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for Shapes
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Generative Model (Unconditional)
Given training data, generate new samples from the same distribution:

Training data ~ pdata(x) Generated samples~ pmodel(x)

Objective: learn a  pmodel(x) that matches pdata(x). 
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Conditional Generative Model

• Data: (x, y) where x is a condition and y is the corresponding content.

Objective: learn a  pmodel(y|x) that matches pdata(y|x). 

Image generation based 
on scene-graph

Single-view 3D 
reconstruction

Shape completion
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How to Learn Generative Models

• Explicitly modeling data 
probabilistic density,               
learn a network p⍬(x) that 
maximize data probability 

• Implicitly modeling 
probabilistic density,      
e.g. learn a network that 
scores the “realness” of 
the data, f⍬(x)  

• Markov chain
• Autoregressive models
• Variational autoencoder

(VAE)
• Flow-based models
• Energy based models
• …

• Generative adversarial 
network (GAN)

• Score-based generative
• …
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Auto-Encoder

Task: Learn to encode the input and decode itself
Reconstruction loss: measuring the distance between the input/output
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Volumetric AE

Binary Cross-Entropy Loss: 

CoRR 2016
Generative and Discriminative Voxel Modeling with Convolutional Neural Networks
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Point Cloud AE

Encoder: PointNet (N*3  L)
Decoder: MLP (L  3N  N*3)

ICML, 2018, Learning Representations and Generative Models for 
3D Point Clouds, Panos Achlioptas, et. al.
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Decoding/Generation

Latent vectors z Generated Shapes

Generator/Decoder: generating shapes from latent vectors



maximize
𝑧𝑧 should reconstruct 
𝑋𝑋, given that it was 
drawn from 𝑄𝑄(𝑧𝑧|𝑋𝑋)

Assuming 𝑧𝑧’s follow a 
normal distribution

• Variational Auto-Encoder (VAE): Learn a distribution that 
approximates the data distribution of true 3D structures

Making the Network Generative

maximize

𝑃𝑃(𝑋𝑋) ≈ 𝑃𝑃𝑔𝑔𝑔𝑔(𝑋𝑋)
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Variational Auto-Encoder

Decoder

Image Credit: Stanford CS231N
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Generating New Samples & Interpolation

CoRR 2016
Generative and Discriminative Voxel Modeling with Convolutional Neural Networks
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Parametric Decoder: AtlasNet

Given that the output points form a smooth surface, enforce such a 
parametrization in input. For each point (u, v) on the parameterization,

MLP([z, uv]) -> point

Also, you can get Mesh!
AtlasNet: A Papier-Machˆe Approach to Learning 3D Surface 
Generation,  CVPR 2018
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AutoEncoding SDF: Deep SDF
Comparison with Octree

Decoder

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019 
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Issues for Autoencoders

Suffered from blurry issues.

Why? Loss function (L2).
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Generative Adversarial Networks (GANs)

Generator G and
discriminator D are
jointly trained
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Voxel GAN

Wu et. al., Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial 
Modeling, NeurIPS 2016
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Point Cloud GANs

ICML, 2018, Learning Representations and Generative Models for 
3D Point Clouds, Panos Achlioptas, et. al.
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Flow-based 3D Generative Model

Discrete Point Flow Networks
From Univ. Grenoble Alpes

PointFlow (continuous 
normalizing flow)
From Cornell

Note that bijectivity requires same dimenisionality.
From left to right: latent points to generated points



Today:
Acquired Shapes &

Geometry Processing
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• Acquired shapes:

21

How Shape Models Arise: Acquisition



From Point Clouds to Surfaces
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physical
model

acquired
point cloud

Reconstructed mesh or CAD 
3D model



• Shape acquisition
• geometric 3D models derived from 3D scanners or other sensors (e.g., 

cameras)

• Geometry processing
• techniques and algorithms for manipulating such raw geometric data to 

transform them into useful representations

• Intermediate geometry representation: triangle meshes
• main questions:

• why are triangle meshes a suitable representation for geometry processing?
• what are the central processing algorithms?
• how can they be implemented efficiently?

Acquired Shapes Overview I
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• Triangle meshes are splined surfaces
• triangular patch surfaces of degree 1

• Triangle meshes can be big (1 billion vertices)
• need efficient techniques and algorithms for manipulating such acquired 

geometric shapes

• Graphics hardware (GPUs) are able to consume meshes efficiently

Acquired Shapes Overview II
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Geometry Processing
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• Acquiring

• Analyzing/Repairing/Improving

• Manipulating
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What is Geometry Processing About?

