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Abstract

Sphere tracing is a new technique for rendering implicit surfaces using geometric distance.

Distance-based models are common in computer-aided geometric design and in the modeling

of articulated figures. Given a function returning the distance to an object, sphere tracing

marches along the ray toward its first intersection in steps guaranteed not to penetrate the

implicit surface.

Sphere tracing is particularly adept at rendering pathological surfaces. Creased and rough

implicit surfaces are defined by functions with discontinuous or undefined derivatives. Current

root finding techniques such as L-G surfaces and interval analysis require periodic evaluation

of the derivative, and their behavior is dependent on the behavior of the derivative. Sphere

tracing requires only a bound on the magnitude of the derivative, robustly avoiding problems�Manuscript, July 1994. Recommended for publication: The Visual Computer.
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where the derivative jumps or vanishes. This robustness and scope support sphere tracing as an

efficient direct visualization system for the design and investigation of new implicit models.

Furthermore, sphere tracing efficiently approximates cone tracing, supporting symbolic-

prefiltered antialiasing. Signed distance functions for a variety of primitives and operations

are derived and appear independently as appendices, specifically the natural quadrics and

torus, superquadrics, Bezier-based generalized cylinders and offset surfaces, constructive solid

geometry, pseudonorm and Gaussian blends, taper, twist and hypertexture.

Keywords: area sampling, blending, deformation, distance, implicit surface, Lipschitz condition,

numerical methods, ray tracing, solid modeling.

1 Introduction

Whereas a parametric surface is defined by a function which, given a tuple of parameters, indicates

a corresponding location in space, an implicit surface is defined by a function which, given a point

in space, indicates whether the point is inside, on or outside the surface.

The most commonly studied form of implicit surfaces are algebraic surfaces, defined implicitly

by a polynomial function. For example, the unit sphere is defined by the second degree algebraic

implicit equation x2 + y2 + z2 � 1 = 0 (1)

as the locus of coordinates whose hypotenuse (squared) is unity.

Alternatively, using a distance metric, one can represent the unit sphere geometrically by the

implicit equation jjxjj � 1 = 0 (2)

as the locus of points of unit distance from the origin. Here x = (x; y; z) and jj(x; y; z)jj denotes

the Euclidean magnitude
qx2 + y2 + z2: The implicit surface of (2) agrees with that of (1), though

their values differ at almost every other point in R3: Specifically, (1) returns algebraic distance

[Rockwood & Owen, 1987] whereas (2) returns geometric distance.
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A comparison of geometric versus algebraic representations of quadric surfaces preferred the

geometric representation [Goldman, 1983]. The parameters of a geometric representation are

coordinate-independent, and are more robust and intuitive than algebraic coefficients. Distance-

based functions like (2) are one method for representing implicit surfaces geometrically.

Distance-based models can be found in a variety of areas. Offset surfaces have become valuable

in computer-aided geometric design for their use of distance to model the physical capabilities of

machine cutting tools [Barnhill et al, 1992]. Skeletal models, which in computer graphics simulate

articulated figures such as hands and dinosaurs, are equivalent to offset surfaces. Computer vision’s

medial-axis transform converts a given shape to its skeletal representation [Ballard & Brown,

1982]. Generalized cylinders began as a geometric representation in computer vision [Agin &

Binford, 1976] but have also matured into a standard modeling primitive in computer graphics

[Bloomenthal, 1989] --- special ray tracing algorithms were developed for their rendering in [van

Wijk, 1984; Bronsvoort & Klok, 1985].

1.1 Previous Work

Several methods exist for rendering implicit surfaces. Indirect methods polygonize the implicit

surface to a given tolerance, allowing the use of existing polygon rendering techniques and hardware

for interactive inspection [Wyvill et al, 1986; Bloomenthal, 1988]. Although polygonization

transforms implicit surfaces into a representation easily rendered and incorporated into graphics

systems, polygonizations are typically not guaranteed and may not accurately detect disconnected

or detailed sections of the implicit surface. Production ray tracing systems tend to polygonize

surfaces, resulting in large time and memory overhead to accurately represent an otherwise simple

implicit model.

In an effort to combine speed and accuracy, [Sederberg & Zundel, 1989] developed a direct

scan-line method to more accurately render algebraic implicit surfaces at interactive speeds. Ray

tracing, on the other hand, is a direct, accurate and elegant method for investigating a much larger

variety of implicit surfaces.
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Let r(t) = ro + trd (3)

parametrically define a ray anchored at ro in the direction of the unit vector rd: Plugging the ray

equation r : R! R3 into the function f : R3 ! R that defines the implicit surface produces the

composite real function F : R! Rwhere F = f � r such that the solutions toF (t) = 0 (4)

correspond to ray intersections with the implicit surface. Implicit surface ray-tracing algorithms

simply apply one of the multitude of numerical root finding methods to solve (4).

When f (x) = 0 implicitly defines an algebraic surface, (4) is a polynomial equation. Analytic

solutions exist for polynomials of degree four or less, but may not be the best numerical method in

certain cases. In this and higher degree cases, solving requires an iterative root finding algorithm.

Some algebraic surface renderers have used DesCartes’ rule of signs [Hanrahan, 1983], Sturm

sequences [van Wijk, 1984], and Laguerre’s method [Wyvill & Trotman, 1990], which capitalize

on properties of polynomials, and are hence more efficient than general root finders.

One must use a general root finder to render the implicit surface of an arbitrary function.

