd:0.1198

ICML, 2018, Learning Representations and Generative Models for
3D Point Clouds, Panos Achlioptas, et. al.
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Flow-based 3D Generative Model

Discrete Point Flow Networks
From Univ. Grenoble Alpes

PointFlow (continuous
normalizing flow)
From Cornell

Note that bijectivity requires same dimenisionality.
From left to right: latent points to generated points
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Today:
Acquired Shapes &
Geometry Processing




How Shape Models Arise: Acquisition

* Acquired shapes:

21




From Point Clouds to Surfaces

physical acquired Reconstructed mesh or CAD
model point cloud 3D model

22



Acquired Shapes Overview |

* Shape acquisition
» geometric 3D models derived from 3D scanners or other sensors (e.g.,
cameras)
e Geometry processing
e techniques and algorithms for manipulating such raw geometric data to
transform them into useful representations
* Intermediate geometry representation: triangle meshes

® main questions:

* why are triangle meshes a suitable representation for geometry processing?
* what are the central processing algorithms?

* how can they be implemented efficiently?

23



Acquired Shapes Overview ||

* Triangle meshes are splined surfaces
* triangular patch surfaces of degree 1

* Triangle meshes can be big (1 billion vertices)

e need efficient techniques and algorithms for manipulating such acquired
geometric shapes

e Graphics hardware (GPUs) are able to consume meshes efficiently

A~
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Geometry Processing
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3D Models



A Geometry Processing Pipeline: Low Level Algorithms

Input Data

-

Surface smoothing for noise removal

/

\




A Geometry Processing Pipeline: Intermediate Algorithms

Simplification for complexity reduction R
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A Geometry Processing Pipeline: High Level Algorithms

-

Freeform and multiresolution modeling

L X

¢

N

CAD model generation

S

~

Deformation and editing

-

Extractlng shape structure

* keypoint extraction
* segmentation
e skeleton inference

29



Always Trade-Offs for a Representation
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What is a Good Mesh?
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What is a Good Mesh?

* Equal edge lengths
* Equilateral triangles

* VValence close to 6
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What is a Good Mesh?

Equal edge lengths
Equilateral triangles

Valence close to 6

Uniform vs. adaptive sampling
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What is a Good Mesh?

* Equal edge lengths

* Equilateral triangles

* Valence close to 6

* Uniform vs. adaptive sampling

* Feature preservation

ok
s e T
_“,"‘v"‘:é‘#‘lav
S Byt
o)




.
-
(Vg
Q
=
O
O
O
O
(O
“
.
(qu)
=

* Equal edge lengths

* Equilateral triangles
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* VValence close to 6

* Un

adaptive sampling

iform vs

* Feature preservation

* Alignment to curvature lines

IC

. anisotrop

* |sotropic vs
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What is a Good Mesh?

* Equal edge lengths

* Equilateral triangles

* Valence close to 6

* Uniform vs. adaptive sampling
* Feature preservation

* Alignment to curvature lines

* |sotropic vs. anisotropic

* Triangles vs. quadrangles
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Key Topics: Parametrization

2D parameter domain (u,v)

A
O ELET

bl RS
e

A o RS
’;&;ﬂ‘rv?! TV
VIERD

=)
S
w@’f"i{é} IS
e

.‘: 5 — T
;ﬂmﬁ 4r“,b,¢‘*:§ns@ N
/

A WE iy ]
I/ R T i
) fﬁﬁ?‘["“ Nat ég{ ‘ ‘&3‘@\'

|

i 7 = B AT
N S

/]
=] <
W

L

LM

4 (»)41" ¥l
VAo

]
A

I

o
TR R L MR
AN S
[

L
}m{%@' ,

SN
RO R

LRSS A ot
IR L AT OO
R AR En.g' L
‘%Vavgﬂi}&lﬁ;%‘%?.%%'

boundary -



Application -- Texture Mapping
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Key Topics: Symmetry Detection