3D Models
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A Geometry Processing Pipeline: Low Level Algorithms
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A Geometry Processing Pipeline: Intermediate Algorithms
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A Geometry Processing Pipeline: High Level Algorithms

Deformation and editing

Extracting shape structure

• keypoint extraction
• segmentation
• skeleton inference

CAD model generation
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Always Trade-Offs for a Representation

error

size



• Smoothness
• Low geometric noise

• Adaptive tessellation
• Low complexity

• Triangle shape
• Numerical robustness

Mesh Quality Criteria
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What is a Good Mesh?
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What is a Good Mesh?

• Equal edge lengths
• Equilateral triangles
• Valence close to 6
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What is a Good Mesh?

• Equal edge lengths
• Equilateral triangles
• Valence close to 6
• Uniform vs. adaptive sampling
• Feature preservation
• Alignment to curvature lines
• Isotropic vs. anisotropic
• Triangles vs. quadrangles
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Key Topics: Parametrization
3D space (x,y,z)

2D parameter domain (u,v)

boundary
boundary
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Application -- Texture Mapping



Key Topics: Segmentation
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Key Topics: Symmetry Detection



Key Topics: Deformation / Manipulation



Point Clouds
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• Simplest representation: only points, no connectivity
• Collection of (x,y,z) coordinates, possibly with normals

Point Clouds

Stanford bunny



Stanford Bunny



• Simplest representation: only points, no connectivity
• Collection of (x,y,z) coordinates, possibly with normals
• Points with orientation are called surfels

Point Clouds

Filip van Bouwel



• Simplest representation: only points, no connectivity
• Collection of (x,y,z) coordinates, possibly with normals
• Points with orientation are called surfels
• Several limitations:

• no simplification or subdivision
• no direct smooth rendering
• no topological information

Point Clouds

?

or



• Simplest representation: only points, no connectivity 
• Collection of (x,y,z) coordinates, possibly with normals
• Points with orientation are called surfels
• Several limitations:

• no simplification or subdivision
• no direct smooth rendering
• no topological information
• weak approximation power:

Point Clouds



• Simplest representation: only points, no connectivity
• Collection of (x,y,z) coordinates, possibly with normals
• Points with orientation are called surfels
• Several limitations:

• no simplification or subdivision
• no direct smooth rendering
• no topological information
• weak approximation power: for point clouds

• need square number of points for the same approximation power as meshes

Point Clouds



• Simplest representation: only points, no connectivity
• Collection of (x,y,z) coordinates, possibly with normals
• Points with orientation are called surfels
• Several limitations:

• no Simplification or subdivision
• no direct smooth rendering
• no topological information
• weak approximation power
• noise and outliers

Point Clouds



1) Typically, that’s the only thing that’s available from a large class of sensors
2) Isolation: sometimes, easier to handle (esp. in hardware).

Why Point Clouds?

Meshless Animation of Fracturing Solids 
Pauly et al., SIGGRAPH ‘05

Fracturing Solids Fluids

Adaptively sampled particle fluids,
Adams et al. SIGGRAPH ‘07



• Typically, that’s the only thing that’s available
Nearly all 3D scanning devices produce point clouds

Why Point Clouds?



Surface Scanning
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Major types of 3D scanners

oRange (emission-based) scanners
o Time-of-flight laser scanner
oPhase-based laser scanner

oTriangulation
o Laser line sweep 
o Structured light 

o• Stereo / computer vision 
oPassive stereo 
oActive stereo / space-time stereo 

Surface Scanning Basics



Time of Flight Scanners

1. Emit a short short pulse of laser
2. Capture the reflection.
3. Measure the time it took to come back.

c: speed of light (≈ 299 792 458 m/s)

Need a very fast clock: e.g. 1GHz achieves 0.15m (15cm) accuracy. 

Guinness record: AMD Bulldozer, 8.429 GHz



1. Emit a short short pulse of laser
2. Capture the reflection.
3. Measure the time it takes to come back.
4. Need a very fast clock.
5. Main advantage: can be done over long distances.
6. Used in terrain scanning.

Time of Flight Scanners



Time of Flight Scanners

source: Michael Wand



Phase-Based Range-Scanners

1. Instead of a pulse, emit a continuous phase-modulated beam
2. Capture the reflection
3. Measure the phase-shift between the output and input signals

Output: Input:



Phase-Based Range-Scanners

1. Instead of a pulse, emit a continuous phase-modulated beam
2. Capture the reflection
3. Measure the phase-shift between the output and input signals.
4. From the phase-shift, the distance can be computed up to modulation period
5. No fast clock required, greater frequency and accuracy but shorter range

e.g. 1,016,727 vs. 50,000 (ToF) points per second

up to 79 meters vs. hundreds of meters



Range-Scanners

1. Typically, range scanners by themselves provide limited accuracy (noise, outliers, 
uneven sampling).

2. May require a lot of post-processing to get a good sampling. 



Triangulation-Based Methods

1. Add a controllable light source (e.g., laser)
2. Add a photometric sensor (e.g., camera)
3. Record the projected feature position for a reference plane
4. Change in recording position can be used to recover the depth.