Ideally, this root finder should only need the ability to evaluate the function at any point. However,

one can always construct a pathological function that will cause such a ‘‘blind’’ technique to miss

one or more roots, by inserting an arbitrarily thin region between samples where the function zips

off to zero and back (a point reiterated from [Kalra & Barr, 1989; Von Herzen et al, 1990]). Hence,

any robust root finder needs more information than simple function evaluation.

The ‘‘Hypertexture’’ system used a brute-force blind ray-marching scheme, using only function

evaluation [Perlin & Hoffert, 1989]. Its lack of robustness required fine sampling along the ray,

resulting in rendering speeds so slow they demanded parallel implementation. Requiring only

function evaluation allowed the design of implicit surfaces without regard to the analytic properties

of their defining functions. Freed from such constraints, fractal and hairy surfaces were easily

modeled by implicit surfaces whose functions contained procedural elements.

Robust ray intersection requires extra information, which in most cases is produced by the

derivative of the function. Current techniques repeatedly subdivide the graph of F (t) until it is
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partitioned into intervals that either do not intersect the t-axis, corresponding to no ray intersection,

or the graph of the derivative F 0(t) does not intersect the t-axis, corresponding to only one ray

intersection. The root within such an interval is refined using Newton’s method and regula falsi. In

the rare case of a multiple root, such as when a ray grazes a surface or intersects coincident surfaces,

the root isolation process subdivides the interval surrounding the root to machine precision.

Interval analysis finds ray intersections by defining the function and its derivative on intervals

instead of single values. It uses such interval arithmetic operations to bound the values of F and

its derivative F 0: Over an interval, if the bound of F omits zero, then there is no root. Otherwise if

the bound of F 0 omits zero, then there is a single root. Otherwise the interval is subdivided at its

midpoint [Mitchell, 1990b].

Lipschitz methods are an alternative to interval analysis. (Lipschitz and interval methods are

compared in Section 2.3.) As described by Section 2.1, a function is Lipschitz if and only if the

magnitude of its derivative remains bounded. The LG-surfaces method imposed the Lipschitz

condition on the derivative F 0 over an interval, yielding a bound G on the magnitude of F 00: This

bound G is a speed limit on F 0; meaning that the range of F 0 can change only G times as fast as its

domain. If the value of F 0 at one of the endpoints of an interval is more than G times the length of

the interval away from zero, then the Lipschitz condition guarantees that the derivative F 0 is never

zero. The original function F then contains no roots over the interval if its value at the interval’s

endpoints have the same sign, or one root if the sign of its endpoints differ [Kalra & Barr, 1989].

1.2 Overview

Sphere tracing is a robust technique for ray tracing implicit surfaces. Unlike LG-surfaces or

interval analysis, it does not require the ability to evaluate the derivative of the function. Instead,

it requires only a bound on the magnitude of the derivative --- that the function be continuous and

Lipschitz. Thus, the derivative of the function need not be continuous, nor even defined.

Sphere tracing benefits from this relaxation by using the continuous but non-differentiable

minimum and maximum operations for constructive solid geometry instead of the commonly used

Roth diagrams [Roth, 1982]. Unlike typical ray tracers, sphere tracing can concentrate on finding
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only the first ray intersection of a CSG model, avoiding the expense of finding all ray-component

intersections. Defining CSG using minimum and maximum operations also allows sphere tracing to

render the results of blending and other geometric operations on CSG models, which is impossible

using Roth diagrams.

Sphere tracing also allows the efficient visualization a wider range of implicit surfaces than

before possible, including creased, rough and fractal surfaces. Like the slower brute-force

rendering approach of the ‘‘Hypertexture’’ system [Perlin & Hoffert, 1989], sphere tracing frees

the implicit surface designer from many concerns regarding the analytic behavior of the defining

function, fostering more diverse implicit formulations. Moreover, structures in mathematics are

often specified as the locus of points that satisfy a particular condition. Sphere tracing visualizes

such structures, regardless of smoothness, extent and connectedness, given only a bound on the

rate of the condition’s continuous changes over space. Sphere tracing provides a direct and flexible

visualization tool for the development of new implicit models.

Sphere tracing approximates cone tracing [Amanatides, 1984] to eliminate aliasing artifacts and

simulate soft shadows. Aliasing artifacts are typically reduced by stochastic supersampling, where

many randomly-directed rays are cast for each pixel. Supersampling inhibits aliasing by moving

the artifacts into higher frequencies, and stochastic sampling disguises the artifacts as uncorrelated

noise [Mitchell, 1990a]. Cone tracing, on the other hand, eliminates aliasing by prefiltering the

scene, so a single point sample accurately represents the average of its neighborhood. In addition

to the better treatment of antialiasing cone tracing provides, implicit surfaces are often defined

by very expensive functions, and reducing the number of function evaluations by tracing a single

cone per pixel, instead of many rays per pixel, makes antialiasing more efficient.

2 Sphere Tracing

Sphere tracing capitalizes on functions that return the distance to their implicit surfaces (Section 2.1)

to define a sequence of points (Section 2.2) that converges linearly to the first ray-surface

intersection (Section 2.3). Section 2.4 compares Lipschitz methods to interval analysis. Section 2.5
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incorporates constructive solid geometry into sphere tracing at the model level. Section 2.6

describes several enhancements to sphere tracing to hasten convergence.

2.1 Distance Surfaces

This section defines and discusses functions that measure or bound the geometric distance to their

implicit surfaces. Such functions implicitly define distance surfaces, as mentioned in [Bloomenthal

& Shoemake, 1991]. The appendices derive functions that measure or bound distances for a variety

primitives and operations.

