
Page 1 

CS348B Lecture 3 Pat Hanrahan, Spring 2010 

Ray Tracing 

Ray Tracing 1 
  Basic algorithm 
  Overview of pbrt 
  Ray-surface intersection (triangles, …) 

Ray Tracing 2 
  Problem: brute force = |Image| x |Objects| 
  Acceleration data structures 
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Primitives 

pbrt primitive base class 
  Shape 
  Material (reflection and emission) 

Subclasses 
  Primitive instance 

  Transformation and pointer to a primitive 

  Aggregate (collection) 
  Treat collections just like single primitives 
  Incorporate acceleration structures into collections 
  May nest accelerators of different types 
  Types: grid.cpp and kdtree.cpp 
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Uniform Grids 

Preprocess scene 
1. Find bounding box 
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Uniform Grids 

Preprocess scene 
1.  Find bounding box 
2.  Determine resolution 
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Uniform Grids 

Preprocess scene 
1.  Find bounding box 
2.  Determine resolution 

   
3. Place object in cell, 
    if object overlaps cell 
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Uniform Grids 

Preprocess scene 
1.  Find bounding box 
2.  Determine resolution 

   
3. Place object in cell, 
    if object overlaps cell 
4. Check that object’s 
    surface intersects cell 
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Uniform Grids 

Preprocess scene 
Traverse grid 

3D line – 3D-DDA 
6-connected line 

Section 4.3 
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Caveat: Overlap 

Problem: Don’t output first intersection found! 
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Caveat: Overlap 

Problem: Don’t output first intersection found! 

Problem: Redundant intersection tests 
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Caveat: Overlap 

Problem: Don’t output first intersection found! 

Problem: Redundant intersection tests 
Solution: Mailboxes 

  Assign each ray an increasing number 
  Primitive intersection cache (mailbox) 

  Store last ray number tested in mailbox 
  Only intersect if ray number is greater 
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Spatial Hierarchies 

A 

A 

Letters correspond to planes (A) 
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Spatial Hierarchies 

B 

A 

B 

A 

Letters correspond to planes (A, B) 
Point Location by recursive search 
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Spatial Hierarchies 

C B 

D 

C 

D 

A 

B 

A 

Letters correspond to planes (A, B, C, D) 
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Variations 

oct-tree kd-tree bsp-tree 
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Ray Traversal Algorithms 

Recursive inorder traversal  
[Kaplan, Arvo, Jansen] 

Intersect(L,tmin,tmax)! Intersect(R,tmin,tmax)!Intersect(L,tmin,t*)!
Intersect(R,t*,tmax)!
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How to Build the Hierarchy? 

? 
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Build Hierarchy Top-Down 

Methods to choose axis and splitting plane 
•  Midpoint 
•  Median cut (balanced) 
•  Surface area heuristic 

? 
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Cost  

What is the cost of tracing a ray through a node? 

Cost(node) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R) 

C_trav = cost of traversing a cell 

Cost(L) = cost of traversing left child 

Cost(R) =  cost of traversing right child 
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Splitting with Cost in Mind 

From Gordon Stoll  
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Split in the Middle = Bad! 

Makes the L & R probabilities equal 
Cost of R greater than cost of L 

From Gordon Stoll  
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Split at the Median = Bad! 

Makes the L & R costs equal 
Probability of hitting L greater than R 

From Gordon Stoll  
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Cost-Optimized Split = Good! 

Cost(cell) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R) 

From Gordon Stoll  
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Cost 

Need the probabilities 
  Turns out to be proportional to surface area 

Need the child cell costs 
  Triangle count is a good approximation 

Cost(cell) = C_trav + SA(L) * TriCount(L) + SA(R) * TriCount(R) 

C_trav is the ratio of the cost to traverse to the cost to intersect 

 C_trav = 1:80 in pbrt 

 C_trav = 1:1.5 in a highly optimized version 
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Projected Area and Ray Intersection 

Number of rays in a given direction that hit an 
object is proportional to its projected area 



Page 13 

CS348B Lecture 3 Pat Hanrahan, Spring 2010 

Projected Area and Surface Area 

Number of rays in a given direction that hit an 
object is proportional to its projected area 

The total number of rays hitting an object is 
Crofton’s Theorem: 

 For a convex body 

For a sphere                     and 
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Surface Area and Ray Intersection 

The probability of a ray hitting a convex shape  
enclosed by another convex shape is 
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Sweep Build Algorithm 

2n splits 

a b 
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Basic Build Algorithm (Triangles) 

1.  Pick an axis, or optimize across x, y, z 
2.  Build a set of “candidate” split locations 

Note: Cost extrema must be at bbox vertices 
  Vertices of triangle 
  Vertices of triangle clipped to node bbox 

3.  Sort the triangles into intervals 
4.  Sweep to incrementally track L/R counts, cost 
5.  Output position of minimum cost split 
Running time: 
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Termination Criteria 

When should we stop splitting? 
  Bad: depth limit, number of triangles 
  Good: When split does not lower the cost 

Threshold of cost improvement 
  Stretch over multiple levels 
  For example, if cost doesn’t go down after three 

splits in a row, terminate 
Threshold of cell size 

  Absolute probability SA(node)/SA(scene) small 
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Best Reported Timings 

Reshetov, Soupikov, Hurley, SIGGRAPH 2005 

Millions of Rays per Second 
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Superoptimizations 

Lots of optimizations 
  Carefully written inner loop (no recursion) 
  Use vector instructions SSE2 
  64 bits per kd-tree node 

  32 bit position 
  32 bit pointer to pair of child nodes 
  2 bits for split plane direction (x, y, or z) 

  Trace packet of rays 
  4 or more rays at a time 

  Intersect beam at top of tree 
  Encourage empty nodes 
  Special case axis-aligned triangles 
  … 
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Theoretical Nugget 1 

Computational geometry of ray shooting 

1. Triangles (Pellegrini) 
  Time: 
  Space: 

2. Sphere (Guibas and Pellegrini) 
  Time: 
  Space: 
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Theoretical Nugget 2 

Optical computer = Turing machine 
Reif, Tygar, Yoshida 

Determining if a ray  
starting at y0 arrives  
at yn is undecidable 

y = y+1 

y = -2*y 

if( y>0 ) 