Key Topics: Deformation / Manipulation
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Point Clouds

* Simplest representation: only points, no connectivity

 Collection of (x,y,z) coordinates, possibly with normals

Stanford bunny



Stanford Bunny




Point Clouds

* Simplest representation: only points, no connectivity
 Collection of (x,y,z) coordinates, possibly with normals

* Points with orientation are called surfels




Point Clouds

Simplest representation: only points, no connectivity

Collection of (x,y,z) coordinates, possibly with normals

Points with orientation are called surfels

Several limitations:
* no simplification or subdivision
* no direct smooth rendering
* no topological information




Point Clouds

* Simplest representation: only points, no connectivity
 Collection of (x,y,z) coordinates, possibly with normals
* Points with orientation are called surfels

e Several limitations:
* no simplification or subdivision
* no direct smooth rendering
* no topological information
* weak approximation power:

* Piecewise linear approximation
— Error is O(h?)
25% 6.5% 1.7% 0.4%




Point Clouds

* Simplest representation: only points, no connectivity
 Collection of (x,y,z) coordinates, possibly with normals
* Points with orientation are called surfels

e Several limitations:
* no simplification or subdivision
* no direct smooth rendering
* no topological information

« weak approximation power: O(h) for point clouds
* need square number of points for the same approximation power as meshes



Point Clouds

Simplest representation: only points, no connectivity

Collection of (x,y,z) coordinates, possibly with normals

Points with orientation are called surfels

Several limitations:

* no Simplification or subdivision
no direct smooth rendering
no topological information
weak approximation power
noise and outliers




Why Point Clouds?

1) Typically, that’s the only thing that’s available from a large class of sensors

2) lIsolation: sometimes, easier to handle (esp. in hardware).

Fracturing Solids Fluids




Why Point Clouds?

* Typically, that’s the only thing that’s available

Nearly all 3D scanning devices produce point clouds
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Surface Scanning Basics

Major types of 3D scanners

oRange (emission-based) scanners
o Time-of-flight laser scanner
o Phase-based laser scanner

oTriangulation
o Laser line sweep
o Structured light

o e Stereo / computer vision
o Passive stereo
o Active stereo / space-time stereo



Time of Flight Scanners

& ‘

sensor

1. Emit a short short pulse of laser

2. Capture the reflection.

3. Measure the time it took to come back.
cl’

D = - c: speed of light (= 299 792 458 m/s)

Need a very fast clock: e.g. 1GHz achieves 0.15m (15cm) accuracy.



Time of Flight Scanners

laser

sensor -7

Emit a short short pulse of laser

Capture the reflection.

Measure the time it takes to come back.

Need a very fast clock.

Main advantage: can be done over long distances.
Used in terrain scanning.

ouewNRE



Time of Flight Scanners




Phase-Based Range-Scanners

laser

sensor -7

1. Instead of a pulse, emit a continuous phase-modulated beam
2. Capture the reflection
3. Measure the phase-shift between the output and input signals

Output: e(t)=e-{1+sin[%-t]} Input: s(t)=e -|:1+sin(;‘—n°t—¢ﬂ

F: Modulation frequenc
9 y @: Phase delay arising from the object’s distance

e: emitted mean power



Phase-Based Range-Scanners

LnhEwneE

aser pm———
o W
T

Instead of a pulse, emit a continuous phase-modulated beam

Capture the reflection

Measure the phase-shift between the output and input signals.

From the phase-shift, the distance can be computed up to modulation period
No fast clock required, greater frequency and accuracy but shorter range

e.g. 1,016,727 vs. 50,000 (ToF) points per second

up to 79 meters vs. hundreds of meters



Range-Scanners

laser
sensor

1. Typically, range scanners by themselves provide limited accuracy (noise, outliers,
uneven sampling).
2. May require a lot of post-processing to get a good sampling.