Let the function f be a continuous mapping f : Rn ! R that implicitly describes the setA � Rn as the locus of points A = fx : f (x) � 0g: (5)

By continuity, f is zero on the boundary @A which forms the implicit surface of f: Furthermore,f is expected to be strictly negative over the interior
�A; which allows the multivalued function

image f�1(0) to concisely represent the implicit surface of f:
Definition 1 The point-to-set distance defines the distance from a point x 2 R3 to a set A � R3

as the distance from x to the closest point in A;d(x; A) = miny2A jjx� yjj: (6)

Given a set A; the point-to-set distance d(x; A) implicitly defines A (from the outside)

[Kaplansky, 1977]. Here, we are interested in the converse: Given an implicit function, what is the

point-to-set distance to its surface?

Definition 2 A function f : R3 ! R is a signed distance bound of its implicit surface f�1(0) if

and only if jf (x)j � d(x; f�1(0)): (7)

If equality holds for (7), then f is a signed distance function.
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Some primitives, such as the sphere, are easily defined with signed distance functions. Finding

the distance to other shapes can be quite difficult. Table 1 lists the primitives and operations for

which the appendices contain signed distance functions and bounds.

The Lipschitz constant is a useful quantity for deriving signed distance bounds to complex

shapes.

Definition 3 A function f : R3 ! R is Lipschitz over a domain D if and only if for all x;y 2 D;
there exists a positive finite constant � such thatjf (x) � f (y)j � �jjx� yjj: (8)

The Lipschitz constant, denoted Lip f; is the minimum � satisfying (8).

The Lipschitz constant has been used in computer graphics for collision detection [Von Herzen

& Barr, 1987] and rendering implicit functions [Kalra & Barr, 1989]. The Lipschitz constant is the

tightest possible bound on the magnitude of the derivative of a function.

In practice, Lipschitz constants are typically overestimated by a Lipschitz bound, particularly

for functions whose components have known Lipschitz constants. For example, the Lipschitz

constant of the sum of two functions is at most the sum of their Lipschitz bounds. By the chain

rule, the Lipschitz constant of the composition of functions is at most the product of the component

function’s Lipschitz constants.

One can determine the Lipschitz constant of a continuous function algebraically as the maximum

slope of the function. This maximum slope occurs at one of the zeroes of the function’s second

derivative. Often geometric observations serve the investigator better than algebraic manipulation

for determining the Lipschitz constant. For example, notice the simplified algebraic Lipschitz

derivations for soft objects in Appendix D or the completely geometric derivation for twisted

objects in Appendix E.

The following theorem shows how to turn a Lipschitz function into a signed distance bound,

allowing sphere tracing to render any implicit surface defined by a Lipschitz function.

Theorem 1 Let f be Lipschitz with Lipschitz bound � � Lip f: Then the function f=� is a signed

distance bound of its implicit surface.
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Primitive/Operation Signed Distance Function Signed Distance Bound

plane Appendix A

sphere Appendix A

ellipsoid [Hart, 1994] Appendix A & E

cylinder Appendix A

cone Appendix A

torus Appendix A

superquadrics Appendix B

generalized cylinder Appendix C

union Section 2.5

intersection Section 2.5

complement Section 2.5

soft objects Section D

pseudonorm blend [Rockwood, 1989] Appendix D

isometry Appendix E

uniform scale Appendix E

linear transformation Appendix E

taper Appendix E

twist Appendix E

hypertexture Appendix F

fractals Appendix F

Table 1: Directory of signed distance functions and bounds.
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Proof: Given a point x; let y 2 f�1(0) be one of the points such thatjjx� yjj = d(x; f�1(0)): (9)

Then by (8) and f (y) = 0 it follows thatjf (x)j � � d(x; f�1(0)): (10)

Hence, ��1f (x) is a signed distance bound for any Lipschitz function f: (Compare Eq. (8) of

[Kalra & Barr, 1989]). 2
Using the Lipschitz constant in (10) results in an optimal signed distance bound. A looser

Lipschitz bounds causes a poorer distance underestimate, which adversely affect the efficiency of

algorithms that use it.

2.2 Ray Intersection

One intersects a ray r(t) with the implicit surface defined by the signed distance bound f (x) by

finding its least positive root (the first root) of F (t): This root is the limit point of the sequence

defined by the recurrence equation ti+1 = ti + F (ti) (11)

and the initial point t0 = 0: The sequence converges if and only if the ray intersects the implicit

surface. This sequence forms the kernel of the geometric implicit surface rendering algorithm in

Figure 1.

The convergence test � is set to the desired precision. The maximum distance D corresponds to

the radius of a viewer-centered yonder clipping sphere, and is necessary to detect non-convergent

sequences.

The absolute value of the signed distance function can be considered the radius of a sphere

guaranteed not to penetrate any of the implicit surface. This sphere was called an unbounding

sphere in [Hart et al, 1989] (which used a distance bound to implicitly define and visualize 3-D

deterministic fractals) because the implicit surface is contained in the closed complement of this

sphere. Unlike a bounding volume which surrounds an object, an unbounding volume surrounds
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Given signed distance bound f; ray r(t) and maximum ray traversal distance D:
Initialize t = 0 and d = 0

While t < D
Let d = f (r(t))
If d < � then return t --- intersection

Increment t = t + d
return ; --- no intersection

Figure 1: Pseudocode of the geometric implicit surface rendering algorithm.

