Reflection Models I

Today

- **■** Types of reflection models
- The BRDF and reflectance
- **■** The reflection equation
- Ideal reflection and refraction
- **■** Fresnel effect
- Ideal diffuse

Next lecture

- Glossy and specular reflection models
- Rough surfaces and microfacets

CS348B Lecture 10

Pat Hanrahan, Spring 2011

Reflection Models

Definition: Reflection is the process by which light incident on a surface interacts with the surface such that it leaves on the incident side without change in frequency.

Properties

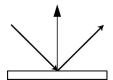
- Spectra and Color
- **■** Polarization
- **■** Directional distribution

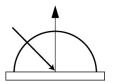
CS348B Lecture 10

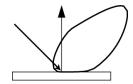
Types of Reflection Functions

Ideal Specular

- Reflection Law
- Mirror


Ideal Diffuse


- **■** Lambert's Law
- Matte


Specular

- **■** Glossy
- **■** Directional diffuse

CS348B Lecture 10

Pat Hanrahan, Spring 2011

Materials

Plastic

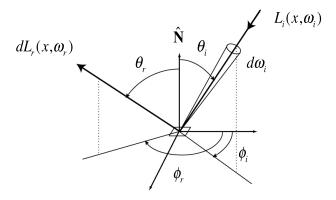
Metal

Matte

From Apodaca and Gritz, Advanced RenderMan

CS348B Lecture 10

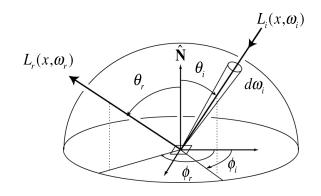
Spheres [Matusik et al.]



CS348B Lecture 10

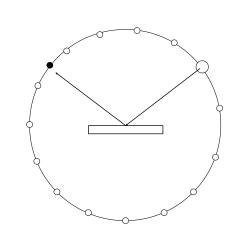
Pat Hanrahan, Spring 2011

The BRDF


Bidirectional Reflectance-Distribution Function

$$f_r(\omega_i \to \omega_r) \equiv \frac{dL_r(\omega_i \to \omega_r)}{dE_i} \left[\frac{1}{sr} \right]$$

CS348B Lecture 10

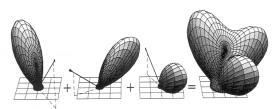


$$L_r(x, \omega_r) = \int_{H^2} f_r(x, \omega_i \to \omega_r) L_i(x, \omega_i) \cos \theta_i d\omega_i$$

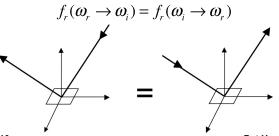
CS348B Lecture 10

Pat Hanrahan, Spring 2011

Gonioreflectometer



CS348B Lecture 10


Properties of BRDF's

1. Linearity

From Sillion, Arvo, Westin, Greenberg

2. Reciprocity principle

CS348B Lecture 10

Pat Hanrahan, Spring 2011

Properties of BRDF's

3. Isotropic vs. anisotropic

$$f_r(\theta_i, \varphi_i; \theta_r, \varphi_r) = f_r(\theta_i, \theta_r, \varphi_r - \varphi_i)$$

Reciprocity and isotropy

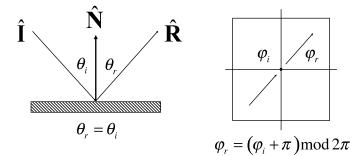
$$f_r(\theta_i, \theta_r, \varphi_r - \varphi_i) = f_r(\theta_r, \theta_i, \varphi_i - \varphi_r) = f_r(\theta_i, \theta_r, |\varphi_r - \varphi_i|)$$