Triangulation-Based Methods

Add a controllable light source (e.g., laser)

Add a photometric sensor (e.g., camera)

Record the projected feature position for a reference plane
Change in recording position can be used to recover the depth.

B wnN e

Intuition: the depth is related to the shift in the camera plane.




Triangulation-Based Methods

Laser

1. Add a controllable light source (e.g., laser) CCD/PSD - Sensor
2. Add a photometric sensor (e.g., camera) 5
3. Record the projected feature position for a reference plane Y
4. Change in recording position can be used to recover the depth.
L
1. Using Dz, ECand ZCED, compute / DCE = o %
2. Using o, g and BC = BE — CE, compute AB ¢ fons
3. The depth LE =LB + AB 3 %
B
DZI A Object




Triangulation-Based Methods

Laser

1. Add a controllable light source (e.g., laser)
2. Add a photometric sensor (e.g., camera) CCD/PSD - Sensor
3. Record the projected feature position for a reference plane 5
4. Change in recording position can be used to recover the N
depth.
5. If well-calibrated, can lead to extremely accurate depth
measurements
Lens
DZI Object




Triangulation-Based Methods

Add a controllable light source (e.g., laser)

Add a photometric sensor (e.g., camera)

Record the projected feature position for a reference plane

Change in recording position can be used to recover the depth.

If well-calibrated, can lead to extremely accurate depth measurements

LhEwneE

Similar technology used to scan Michelangelo’s David’s left eye:
David 5m statue to 0.25mm accuracy. source Levoy et al.



Triangulation-Based Methods (Laser)

Add a controllable light source (e.g., laser)

Add a photometric sensor (e.g., camera)

Record the projected feature position for a reference plane

Change in recording position can be used to recover the depth.

If well-calibrated, can lead to extremely accurate depth measurements

o e e

Main problem: slow and expensive




Structured-Light Scanners

Same general idea as triangulation based scanner.
Main Idea: Replace laser with projector. Project stripes instead of sheets.

Challenge: Need to identify which (input/output) lines correspond.




Structured-Light Scanners

Same basic idea as triangulation-based scanner. Use a projector.

Main Idea: Project multiple stripes to identify the position of a point.

WL

log(N) projections are sufficient to identify N stripes.




Structured-Light Scanners

Same basic idea as triangulation-based scanner. Use a projector.

Main Idea: Project multiple stripes to identify the position of a point.

L0 LHEIARRT H

log(N) projections are sufficient to identify N stripes.

Advantage: cost and speed

Disadvantage: need controlled
conditions & projector calibration.




Computer Vision Based Techniques

Depth from stereo:

left scene right scene
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Given 2 images, shift in the x-axis is related to the depth.



Computer Vision Based Techniques

Depth from stereo:

left scene right scene

3D perception

Given 2 images, shift in the x-axis is related to the depth.
Main challenge: establishing corresponding points across images: very difficult.



Computer Vision Based Techniques

Depth from blur:

Can approximate depth by detecting how blurry part of the image is for a known focal
length.



Multitude of Other Methods

Contact

Shape acquisition

I

N

Non-destructive

N\

CMM Jointed arms

Destructive Reflettwe

Slicing

Non-nptu al

Micnma\e radar Sonar

Non-umta(,t

Transmles'we

lndustrlal CT

Optical

Passive

e

Active

Stereo e e s Depth from .- 0o radar Active depth
focus/defocus vns &mm defocus
Shape from Shape from . . N
shading silhouettes Triangulation Active stereo
Y
Interferometry
Moire  Holography

Non-exhaustive taxonomy of 3D acquisition methods.



Scanning for Everyone: Microsoft Kinect Scanner

Low-cost ($200) 3D scanner — gadget for Xbox.

Allows to acquire Image (640 x 480) and 3D geometry (300k points) at 30 FPS.

Uses infrared active illumination with an infrared sensor and depth-from blur.
accuracy of ~1Imm (at 0.5m distance) to 4cm (at 2m distance).