Intuition: the depth is related to the shift in the camera plane.



Triangulation-Based Methods

1. Add a controllable light source (e.g., laser)
2. Add a photometric sensor (e.g., camera)
3. Record the projected feature position for a reference plane
4. Change in recording position can be used to recover the depth.

1. Using Dz, EC and CED, compute DCE =  
2. Using    , and BC = BE – CE, compute AB 
3. The depth LE = LB + AB

A

B

C

D
E

L



Triangulation-Based Methods

1. Add a controllable light source (e.g., laser)
2. Add a photometric sensor (e.g., camera)
3. Record the projected feature position for a reference plane
4. Change in recording position can be used to recover the 

depth.
5. If well-calibrated, can lead to extremely accurate depth 

measurements



1. Add a controllable light source (e.g., laser)
2. Add a photometric sensor (e.g., camera)
3. Record the projected feature position for a reference plane
4. Change in recording position can be used to recover the depth.
5. If well-calibrated, can lead to extremely accurate depth measurements

Similar technology used to scan Michelangelo’s 
David 5m statue to 0.25mm accuracy.

David’s left eye:         
source Levoy et al. 

Triangulation-Based Methods



Triangulation-Based Methods (Laser)

1. Add a controllable light source (e.g., laser)
2. Add a photometric sensor (e.g., camera)
3. Record the projected feature position for a reference plane
4. Change in recording position can be used to recover the depth.
5. If well-calibrated, can lead to extremely accurate depth measurements

6. Main problem: slow and expensive



Structured-Light Scanners

Same general idea as triangulation based scanner.

Main Idea: Replace laser with projector. Project stripes instead of sheets.

Challenge: Need to identify which (input/output) lines correspond.

vs.



Structured-Light Scanners

Same basic idea as triangulation-based scanner. Use a projector.

Main Idea: Project multiple stripes to identify the position of a point.

log(N) projections are sufficient to identify N stripes.



Structured-Light Scanners

Same basic idea as triangulation-based scanner. Use a projector.

Main Idea: Project multiple stripes to identify the position of a point.

log(N) projections are sufficient to identify N stripes.

Advantage: cost and speed

Disadvantage: need controlled 
conditions & projector calibration.



Computer Vision Based Techniques

Depth from stereo:

Given 2 images, shift in the x-axis is related to the depth. 



Computer Vision Based Techniques

Given 2 images, shift in the x-axis is related to the depth. 
Main challenge: establishing corresponding points across images: very difficult.

P’

Depth from stereo:



Computer Vision Based Techniques

Depth from blur:

Can approximate depth by detecting how blurry part of the image is for a known focal 
length.



Multitude of Other Methods

Non-exhaustive taxonomy of 3D acquisition methods.

Rocchini et al. ‘01



Scanning for Everyone: Microsoft Kinect Scanner

Low-cost ($200) 3D scanner – gadget for Xbox. 

Allows to acquire Image (640 x 480) and 3D geometry (300k points) at 30 FPS.

Uses infrared active illumination with an infrared sensor and depth-from blur.
accuracy of ~1mm (at 0.5m distance) to 4cm (at 2m distance).



Microsoft Kinect Scanner

Low-cost ($200) 3D scanner – gadget for Xbox. 

Allows us to acquire Image (640 x 480) and 3D geometry (300k points) at 30 FPS.

Uses infrared active illumination with an infrared sensor and depth-from blur.
accuracy of ~1mm (at 0.5m distance) to 4cm (at 2m distance).
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Affordable 3D Scanners

Microsoft Kinect Google Tango

Intel RealSense
iSense 3D for iPad



Point Cloud Processing
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3D Point Cloud Processing

Typically point cloud sampling of a shape is insufficient for most 
applications. Main stages in processing:

1. Outlier removal – throw away samples from non-surface areas
2. If we have multiple scans, align them
3. Smoothing – remove local noise
4. Estimate surface normals
5. Surface reconstruction

• Implicit representation
• Triangle mesh extraction



Normal Estimation and Outlier Removal

Fundamental problems in point cloud processing.

Although seemingly very different, can be solved with the same general 
approach – look at the “shape of neighborhoods” …



Normal Estimation 

Assume we have a clean sampling of the surface. OK, start with a curve.