4. Energy conservation

CS348B Lecture 10

Energy Conservation

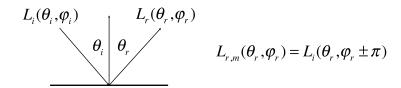
$$\frac{d\Phi_r}{d\Phi_i} = \frac{\int\limits_{\Omega_r} L_r(\omega_r) \cos\theta_r \, d\omega_r}{\int\limits_{\Omega_i} L_i(\omega_i) \cos\theta_i \, d\omega_i}$$


$$= \frac{\int\limits_{\Omega_r} \int\limits_{\Omega_i} f_r(\omega_i \to \omega_r) L_i(\omega_i) \cos\theta_i \, d\omega_i \cos\theta_r \, d\omega_r}{\int\limits_{\Omega_i} L_i(\omega_i) \cos\theta_i \, d\omega_i}$$

$$\leq 1$$

CS348B Lecture 10

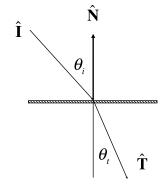
Pat Hanrahan, Spring 2011


Law of Reflection

$$\hat{\mathbf{R}} + (-\hat{\mathbf{I}}) = 2\cos\theta \,\hat{\mathbf{N}} = -2(\hat{\mathbf{I}} \bullet \hat{\mathbf{N}})\hat{\mathbf{N}}$$
$$\hat{\mathbf{R}} = \hat{\mathbf{I}} - 2(\hat{\mathbf{I}} \bullet \hat{\mathbf{N}})\hat{\mathbf{N}}$$

CS348B Lecture 10

Ideal Reflection (Mirror)

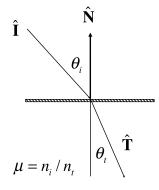

$$f_{r,m}(\theta_i, \varphi_i; \theta_r, \varphi_r) = \frac{\delta(\cos \theta_i - \cos \theta_r)}{\cos \theta_i} \delta(\varphi_i - \varphi_r \pm \pi)$$

$$\begin{split} L_{r,m}(\theta_r, \varphi_r) &= \int f_{r,m}(\theta_i, \varphi_i; \theta_r, \varphi_r) L_i(\theta_i, \varphi_i) \cos \theta_i \, d \cos \theta_i \, d \varphi_i \\ &= \int \frac{\delta(\cos \theta_i - \cos \theta_r)}{\cos \theta_i} \, \delta(\varphi_i - \varphi_r \pm \pi) L_i(\theta_i, \varphi_i) \cos \theta_i \, d \cos \theta_i \, d \varphi_i \\ &= L_i(\theta_r, \varphi_r \pm \pi) \end{split}$$

CS348B Lecture 10

Pat Hanrahan, Spring 2011

Snell's Law


$$n_i \sin \theta_i = n_t \sin \theta_t$$

$$n_i \hat{\mathbf{N}} \times \hat{\mathbf{I}} = n_t \hat{\mathbf{N}} \times \hat{\mathbf{T}}$$

 $\varphi_{i} = \varphi_{i} \pm \pi$

CS348B Lecture 10

Law of Refraction

Total internal reflection:

$$1 - \mu^2 (1 - (\hat{\mathbf{I}} \bullet \hat{\mathbf{N}})^2) < 0$$

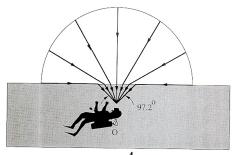
CS348B Lecture 10

$$\hat{\mathbf{T}} = \boldsymbol{\mu} \quad \hat{\mathbf{I}} + \boldsymbol{\gamma} \quad \hat{\mathbf{N}}$$

$$\hat{\mathbf{T}}^2 = 1 = \mu^2 + \gamma^2 + 2\mu\gamma \hat{\mathbf{I}} \bullet \hat{\mathbf{N}}$$

$$\gamma = -\mu \quad \hat{\mathbf{I}} \bullet \hat{\mathbf{N}} \pm \left\{ -\mu^2 \left(\mathbf{I} - \left(\hat{\mathbf{I}} \bullet \hat{\mathbf{N}} \right)^2 \right) \right\}^2$$

$$= \mu \quad \cos \theta_i \pm \left\{ \mathbf{I} - \mu^2 \sin^2 \theta_i \right\}^{1/2}$$


$$= \mu \quad \cos \theta_i \pm \cos \theta_i \quad \leftarrow \gamma = \mu - 1$$