Microsoft Kinect Scanner

Low-cost ($200) 3D scanner — gadget for Xbox.

Depth [em]
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4100
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Allows us to acquire Image (640 x 480) and 3D geometry (300k points) at 30 FPS.

Uses infrared active illumination with an infrared sensor and depth-from blur.
accuracy of ~1Imm (at 0.5m distance) to 4cm (at 2m distance).



Affordable 3D Scanners

Microsoft Kinect

Intel RealSense
iSense 3D for iPad
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Point Cloud Processing




3D Point Cloud Processing

Typically point cloud sampling of a shape is insufficient for most
applications. Main stages in processing:

1. Outlier removal — throw away samples from non-surface areas
If we have multiple scans, align them
Smoothing — remove local noise
Estimate surface normals

Surface reconstruction

* Implicit representation

* Triangle mesh extraction

e W




Normal Estimation and Outlier Removal

Fundamental problems in point cloud processing.

Although seemingly very different, can be solved with the same general
approach — look at the “shape of neighborhoods” ...




Normal Estimation

Assume we have a clean sampling of the surface. OK, start with a curve.

Our goal is to find the best approximation of the tangent direction, and
thus of the normal to the curve.



Normal Estimation

Assume we have a clean sampling of the surface. OK, start with a curve.

Our goal is to find the best approximation of the tangent direction, and
thus of the normal to the line.



Normal Estimation

Assume we have a clean sampling of the surface. OK, start with a curve.

Goal: find best approximation of the normal at P.

Method: Given line / through P with normal n, for another point p;:

d(pi,1)* = == = ((pi = P)'n) if || = 1



Normal Estimation

Assume we have a clean sampling of the surface. OK, start with a curve.

Goal: find best approximation of the normal at P.

k
Method: Find n, minimizing > "d(p;,1)* for a set of k points near P (e.g.
k nearest neighbors of P). i=1

Mope = arg min > ((pi — P)"n)?
n|=
1=1



Normal Estimation

Assume we have a clean sampling of the surface. OK, start with a curve.
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Normal Estimation

Assume we have a clean sampling of the surface. OK, start with a curve.

The normal n must be an eigenvector of the matrix:
k
Cn = An C=) (pi—P)(p; — P)"
i=1
Moreover, since: ”
_ : T.\2 __ : T
Nopy = arg min ((p; — P)"n)* =arg min n* Cn

Injl=1 <= |n||=1



Normal Estimation

Assume we have a clean sampling of the surface. OK, start with a curve.

The normal n must be an eigenvector of the matrix:
k
Cn = An C=) (pi—P)(p; — P)"
i=1

So, n,,, must be the eigenvector corresponding to the smallest
eigenvalue of C.



Normal Estimation

Method Outline (PCA):

1. Given a point P in the point cloud, find its k nearest neighbors.

2. Compute (' = Zle (pi — P)(pi — P)T

3. n:eigenvector corresponding to the smallest eigenvalue of C.



Normal Estimation

Method Outline (PCA):

1. Given a point P in the point cloud, find its k nearest neighbors.

2. Compute (' = Zle (pi — P)(pi — P)T

3. n:eigenvector corresponding to the smallest eigenvalue of C.

k k
, |
Variant on the theme:use  C'=) (p; — P)(pi — P)", P= A Z i

=1



Normal Estimation

Critical parameter: k. Because of uneven sampling typically fix a radius r,

and use all points inside a ball of radius r.

How to pick an optimal »?



Normal Estimation

Collusive noise

Because of noise in the data, small r may lead to underfitting.



Normal Estimation

Curvature effect

=

~— -

Due to curvature, large r can lead to estimation bias.