Figure 2: A hit and a miss.
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an area of space not containing the object. The name ‘‘sphere tracing’’ arose from the property

that ray intersections are determined by sequences of unbounding spheres.

As did [Ricci, 1974], sphere tracing uses the minimum and maximum functions for constructive

solid geometry. These operations crease the implicit surface locally, such that the defining function

remains continuous in value, but not in derivative. Derivative discontinuity can cause problems

with root finders, which must find all roots of the function and resolve the CSG operation using a

Roth diagram [Roth, 1982]. Sphere tracing operates independent of the derivative, given its bound,

and need converge only to the first root, even for CSG models.

2.3 Analysis

Root refinement methods, such as Newton’s method, converge quadratically to simple roots

(where the ray penetrates the surface), and linearly to multiple roots (where the ray grazes the

surface) [Gerald & Wheatley, 1989]. Root isolation methods which divide and conquer, such as

LG-surfaces [Kalra & Barr, 1989] and interval analysis [Mitchell, 1990b], converge linearly since

the width of the intervals are reduced by a factor of one-half at each iteration. Root isolation

methods are allowed to converge only in the event of a multiple root, otherwise they pass control

to a faster root refinement method the moment they find a monotonic region straddling the t-axis.

Theorem 2 Given a function F : R! Rwith Lipschitz bound � � LipF; and an initial point t0;
sphere tracing converges linearly to the smallest root greater than t0:
The sphere-tracing sequence can be writtenti+1 = g(ti) = ti +

jF (ti)j� : (12)

In this form, the similarities of (12) to Newton’s method are more visible. Let r be the smallest

root greater than the initial point t0: Since F (r) = 0 then g(r) = r; and at any non-root jF j=� is

positive. Hence (12) converges to the first root.
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Without loss of generality, F is assumed to be non-negative in the region of interest, which

eliminates the need for the absolute value. The Taylor expansion of F (ti) about the root r isg(ti) = g(r) + (ti � r)g0(r) +
(ti � r)2

2
g00(� ) (13)

for some � 2 [ti; r] and g0(r) = 1 + F 0(y)=�: The error term becomesei+1 = ti+1 � r = g(ti) � g(r) = g0(r)ei + higher order terms (14)

Since g0(r) is constant in the iteration, (12) converges linearly to y: 2
Corollary 2.1 Sphere tracing converges quadratically if and only if the function is steepest at its

first root.

In the event F 0(r) = ��; the linear term of the error (13) drops out, leaving the quadratic and

higher order terms. 2
2.4 Lipschitz Methods vs. Interval Analysis

Subdivision-based Lipschitz methods [Von Herzen & Barr, 1987; Von Herzen et al, 1990; Kalra

& Barr, 1989] have been replaced by similar but more flexible interval methods [Mitchell, 1990b;

Snyder, 1992]. The use of interval arithmetic and automatic differentiation in the definition of a

function [Mitchell & Hanrahan, 1992] isolate root finding information from the user, whereas the

use of Lipschitz bounds generally require the user to understand the function well enough to know

how tightly it contracts points. However, both methods involve similar operations.

Let f : R! R be an function over an interval X � R: Defining f with interval arithmetic

operations results in an interval value [a; b] = f (X) bounding the values of f over X: (We assume

the first value a is no greater than the second value b for all intervals.) Moreover, the interval

[a0; b0] = f 0(X) bounds the values of the derivative f 0 over X: A Lipschitz bound of f over the

domain X is given by

LipX f � max(�a0; b0) (15)

whereas the interval [�LipX f;LipX f ] bounds all possible values of f 0 over X:
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The rules of interval arithmetic are similar to the addition and composition rules of Lipschitz

bounds. They are designed for a worst case that may not actually happen over a given domain.

Interval arithmetic abstracts the bounding of a function’s values, such that the user need not check

its results. Interval arithmetic bounds functions from the bottom up, by bounding the function’s

components and then their compositions.

x =

x(1-x)

[0,1]

1-x

[0,1]

x

[0,1] x =interval:

function:

graph:

Figure 3: Interval arithmetic resulting in a loose bound of a parabola.

For example, Figure 3 illustrates a parabola defined by the function f (x) = x(1 � x) created

as the product of x and 1 � x: The interval bound of both monotonic component functions is

defined optimally as [0; 1]: Their interval product [0; 1] � [0; 1] = [0; 1] is four times larger than

the optimal bound [0; 1
4 ] of the product x(1 � x): Moreover, treating x(1 � x) as x + �(x � x)

yields an even worse interval bound of [�1; 1]:
Although Lipschitz bounds can be found using rules similar to interval arithmetic, they are

often designed from the top down instead, through a holistic understanding of the function and its

metric effects. This process can yield a tighter, often optimal Lipschitz bound on the function than

is possible by simple interval arithmetic of its components.

Sphere tracing differs from previous Lipschitz-based methods in computer graphics in that it

is not based on binary subdivision. An interval version of sphere tracing could use (15) to define

a (local) Lipschitz bound, although any creases in the domain would yield a useless (for sphere

tracing) derivative interval of [�1;1]; as prescribed in [Mitchell, 1990b].
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2.5 Constructive Solid Geometry

Following [Ricci, 1974], the minimum and maximum operations on functions results in union and

intersection operations on their implicit surfaces. In the following equations, let fA; fB be signed

distance functions of sets A and B respectively. If fA or fB is a signed distance bound, then the

resulting CSG implicit function will be also be a bound.

