
Page 1

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Ray Tracing

Ray Tracing 1
  Basic algorithm
  Overview of pbrt
  Ray-surface intersection (triangles, …)

Ray Tracing 2
  Problem: brute force = |Image| x |Objects|
  Acceleration data structures

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Primitives

pbrt primitive base class
  Shape
  Material (reflection and emission)

Subclasses
  Primitive instance

  Transformation and pointer to a primitive

  Aggregate (collection)
  Treat collections just like single primitives
  Incorporate acceleration structures into collections
  May nest accelerators of different types
  Types: grid.cpp and kdtree.cpp

Page 2

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Uniform Grids

Preprocess scene
1. Find bounding box

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Uniform Grids

Preprocess scene
1.  Find bounding box
2.  Determine resolution

Page 3

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Uniform Grids

Preprocess scene
1.  Find bounding box
2.  Determine resolution

3. Place object in cell,
 if object overlaps cell

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Uniform Grids

Preprocess scene
1.  Find bounding box
2.  Determine resolution

3. Place object in cell,
 if object overlaps cell
4. Check that object’s
 surface intersects cell

Page 4

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Uniform Grids

Preprocess scene
Traverse grid

3D line – 3D-DDA
6-connected line

Section 4.3

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Caveat: Overlap

Problem: Don’t output first intersection found!

Page 5

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Caveat: Overlap

Problem: Don’t output first intersection found!

Problem: Redundant intersection tests

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Caveat: Overlap

Problem: Don’t output first intersection found!

Problem: Redundant intersection tests
Solution: Mailboxes

  Assign each ray an increasing number
  Primitive intersection cache (mailbox)

  Store last ray number tested in mailbox
  Only intersect if ray number is greater

Page 6

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Spatial Hierarchies

A

A

Letters correspond to planes (A)

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Spatial Hierarchies

B

A

B

A

Letters correspond to planes (A, B)
Point Location by recursive search

Page 7

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Spatial Hierarchies

C B

D

C

D

A

B

A

Letters correspond to planes (A, B, C, D)

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Variations

oct-tree kd-tree bsp-tree

Page 8

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Ray Traversal Algorithms

Recursive inorder traversal
[Kaplan, Arvo, Jansen]

Intersect(L,tmin,tmax)! Intersect(R,tmin,tmax)!Intersect(L,tmin,t*)!
Intersect(R,t*,tmax)!

CS348B Lecture 3 Pat Hanrahan, Spring 2010

How to Build the Hierarchy?

?

Page 9

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Build Hierarchy Top-Down

Methods to choose axis and splitting plane
•  Midpoint
•  Median cut (balanced)
•  Surface area heuristic

?

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Cost

What is the cost of tracing a ray through a node?

Cost(node) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

C_trav = cost of traversing a cell

Cost(L) = cost of traversing left child

Cost(R) = cost of traversing right child

Page 10

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Splitting with Cost in Mind

From Gordon Stoll

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Split in the Middle = Bad!

Makes the L & R probabilities equal
Cost of R greater than cost of L

From Gordon Stoll

Page 11

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Split at the Median = Bad!

Makes the L & R costs equal
Probability of hitting L greater than R

From Gordon Stoll

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Cost-Optimized Split = Good!

Cost(cell) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

From Gordon Stoll

Page 12

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Cost

Need the probabilities
  Turns out to be proportional to surface area

Need the child cell costs
  Triangle count is a good approximation

Cost(cell) = C_trav + SA(L) * TriCount(L) + SA(R) * TriCount(R)

C_trav is the ratio of the cost to traverse to the cost to intersect

 C_trav = 1:80 in pbrt

 C_trav = 1:1.5 in a highly optimized version

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Projected Area and Ray Intersection

Number of rays in a given direction that hit an
object is proportional to its projected area

Page 13

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Projected Area and Surface Area

Number of rays in a given direction that hit an
object is proportional to its projected area

The total number of rays hitting an object is
Crofton’s Theorem:

 For a convex body

For a sphere and

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Surface Area and Ray Intersection

The probability of a ray hitting a convex shape
enclosed by another convex shape is

Page 14

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Sweep Build Algorithm

2n splits

a b

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Basic Build Algorithm (Triangles)

1.  Pick an axis, or optimize across x, y, z
2.  Build a set of “candidate” split locations

Note: Cost extrema must be at bbox vertices
  Vertices of triangle
  Vertices of triangle clipped to node bbox

3.  Sort the triangles into intervals
4.  Sweep to incrementally track L/R counts, cost
5.  Output position of minimum cost split
Running time:

Page 15

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Termination Criteria

When should we stop splitting?
  Bad: depth limit, number of triangles
  Good: When split does not lower the cost

Threshold of cost improvement
  Stretch over multiple levels
  For example, if cost doesn’t go down after three

splits in a row, terminate
Threshold of cell size

  Absolute probability SA(node)/SA(scene) small

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Best Reported Timings

Reshetov, Soupikov, Hurley, SIGGRAPH 2005

Millions of Rays per Second

Page 16

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Superoptimizations

Lots of optimizations
  Carefully written inner loop (no recursion)
  Use vector instructions SSE2
  64 bits per kd-tree node

  32 bit position
  32 bit pointer to pair of child nodes
  2 bits for split plane direction (x, y, or z)

  Trace packet of rays
  4 or more rays at a time

  Intersect beam at top of tree
  Encourage empty nodes
  Special case axis-aligned triangles
  …

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Theoretical Nugget 1

Computational geometry of ray shooting

1. Triangles (Pellegrini)
  Time:
  Space:

2. Sphere (Guibas and Pellegrini)
  Time:
  Space:

Page 17

CS348B Lecture 3 Pat Hanrahan, Spring 2010

Theoretical Nugget 2

Optical computer = Turing machine
Reif, Tygar, Yoshida

Determining if a ray
starting at y0 arrives
at yn is undecidable

y = y+1

y = -2*y

if(y>0)