Our goal is to find the best approximation of the tangent direction, and 
thus of the normal to the curve. 



Normal Estimation 

Assume we have a clean sampling of the surface. OK, start with a curve.

Our goal is to find the best approximation of the tangent direction, and 
thus of the normal to the line. 



Normal Estimation 

Assume we have a clean sampling of the surface. OK, start with a curve.

Goal: find best approximation of the normal at P.

Method: Given line l through P with normal n, for another point pi:

P

n

Pi



Normal Estimation 

Assume we have a clean sampling of the surface. OK, start with a curve.

Goal: find best approximation of the normal at P.

Method: Find n, minimizing for a set of k points near P (e.g. 
k nearest neighbors of P).  

P

n

Pi



Normal Estimation 

Assume we have a clean sampling of the surface. OK, start with a curve.

Using Lagrange multiplier:

P

n

Pi



Normal Estimation 

Assume we have a clean sampling of the surface. OK, start with a curve.

Using Lagrange multiplier:

P

n

Pi



Normal Estimation 

Assume we have a clean sampling of the surface. OK, start with a curve.

The normal n must be an eigenvector of the matrix:

Moreover, since: 

P

n

Pi



Normal Estimation 

Assume we have a clean sampling of the surface. OK, start with a curve.

The normal n must be an eigenvector of the matrix:

So, nopt must be the eigenvector corresponding to the smallest 
eigenvalue of C.

P

n

Pi



Normal Estimation 

Method Outline (PCA):

1. Given a point P in the point cloud, find its k nearest neighbors.

2. Compute

3. n: eigenvector corresponding to the smallest eigenvalue of C.

P

n



Normal Estimation 

Method Outline (PCA):

1. Given a point P in the point cloud, find its k nearest neighbors.

2. Compute

3. n: eigenvector corresponding to the smallest eigenvalue of C.

P

n

Variant on the theme: use



Normal Estimation 

Critical parameter: k. Because of uneven sampling typically fix a radius r, 

and use all points inside a ball of radius r.

How to pick an optimal r?

P

n

r



Normal Estimation 

Because of noise in the data, small r may lead to underfitting. 

Collusive noise



Normal Estimation 

Due to curvature, large r can lead to estimation bias.

Curvature effect



Normal Estimation 

Estimation error under Gaussian noise for different values of curvature (2D)

source: Mitra et al. ‘042
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Normal Estimation 

source: Mitra et al. ‘04
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A similar but involved analysis results in 3D,

A good choice of r is,
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Normal Estimation – Neighborhood Size 

2x noise1x noise
source: Mitra et 
al. ‘04



Outlier Removal

Goal: remove points that do not lie close to a surface.



Outlier Estimation

From the covariance matrix:                                                       we have:

for any vector v, the Rayleigh quotient: 

Intuitively, vmin, maximizes the sum of angles to each vector                    .

P

PivPj



Outlier Estimation

If all the points are on a line, then      and                       is large. 

There exists a direction along which the point cloud has no variability.

P Pi

v

If points are scattered randomly, then: . 



Outlier Estimation

If all the points are on a line, then and                      is large. 

There exists a direction along which the point cloud has no variability.

P Pi

v

If points are scattered randomly, then: . 

Thus, can remove points where for some threshold. 

In 3D we expect two zero eigenvalues, so use     for some threshold. 



3D Point Cloud Processing

Typically point cloud sampling of a shape is insufficient for most 
applications. Main stages in processing:

1. Outlier removal – throw away samples from non-surface areas
2. If we have multiple scans, align them
3. Smoothing – remove local noise
4. Estimate surface normals
5. Surface reconstruction

• Implicit representation
• Triangle mesh extraction



From Point Clouds to 
Surfaces
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3D Point Cloud Reconstruction

Main Goal:

Construct a polygonal (e.g. triangle mesh) representation of the point 
cloud. 

PCD curve/ surface

Reconstruction 
algorithm



3D Point Cloud Reconstruction

Main Problem:

Data is unstructured. E.g. in 2D the points are not ordered.

PCD curve/ surface

Reconstruction 
algorithm



3D Point Cloud Reconstruction

Main Problem:

Data is unstructured. E.g. in 2D the points are not ordered.
Inherently ill-posed (aka difficult) problem.

PCD curve/ surface

Reconstruction 
algorithm



3D Point Cloud Reconstruction

Reconstruction through Implicit models.