The distance to the union of A and B is the distance to the closer of the twod(x; A [B) = min fA(x); fB(x): (16)

Similarly, the distance to a list of objects is the smallest of the distances to each of the component

objects.

The distance to the complement of A takes advantage of the signed nature of the distance

function d(x;R3 nA) = �fA(x): (17)

Although DeMorgan’s theorem defines intersection as the complement of the union of

complements, the minimum operators used in the union are not complemented properly. Instead,

the distance to the intersection is bound by the distance to the farthest component.

Theorem 3 The distance from a point x to the intersection of two implicit surfaces A = f�1A (0)

and B = f�1B (0) defined by signed distance bounds fA; fB is bounded byd(x; A \B) � max fA(x); fB(x): (18)

Proof: By parts, as illustrated on a sample intersection in Figure 4.

Case I: x 2 A \ B: Both fA and fB are negative, and the larger of the two indicates the

(negative) distance to the closest edge of the intersection.

Case II:x 2 A;x 62 B: The function fA is negative whereas fB is positive, hence the greater of

the two. The closest point on B to xmay not be in the intersection, but there cannot be any point

in the intersection closer.

Case III: x 62 A;x2 B: Symmetric with Case II.
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A

B
I

II

III

IV

Figure 4: Sample points illustrated a bound on the distance to the intersection between two sets.

Case IV: x 62 A [ B: As before, the closest point in the intersection A \ B can be no closer

than the farther of the closest point in A and the closest point in B: 2
From its definition, set subtraction A�B may be simulated as A \ (R3 nB); though yielding

only a signed distance bound due to the intersection operator.

The union and intersection operators are demonstrated in Figure 10 in Section 4.2.

2.6 Enhancements

The following enhancements increase the efficiency of sphere tracing by reducing unnecessary

distance computations, which can be quite expensive and even iterative in some cases. The

enhancements are evaluated and analyzed empirically in Section 4.3.

2.6.1 Image Coherence

An algorithm similar to sphere tracing has been developed for rendering discrete volumetric data

using the 3-D distance transform [Zuiderveld et al, 1992]. The distance transform takes a binary

‘‘filled/unfilled’’ voxel array to a numerical voxel array such that each voxel contains the distance

to the closest ‘‘filled’’ voxel, under a given metric. We have also extended the concept of Lipschitz

constants to volume rendering [Stander & Hart, 1994], trading the distance transform for an octree

of local Lipschitz constants as in [Kalra & Barr, 1989], allowing distance-based accelerated volume

rendering of arbitrary isovalued surfaces while eliminating the need to recompute the preprocessed

data structure for each change in the threshold.
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One enhancement in [Zuiderveld et al, 1992] kept track of the smallest distance encountered

by a ray that misses the object. Under an orthogonal projection, this smallest distance defines the

radius of a disk of guaranteed empty pixels surrounding the sample point. Under a perspective

projection, the minimum projected distance must be computed (requiring ray-sphere intersection),

and this enhancement becomes less efficient. Initial tests have shown this enhancement to degrade

performance in the perspective case for typical implicit surfaces.

2.6.2 Bounding Volumes

Bounding volumes are a useful mechanism to cull processing of intricate geometries which are

irrelevant to the current task. Beyond their typical benefit of avoiding the casting of rays that miss

an object, they also help sphere tracing avoid distance computations for objects farther away than

others. The overhead of quick bounding-volume distance checks is, in most cases, a small price to

pay for the benefit of avoiding many expensive but useless distance computations.

First, the distances to each bounding volume in a union or collection of objects is computed.

Then in order of increasing bounding volume distance, the distance to the contents of each

bounding volume is computed until a content’s distance is less than the smallest bounding volume

distance. This distance is then the point-to-set distance to the collection of objects. This process is

sketched in Figure 5.

A Lagrange multiplier method for finding the bounding parallelepiped of an implicit surface

appears in [Kay & Kajiya, 1986]. The signed distance bound has properties which might yield an

alternative implicit surface bounding volume algorithm, but this topic is left for further research.

2.6.3 The Triangle Inequality

The triangle inequality, jja� cjj � jja� bjj + jjb� cjj 8a; b; c2 R3; (19)

is part of the definition of any metric. It can also help eliminate unnecessary distance computations

for collections of objects. When computing the shortest distance between a point and a collection
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Make a heap D of bounding volume distances to each object.

Initialize d = 1:
Repeat

Let d be the lesser of d or the distance to the contents of the bounding volume

at the top of the heap.

Remove the top of the heap and re-heap.

Let dh be the distance to the bounding volume now at the top of the heap.

Until d < dh or the heap is empty.

return d:
Figure 5: An efficient algorithm for finding the closest object of a collection using bounding

volumes.
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of objects, one need not compute the distance to objects whose last distance evaluation minus the

distance traversed along the ray since that last evaluation is still larger than the distance to the

currently closest object. The triangle inequality enhancement algorithm is outlined in Figure 6.

2.6.4 Octree Partitioning

Eliminating empty space certainly aids rendering efficiency, but the major benefit of partitioning

is that it allows the imposition of local bounds on the Lipschitz constants yielding tighter signed

distance bounds. Octree partitioning has been used in the polygonization [Bloomenthal, 1989]

and ray tracing [Kalra & Barr, 1989] of implicit surfaces. Sphere tracing reaps the same benefits

from spatial partitioning as did the root finding method in [Kalra & Barr, 1989], which used the

Lipschitz constant to cull octree nodes guaranteed not to intersect the implicit surface.