Normal Estimation

— 02
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Epr

Estimation error under Gaussian noise for different values of curvature (2D)



Normal Estimation

A similar but involved analysis results in 3D,
error <O+ O, /(r*\Jep)+O1)o? / r*

A good choice of r is,

1/3
y= l(: o’ te,0°
K 1\@ 2~ n




Normal Estimation — Neighborhood Size

1x noise 2X noise



Outlier Removal

Goal: remove points that do not lie close to a surface.



Outlier Estimation

P
@
0 b
p v P @
o ! o O
k
From the covariance matrix: C' = Z(pz — P)(p; — P)Twe have:
i=1
for any vector v, the Rayleigh quotient:
T k
v' Cv Z T \2 .
= p;, — P) v) it ||v|| =1
Ty = 2 (= P)Te)" it o
Y J—

k
= Z (Ilps — P cos(6;))?

Intuitively, vmin, maximizes the sum of angles to each vector (pi — P).



Outlier Estimation

. . . vl'Cw
If all the points are on a line, then  min
v vl

= Ain(C) =0 and X\, (C) islarge.

There exists a direction along which the point cloud has no variability.

If points are scattered randomly, then: A\ (C) = Apin (C)

f‘——"'-' - b’ )
TR T . 8 :
_________ Q---@ \: o® .,r’, )\1 1
z oo N
2 amall A2
A2



Outlier Estimation

T
If all the points are on a line, then  min — TCU = Amin(C) = 0 and X\, (C) is large.
v VU

There exists a direction along which the point cloud has no variability.

If points are scattered randomly, then: A ax (C) & Apin (C)

. 1
Thus, can remove points where I > ¢ for some threshold.
2

: A
In 3D we expect two zero eigenvalues, so use )\_2 > ¢ for some threshold.
3



3D Point Cloud Processing

Typically point cloud sampling of a shape is insufficient for most
applications. Main stages in processing:

1. Outlier removal — throw away samples from non-surface areas
If we have multiple scans, align them
Smoothing — remove local noise
Estimate surface normals

Surface reconstruction

* Implicit representation

* Triangle mesh extraction

e W




From Point Clouds to
Surfaces




3D Point Cloud Reconstruction

Main Goal:

Construct a polygonal (e.g. triangle mesh) representation of the point
cloud.

Reconstruction

algorithm
PCD > curve/ surface




3D Point Cloud Reconstruction

Main Problem:

Data is unstructured. E.g. in 2D the points are not ordered.

Reconstruction

algorithm

PCD curve/ surface

v



3D Point Cloud Reconstruction

Main Problem:

Data is unstructured. E.g. in 2D the points are not ordered.
Inherently ill-posed (aka difficult) problem.

Reconstruction

algorithm

PCD curve/ surface

v



3D Point Cloud Reconstruction

Reconstruction through Implicit models.

D

Parametric Models

Particle Models

- -
R .y

-
Implicit Models




Implicit Surfaces

Given a function f(x), the surface is defined as:

{x,s.t.f(x) =0}

flz,y) =a* +y* —r°



Implicit Surfaces

Converting from a point cloud to an implicit surface:

Simplest method:
1. Given a point x in space, find nearest point p in PCD.
2. Set f(x) — (g; — p)Tnp — signed distance to the tangent plane.



Implicit Surfaces

Converting from a point cloud to an implicit surface:

Simplest method:
1. Given a point x in space, find nearest point p in PCD.
2. Set f(x) — (g; — p)Tnp — signed distance to the tangent plane.



Implicit Surfaces

Converting from a point cloud to an implicit surface:

\o\'%/o/

Simplest method:
1. Given a point x in space, find nearest point p in PCD.

2. Set f(x) — (g; — p)Tnp — signed distance to the tangent plane.
3. Note: need consistently oriented normals.

PCA only gives normals up to orientation



Implicit Surfaces

Converting from a point cloud to an implicit surface:

\.\.3»4/
9 ®

Simplest method:

1. Given a point x in space, find nearest point p in PCD.

2. Set f(x) = (x — p)Tnp — signed distance to the tangent plane.

3. Note: need consistently oriented normals. In general, difficult problem,
but can try to locally connect points and fix orientations.