Implicit Surfaces

Given a function f(x), the surface is defined as:



Converting from a point cloud to an implicit surface:

Simplest method:
1. Given a point x in space, find nearest point p in PCD.
2. Set     – signed distance to the tangent plane.

p

Implicit Surfaces

Hugues Hoppe: Surface reconstruction from unorganized points  



Converting from a point cloud to an implicit surface:

Simplest method:
1. Given a point x in space, find nearest point p in PCD.
2. Set – signed distance to the tangent plane.

p

Implicit Surfaces

Hugues Hoppe: Surface reconstruction from unorganized points  



Implicit Surfaces

Converting from a point cloud to an implicit surface:

Simplest method:
1. Given a point x in space, find nearest point p in PCD.
2. Set – signed distance to the tangent plane.
3. Note: need consistently oriented normals.

PCA only gives normals up to orientation
Hugues Hoppe: Surface reconstruction from unorganized points  



Implicit Surfaces

Converting from a point cloud to an implicit surface:

Simplest method:
1. Given a point x in space, find nearest point p in PCD.
2. Set – signed distance to the tangent plane.
3. Note: need consistently oriented normals. In general, difficult problem, 

but can try to locally connect points and fix orientations. 
Hugues Hoppe: Surface reconstruction from unorganized points  



Converting from a point cloud to an implicit surface:

Simplest method:
1. Given a point x in space, find nearest point p in PCD.
2. Set – signed distance to the tangent plane.

p

Implicit Surfaces

Note: many more advanced methods exist: 
e.g., Moving Least Squares (MLS) 



Marching Cubes

Converting from implicit to explicit representations.

Goal: Given an implicit representation:

Create a triangle mesh that approximates the surface. 

One of the most cited computer graphics papers of all time.
Lorensen and Cline, SIGGRAPH ‘87



Marching Squares (2D)

Given a function:

• inside

• outside

1. Discretize space.

2. Evaluate on a grid. 



Marching Squares (2D)

Given a function:

• inside

• outside

1. Discretize space.

2. Evaluate on a grid.

3. Classify grid points (+/-)

4. Classify grid edges 

5. Compute intersections

6. Connect intersections 



Marching Squares (2D)

Computing the intersections:

• Edges with a sign switch contain 
intersections.

• Simplest way to compute t: assume f is 
linear between x1 and x2:



Marching Squares (2D)

Connecting the intersections:

• Grand principle: treat each cell 
separately!

• Enumerate all possible inside/outside 
combinations.



Marching Squares (2D)

Connecting the intersections:

• Grand principle: treat each cell separately!
• Enumerate all possible inside/outside combinations.
• Group those leading to the same intersections



Marching Squares (2D)

Connecting the intersections:

• Grand principle: treat each cell separately!
• Enumerate all possible inside/outside combinations.
• Group those leading to the same intersections.
• Group equivalent after rotation.
• Connect intersections



Marching Squares (2D)

Connecting the intersections:

Ambiguous cases:

2 options: 
1) Can resolve ambiguity by subsampling inside the cell.
2) If subsampling is impossible, pick one of the two possibilities.



Marching Cubes (3D)

Same basic machinery applies to 3D.
cells become cubes (voxels)
lines become triangles

• 256 different cases
• 15 after symmetries
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Marching Cubes (3D)

Same basic machinery applies to 3D.
cells become cubes (voxels)
lines become triangles

• 256 different cases
• 15 after symmetries
• 6 ambiguous cases (in boxes)
• Inconsistent triangulations can lead to holes and wrong topology.



Marching Cubes (3D)

Same basic machinery applies to 3D.
cells become cubes (voxels)
lines become triangles

• 256 different cases
• 15 after symmetries
• 6 ambiguous cases (in boxes)
• Inconsistent triangulations can lead to holes and wrong topology.
• More subsampling rules – leads to 33 unique cases.

Chernyaev, Marching Cubes 33,’95 



Marching Cubes (3D)

Main Strengths:

• Very multi-purpose.
• Extremely fast and parallelizable.
• Relatively simple to implement.

Main Weaknesses:

• Can create badly shaped (skinny) triangles.
• Basic versions do not provide topological guarantees.
• Many special cases (implemented as big lookup tables).



Marching Cubes (3D)

Main Strengths:

• Very multi-purpose.
• Extremely fast and parallelizable.
• Relatively simple to implement.
• Virtually parameter-free

Main Weaknesses:

• Can create badly shaped (skinny) triangles.
• Basic versions do not provide topological guarantees.
• Many special cases (implemented as big lookup tables).
• No sharp features.



Marching Cubes (3D)

No sharp features.

1. Increasing grid resolution does not help
2. Normals do not converge.
3. Use normal information to find corners.

Special treatment for corners

Extended Marching Cubes 
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That’s All
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