Ray intersection with an implicit surface defined by a signed distance bound is penalized by

the section of the domain where the gradient magnitude is greatest. Chopping an object into the

union of smaller chunks allows each chunk to be treated individually, penalized only by the largest

gradient within its bounds. Since the partitioning algorithm in [Kalra & Barr, 1989] required only

a bound on the Lipschitz constant of the function, the use of this octree in no way restricts the

domain of functions available for sphere tracing.

Octree partitioning further enhances sphere tracing of unions and lists by optionally storing an

index to the object closest to the cell. An object is closest to an octree cell if and only if it is the

closest object to every point in the cell. Under this definition, some cells may not have a closest

object. By the triangle inequality (19), an object is closest to a cell if the distance from the cell’s

centroid to the object, plus the distance from the centroid to the cell corner, is still less than the

distance from the centroid to any other object.

2.6.5 Convexity

Convexity can be defined in any number of ways. For example, metric topology [Kaplansky, 1977]

defines a set in a complete metric space as convex if and only if for any two distinct points in the

set, there exists a third distinct point whose distance from the first two points sums to their distance
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Given ray r(t), maximum distance D and a collection of objects O:
Initialize dlast = 0 and t = 0:
For each object o 2 O initialize od = 0:
Until dmin < � or t > D:

For each object o 2 O:
If od � dlast > dmin then

Update od = od � dlast:
Otherwise

Let d = d(r(t); o):
Reset od = d:
Update dmin = min(dmin; d):

End if.

Let dlast = dmin:
End for.

Update t = t + dmin:
End until.

Figure 6: Triangle inequality algorithm for avoiding unnecessary distance computations.
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from each other. The coordinate space R3 allows the more familiar definition of convexity.

Definition 4 [Farin, 1990] A set A � R3 is convex if and only if the line segment

lerp(x;y) = sx+ (1� s)y; 8s 2 [0; 1] (20)

connecting the two endpoints x;y 2 A is a subset of A:
Knowing that an object is convex can make sphere tracing more efficient by increasing the

step size along the ray.

Theorem 4 Let A � R3 be a convex set defined implicitly by the signed distance function f: Then

given a unit vector v 2 R3 the line segment

lerp(x; f (x)�v � rf (x)
v) (21)

does not intersect A except possibly at its second endpoint.

Proof: The gradient of a signed distance function rf has the following properties on the

complement of a convex set R3 nA : (1) it is continuous; (2) its magnitude is one (the change in

the function equals the change in the distance); and (3) its direction points directly away from the

closest point on the implicit surface. Hence, for any x 2 R3 nA we know the closest point in A,

and its surface normal points toward x: Since A is convex, it cannot penetrate the tangent plane tox:
The intersection of a ray anchored at x and direction v with the tangent plane normal to the

vector rf (x) a distance of f (x) from x is given by the second endpoint of (21). 2
Corollary 4.1 If rf (x) � v � 0 then the ray anchored at x and direction v does not intersect the

implicit surface of f:
Theorem 4 allows sphere tracing to make larger steps toward convex objects, and Corollary 4.1

allows sphere tracing to avoid computing the distance to convex objects it has stepped beyond.

The convexity enhancement likely causes sphere tracing to converge quadratically, because of its

similarity to Newton’s method, which also converges quadratically.
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Bounding volumes are usually convex, and combining these two techniques can further reduce

the computation of unnecessary distances.

Knowledge of convexity becomes a necessity for rendering scenes with a horizon line. Consider

a ground plane and a ray parallel to it. Sphere tracing will step along this ray at fixed intervals

looking for an intersection that never happens. Corollary 4.1 avoids this situation whereas

Theorem 4 hastens convergence of rays nearly parallel to the ground plane.

3 Antialiasing

Tracing cones instead of rays resulted in an area-sampling antialiasing method in [Amanatides,

1984]. Cone tracing computed the intersection of cones with spheres, planes and polygons to

symbolically prefilter an image, eliminating the aliasing artifacts that result from point sampling.

Sphere tracing is easily coerced into detecting and approximating cone intersections with any

implicit surface defined by a signed distance function. One must still implement the details of

the cone tracing algorithm to determine the shape of the cones as they bounce around a scene,

but may rely on unbounding spheres to increase the efficiency of determining cone intersections.

Moreover, sphere tracing only enhances the detection of cone intersections at silhouette edges, and

is of no help in the other forms of aliasing cone tracing also fixes, such as texture aliasing.

At some point along a grazing ray, the sequence of unbounding spheres shrinks, falling within

the bounds of the cone, then enlarges, escaping the bounds of the cone. This poses the problem

of ‘‘choosing a representative’’ [Amanatides, 1984] --- a location to take a sample to approximate

the shading of the cone’s intersection with the surface.

A cover is a pixel-radius offset bounding an implicit surface on the inside and outside such

that a ray-cover intersection indicates a cone-object intersection [Thomas et al, 1989]. Given an

implicit surface defined by the signed distance function f (x); its outer cover is the global offset

surface implicitly defined by f (x) � rp and its inner cover is the global offset surface implicitly

defined by f (x) + rp; where rp is the radius of a pixel (one-half of the diameter of a pixel [Hart &

DeFanti, 1991]). In other words, the outer cover is the surface f�1(rp) and the inner cover is the
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surface f�1(rp): Instead of sphere tracing the implicit surface of f (x); the antialiasing algorithm

sphere traces the inner cover --- the implicit surface of f (x) + rp:
The development of covers proposes the most representative choice for silhouette antialiasing

would be the point along the section of the ray closest to the surface. Hence, of the unbounding

spheres inside the cone, the center of the smallest sphere (with respect to pixel size) becomes the

representative sample. Though this sample is off the implicit surface, one assumes a reasonable

level of continuity in the gradient of the distance function to define a usable surface normal. The

sequence along the ray of unbounding spheres are related to a cone as shown in Figure 7.

cone boundary

ray

cone intersection

representative
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Figure 7: Sphere tracing approximates cone intersection. The ray intersects the original surface

but misses its inner cover. This cone intersection will account for more than half of the pixel’s

illumination.

