Ray Tracing

Ray Tracing 1

m Basic algorithm

m Overview of pbrt

B Ray-surface intersection (triangles, ...)
Ray Tracing 2

m Problem: brute force = |Image| x |Objects|

B Acceleration data structures
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Primitives

pbrt primitive base class
m Shape
m Material (reflection and emission)
Subclasses
B Primitive instance
m Transformation and pointer to a primitive
B Aggregate (collection)
m Treat collections just like single primitives
B Incorporate acceleration structures into collections
B May nest accelerators of different types

m Types: grid.cpp and kdtree.cpp
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Uniform Grids

O
Preprocess scene
O Q 1. Find bounding box
O
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Uniform Grids

Preprocess scene

1. Find bounding box

2. Determine resolution

max(n,,n,,n,)=d3/n,

3. Place object in cell,
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if object overlaps cell
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Uniform Grids

Preprocess scene
1. Find bounding box

2. Determine resolution

max(n,,n,,n,)=d3/n,
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3. Place object in cell,

if object overlaps cell

O| 4. Check that object’s
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Uniform Grids

O
Preprocess scene
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Caveat: Overlap

Problem: Don’t output first intersection found!

el
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Caveat: Overlap

Problem: Don’t output first intersection found!

A

el

Problem: Redundant intersection tests
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Caveat: Overlap

Problem: Don’t output first intersection found!

A

el

Problem: Redundant intersection tests
Solution: Mailboxes
B Assign each ray an increasing number

m Primitive intersection cache (mailbox)
B Store last ray number tested in mailbox

m Only intersect if ray number is greater
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Spatial Hierarchies

5

A

Letters correspond to planes (A)
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Spatial Hierarchies

A
Letters correspond to planes (A, B)
Point Location by recursive search
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Spatial Hierarchies

v

) &

Letters correspond to planes (A, B, C, D)
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Variations
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kd-tree oct-tree bsp-tree
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Ray Traversal Algorithms

Recursive inorder traversal
[Kaplan, Arvo, Jansen] r*=(S—-O0[a])/D[d]

w1 // /
/ -

/ Fain / ’[t *

t <t * tmin < t* < tmax t* < tmin

max

Intersect (L, tmin,tmax) Intersect(L,tmin,t¥*) Intersect (R, tmin, tmax)
Intersect (R, t*, tmax)
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How to Build the Hierarchy?

QQQ @QQ
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Build Hierarchy Top-Down

@QQ @QQ
o5l O3

O O

Methods to choose axis and splitting plane
* Midpoint
* Median cut (balanced)

* Surface area heuristic
CS348B Lecture 3 Pat Hanrahan, Spring 2010

Cost

What is the cost of tracing a ray through a node?

Cost(node) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

C_trav = cost of traversing a cell
Cost(L) = cost of traversing left child

Cost(R) = cost of traversing right child
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Splitting with Cost in Mind

From Gordon Stoll

A
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Split in the Middle = Bad!

From Gordon Stoll

A

Makes the L & R probabilities equal
Cost of R greater than cost of L
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Split at the Median = Bad!

From Gordon Stoll

A

Makes the L & R costs equal
Probability of hitting L greater than R

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Cost-Optimized Split = Good!

From Gordon Stoll

A

Cost(cell) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)
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Cost

Need the probabilities
H Turns out to be proportional to surface area

Need the child cell costs
m Triangle count is a good approximation

Cost(cell) = C_trav + SA(L) * TriCount(L) + SA(R) * TriCount(R)

C_trav is the ratio of the cost to traverse to the cost to intersect
C_trav =1:80 in pbrt

C_trav = 1:1.5in a highly optimized version
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Projected Area and Ray Intersection

Number of rays in a given direction that hit an
object is proportional to its projected area

h®
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Projected Area and Surface Area

Number of rays in a given direction that hit an
object is proportional to its projected area

RS

The total number of rays hitting an object is 4 A
Crofton’s Theorem: _ S
For a convex body A=—

For a sphere S = 47Z'r2and Z =A= 71'7‘2
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Surface Area and Ray Intersection

The probability of a ray hitting a convex shape
enclosed by another convex shape is

Pr[rn S, ‘rmSc] :%

c c
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Sweep Build Algorithm
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Basic Build Algorithm (Triangles)

1. Pick an axis, or optimize across x, y, z

2. Build a set of “candidate” split locations
Note: Cost extrema must be at bbox vertices
B Vertices of triangle
m Vertices of triangle clipped to node bbox

3. Sort the triangles into intervals

4. Sweep to incrementally track L/R counts, cost

5. Output position of minimum cost split

Running time: 7 (N)=Nlog N+2T(N/2)
T(N)=Nlog’ N
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Termination Criteria

When should we stop splitting?
m Bad: depth limit, number of triangles
B Good: When split does not lower the cost
Threshold of cost improvement
m Stretch over multiple levels

m For example, if cost doesn’t go down after three
splits in a row, terminate

Threshold of cell size

B Absolute probability SA(node)/SA(scene) small
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Best Reported Timings

Millions of Rays per Second

Framerate (FPS) @
1024x1024 resolution | OPenRT@ | MLRTA@ | MLRTA@

scene 25GHzP4 | 24GHzP4 | 3.2GHzP4

# of triangles with HT

and shader (+/-) 1 thread 1 thread 2 threads
E

Erwé . - shader 71 70.2 109.8

804

3 + shader 23 37.8 50.7
Confe- -ﬁ- | -shader | 455 | 112 | 195
re?':::: "

274K | +shader 1.93 95 15.6
Soda - shader 412 211 355
Hall

2195K

+ shader 1.8 153 24 1

Reshetov, Soupikov, Hurley, SIGGRAPH 2005
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Superoptimizations

Lots of optimizations
m Carefully written inner loop (no recursion)
B Use vector instructions SSE2

m 64 bits per kd-tree node
m 32 bit position
m 32 bit pointer to pair of child nodes
m 2 bits for split plane direction (x, y, or z)
B Trace packet of rays
® 4 or more rays at a time
B Intersect beam at top of tree
®m Encourage empty nodes
B Special case axis-aligned triangles

...
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Theoretical Nugget 1

Computational geometry of ray shooting

1. Triangles (Pellegrini)

m Time: O(logn)

m Space: O(n’*) 4
2. Sphere (Guibas and Pellegrini)

m Time: O(log’ n)

S5+¢ )

m Space: O(n
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Theoretical Nugget 2

Optical computer = Turing machine

Reif, Tygar, Yoshida l7
| y =y+1
Determining if a ray —
starting at y0 arrives — m y = -2*%y
at yn is undecidable v U;
if(y>0)
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