Implicit Surfaces

Converting from a point cloud to an implicit surface:

Simplest method:
1. Given a point x in space, find nearest point p in PCD.
2. Set f(x) — (g; — p)Tnp — signed distance to the tangent plane.

Note: many more advanced methods exist:
e.g., Moving Least Squares (MLS)



Marching Cubes

Converting from implicit to explicit representations.

Goal: Given an implicit representation: {X, S.t.f(X) — O}

Create a triangle mesh that approximates the surface.

[James Sharman]




Marching Squares (2D)

Given a function:  f(x)

 f(x) < Oinside
* f(x) > Ooutside

1. Discretize space.

2. Evaluate f(x)on a grid.




Marching Squares (2D)

Given a function: f(x)

 f(x) < Oinside
* f(x) > Ooutside

Discretize space.
Evaluate f(x) on a grid.

Classify grid points (+/-)

Classify grid edges

Compute intersections

o ok~ W E

Connect intersections



Marching Squares (2D)

Computing the intersections:

* Edges with a sign switch contain
intersections.

f(@1) <0, f(z2) > 0=

f@1 +t(ze —21)) =0
for some 0 <t <1

* Simplest way to compute t: assume f is
linear between x1 and x2:

f(x1)
f(xa) — f(x1)

t —




Marching Squares (2D)

Connecting the intersections:

* Grand principle: treat each cell
separately!

* Enumerate all possible inside/outside
combinations.




Marching Squares (2D)

Connecting the intersections:

* Grand principle: treat each cell separately!
* Enumerate all possible inside/outside combinations.
 Group those leading to the same intersections

O
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Marching Squares (2D)

Connecting the intersections:

* Grand principle: treat each cell separately!

* Enumerate all possible inside/outside combinations.
 Group those leading to the same intersections.

* Group equivalent after rotation.

* Connect intersections

BESEIE




Marching Squares (2D)

Connecting the intersections:

Ambiguous cases:

BB P

Break contour Join contour

2 options:
1) Can resolve ambiguity by subsampling inside the cell.
2) If subsampling is impossible, pick one of the two possibilities.



Marching Cubes (3D)

Same basic machinery applies to 3D.
cells become cubes (voxels)
lines become triangles

* 256 different cases
e 15 after symmetries

&
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Marching Cubes (3D)

Same basic machinery applies to 3D.
cells become cubes (voxels)
lines become triangles

e 256 different cases

e 15 after symmetries

* 6 ambiguous cases (in boxes)

* Inconsistent triangulations can lead to holes and wrong topology.

= | B




Marching Cubes (3D)

Same basic machinery applies to 3D.
cells become cubes (voxels)
lines become triangles

e 256 different cases

e 15 after symmetries

* 6 ambiguous cases (in boxes)

* Inconsistent triangulations can lead to holes and wrong topology.
* More subsampling rules — leads to 33 unique cases.

lﬂd\

5 [
@ 13
T
s Case 131 Came 132 Case 133




Marching Cubes (3D)

Main Strengths:

* Very multi-purpose.
* Extremely fast and parallelizable.
e Relatively simple to implement.

Main Weaknesses:

e Can create badly shaped (skinny) triangles.
e Basic versions do not provide topological guarantees.
 Many special cases (implemented as big lookup tables).



Marching Cubes (3D)

Main Strengths:

* Very multi-purpose.

* Extremely fast and parallelizable.
e Relatively simple to implement.
* Virtually parameter-free

Main Weaknesses:

e Can create badly shaped (skinny) triangles.

* Basic versions do not provide topological guarantees.

* Many special cases (implemented as big lookup tables).
* No sharp features.



Marching Cubes (3D)

No sharp features.

s Ua U

1. Increasing grid resolution does not help

2. Normals do not converge.

3. Use normal information to find corners.
Special treatment for corners




That’s All
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