For smooth implicit surfaces, one may assume local planarity. Hence the implicit surface is

assumed to cover the cross section of the cone with a straight edge of the given distance from the

cone’s center. The amount of influence this shaded point has, with respect to the points the ray

intersects further on, depends on the signed distance function evaluated at the representative f (x)

(the radius of the closest unbounding sphere) to the implicit surface. The fraction of coverage of a

disk of radius rp by an intersecting half-plane of signed distance f (x) from its center is given by� =
1
2
� f (x)

qr2p � f(x)2�r2p � 1� arcsin
f (x)rp (22)

and is derived in [Thompson, 1990]. Ray traversal proceeds in steps of f (x) + rp (which may take it

through the surface). The percentage of coverage � represents the cone intersection of the grazing
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ray. It is treated as an opacity and is accumulated and used to blend the shading of the current

representative x with the shading resulting from further near misses and intersections, using the

standard rules of image compositing [Porter & Duff, 1984].

For intersection edges, one must keep track of all signed distance functions whose unbounding

spheres fit within the bounds of the cone. Upon ray intersection approximation, the signed distance

functions of each of the intersecting surfaces provide the proportions for the proper combination

of their shading properties. The representative for intersection is the last point of the ray traversal

sequence, the point that satisfies the convergence test.

Often the signed distance function is too expensive to compute efficiently and a signed distance

bound is used. A bound may return unbounding spheres whose radii prematurely shrink below

the radius of a pixel, resulting in incorrect cone intersections. In this case, a separate distance

approximation may be useful. For example, [Pratt, 1987; Taubin, 1994] estimate the distance to the

implicit surface of f with the first order approximation f=jjrf jj: In general, this approximation is

not necessarily a distance bound. Lemma 1 of [Taubin, 1994] asserts that this approximation is

asymptotic to geometric distance as one approaches the surface. Cone intersections can hence be

more accurately determined by this approximation than by the signed distance bound.

For texture aliasing, cone tracing filtered the texture based on the radius of the cone at

intersection. Since cone tracing is maintained within the unbounding-sphere ray-intersection

scheme, textures can be likewise antialiased within this rendering system.

4 Results

Sphere tracing simplifies the implementation of an implicit surface ray tracer, and runs at speeds

comparable to other implicit surface rendering algorithms.

4.1 Implementation

Sphere tracing has been implemented in a rendering system called zeno. Inclusion of an implicit

surface into zeno requires the definition of two functions: a signed distance function for ray
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intersection, and a surface normal function for shading.

A new primitive or operation can be incorporated into zeno with no more than a distance

bound. The negative part of the signed distance bound is only necessary for some constructive

solid geometry and blending operations, and is not needed for the visualization of functions that

are zero-valued inside the implicit surface. The surface normal function can be avoided by using a

general six-sample numerical gradient approximation of the distance bound gradient. Since most

of the time is spent on ray intersection, the inefficient numerical gradient approximation has a

negligible impact on rendering performance.

The simplicity with which implicit surfaces are incorporated in zeno makes it useful for

visualization of mathematical tasks and investigation of new implicit surfaces. For example, a

homotopy that removes a 720� twist from a ribbon without moving either end formed the basis

for the animated short ‘‘Air on the Dirac Strings’’ [Sandin et al, 1993], for which zeno rendered

a segment. This homotopy is based heavily on interpolated quaternion rotations and was easily

incorporated into zeno as a domain transformation after a quick search and analysis of the most

extreme deformation in the homotopy [Hart et al, 1993].

4.2 Exhibition

The three tori in Figure 8 are combined using the superelliptic blend described in Appendix D.2.

The tori all are of major radius one, and minor radius one-tenth. The blue-green blend is quadratic

extending along the tori a radius of 0:5 from their intersection. The red-green blend also has radius

0:5 but is degree eight. The red-blue blend is also degree eight but has a radius of only 0:2:
Sphere tracing rendered Figure 8 (left) in 12:47 at a resolution of only 256 � 256 using

prefiltering to avoid the severe aliasing that ordinarily accompany such low sampling rates.

Experiments on the difference of execution using point sampling and area sampling show that the

increased execution time due to area sampling is negligible.

Although the superelliptic blend is implemented in zeno as a signed distance bound, it returns

an underestimated distance of no less than 70% of the actual distance which adequately indicated

cone intersections, as the enlargement demonstrates in Figure 8 (upper right).
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Figure 8: Three blends of tori (left), blowup (upper right) and work image (lower right) .
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The work image in Figure 8 (lower right) shows that sphere tracing concentrates on silhouette

edges. Blue areas converge from 10 iterations, green around 50 and red over 100.

Figure 9: A logo for zeno.