$$= \mu \quad \cos \theta_i - \cos \theta_i$$

Pat Hanrahan, Spring 2011

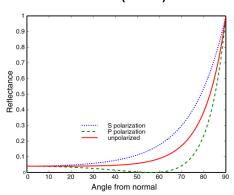
Optical Manhole

Total internal reflection

From Livingston and Lynch

Experiment

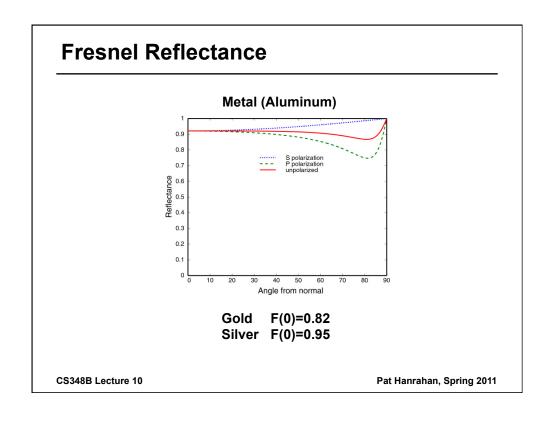
Reflections from a shiny floor

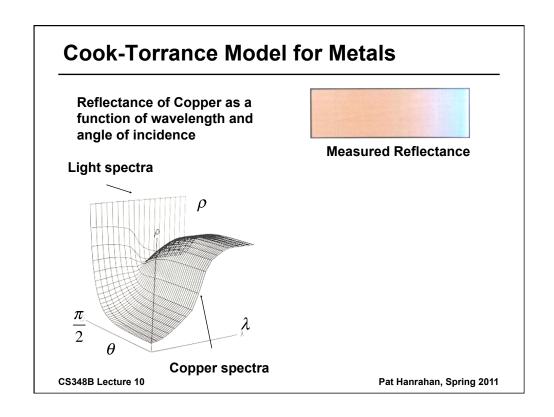

From Lafortune, Foo, Torrance, Greenberg, SIGGRAPH 97

CS348B Lecture 10

Pat Hanrahan, Spring 2011

Fresnel Reflectance

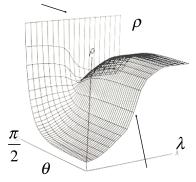

Dielectric (N=1.5)



Glass n=1.5 F(0)=0.04 Diamond n=2.4 F(0)=0.15

Schlick Approximation $F(\theta) = F(0) + (1 - F(0))(1 - \cos \theta)^5$

CS348B Lecture 10

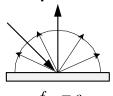

Cook-Torrance Model for Metals

Reflectance of Copper as a function of wavelength and angle of incidence

Measured Reflectance

Approximated Reflectance

Cook-Torrance approximation


$$R = R(0) + R(\pi/2) \left[\frac{F(\theta) - F(0)}{F(\pi/2) - F(0)} \right]$$

Copper spectra

Pat Hanrahan, Spring 2011

Ideal Diffuse Reflection

Assume light is equally likely to be reflected in any output direction

$$L_{r,d}(\omega_r) = \int f_{r,d} L_i(\omega_i) \cos \theta_i d\omega_i$$
$$= f_{r,d} \int L_i(\omega_i) \cos \theta_i d\omega_i$$
$$= f_{r,d} E$$

$$M = \int L_r(\omega_r) \cos \theta_r \, d\omega_r = L_r \int \cos \theta_r \, d\omega_r = \pi L_r$$

$$\rho_d = \frac{M}{E} = \frac{\pi L_r}{E} = \frac{\pi f_{r,d} E}{E} = \pi f_{r,d} \quad \Rightarrow \quad f_{r,d} = \frac{\rho_d}{\pi}$$

Lambert's Cosine Law $M = \rho_d E = \rho_d E_s \cos \theta_s$

CS348B Lecture 10

"Diffuse" Reflection

Theoretical

- Bouguer Special micro-facet distribution
- Seeliger Subsurface reflection
- Multiple surface or subsurface reflections

Experimental

- Pressed magnesium oxide powder
- Almost never valid at high angles of incidence

Paint manufactures attempt to create ideal diffuse

CS348B Lecture 10