Figure 9 demonstrates a generalized cylinder, from Appendix C, whose skeleton consists of a

space curve modeled with 14 Bezier control polygons. Sphere tracing can render this scene in as

fast as 5:30 using bounding spheres to eliminate unnecessary distance computations. The curved

horizon is an artifact of the yonder clipping sphere of radius 1; 000 used to terminate ray stepping.

Figure 10 demonstrates the robustness of sphere tracing on creased surfaces. Both images were

rendered with prefiltering at a resolution of 512 � 512; and in 16:48 for the cylinders, 12:36 for

the cube.

The creases were created as CSG unions and intersections, defined implicitly by the continuous

but non-differentiable minimum and maximum operations from Section 2.5. The resulting edge

was then merged into a third object using the pseudonorm blend from Appendix D.2. Such creased

surfaces appear periodically in a variety of shapes, particularly in the modeling of biological forms.

Figure 11 illustrates the ‘‘noise’’ range deformation described in Appendix F. The left image

uses a single octave of noise, whereas the next two use six octaves, whose amplitude was scaled
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Figure 10: Creases created by blended edges.

Figure 11: ‘‘Lava’’ (left) modeled as a sphere deformed by the noise function. ‘‘Muscle’’ (center)

modeled with Brownian 1=f 2 noise. ‘‘Rock’’ (right) modeled with fractional Brownian 1=f noise.
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by 1=f 2 and 1=f; respectively, yielding a muscle texture and a rocky surface. The three images

were each rendered at a resolution of 256 � 256 in (from left to right) approximately five minutes,

half-an-hour, and two hours. The high variation of distance estimates prohibited prefiltering the

results of the noise function.

4.3 Analysis

Sphere tracing convergence is entirely linear whereas other general root finders , such as interval

analysis, have a linearly-convergent root isolation phase followed by a quadratically-convergent

root refinement stage. Work images, such as Figure 8 (lower right), show that ray intersection

is most costly at silhouette edges. When sphere tracing these edges, the distance to the surface

is only a fraction of the distance to the ray intersection which slows convergence. For other

methods like interval analysis, silhouettes are double roots (that prevent root refinement) and their

neighborhoods consist of closely-spaced pairs of roots. Such root pairs are costly for midpoint

subdivision root refinement methods to separate since the distance between the two roots can be

several orders of magnitude smaller than the initial interval.

The convexity enhancement hastened convergence by 31% as shown in Table 2. With more

primitives, this same table shows the triangle inequality enhancement to more than double the

convergence rate, and when combined with convexity, enhances ordinary sphere tracing by 60%.

Table 2 also compares various enhanced rendering times for the zeno logo. The fact that

all 14 Bezier curves were nearly equidistant from the eye prevented the triangle inequality from

significantly reducing unnecessary distance evaluations until sphere tracing had traversed much of

each ray.

Figure 12 reveals the distribution of step sizes used in sphere tracing a ball. This histogram

counted only the distance evaluations used to intersect primary (eye) rays.

Unimproved sphere tracing is evenly distributed, with a small hump in the middle. An octree

replaces the increased distance computation in this humped area with octree parsing overhead,

(which this histogram does not measure). Echoes of the octree bounds cause the oscillations

at the high end of its spectrum, whereas the low end adheres to the unenhanced performance.
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scene execution time relative time enhancement

single sphere 2:00 100% none

1:23 69% convexity

9 spheres/plane 2:53 100% none

1:42 59% convexity

1:19 46% triangle inequality

1:10 40% both

zeno logo 26:29 100% none

19:23 73% triangle inequality

5:28 21% bounding spheres

‘‘Lava’’ 4:37 1 (single noise)

‘‘Muscle’’ 33:52 7.3 (1=f 2 noise)

‘‘Rock’’ 2:06:56 27.5 (1=f noise)

Table 2: Comparison of execution times for enhanced sphere tracing of various scenes.
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Figure 12: Histogram of step sizes for sphere tracing a ball.
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Experiments on simple scenes failed to demonstrate any increased performance from the octree

enhancement, although more complicated scenes are likely to benefit from its use.

The convex histogram demonstrates the power of this enhancement. Its slope on the left

confirms the expectation from Section 2.6.5 that it provides sphere tracing a faster order of

convergence. The right side of this histogram is significantly reduced, due to the cessation of

stepping after moving beyond the sphere.

The spike in the unenhanced and convex graphs indicates the distance from the eye to the

ball, which is the first step taken by every ray emanating from the eye-point. One can remove

these spikes from the graph by measuring this distance once and refer to it as the first step for

rays emanating from the eye-point, and likewise for the light sources. This ‘‘head start’’ barely

improved performance in experiments.

Similar histograms in [Zuiderveld et al, 1992] measured performance logarithmically in the

number of steps but linearly in step size. As a result, their graphs were more logarithmically shaped

than Figure 12.

The accuracy of the distance estimate is directly proportionate to the rate of convergence.

Experiments on a sphere show that half the distance doubles the number of steps. The step-size

histograms in Figure 13 reveals the effects of distance underestimation.

The relationship between distance accuracy and sphere tracing performance suggests that

in certain cases a slower signed distance function may perform better than a fast distance

underestimate. For example, consider the distance to an ellipsoid with major axes of radius 100,

100 and 1 modeled as a non-uniform scale transformation of the unit sphere. Section E yields

a signed distance bound which returns at best the distance to the ellipsoid, and at worst 1% of

the distance, in closed form, whereas [Hart, 1994] yields a signed distance function which returns

the exact distance at the expense of several Newton iterations. In this case, the signed distance

function would likely result in better performance.

Finally, the Lipschitz constants of the noise functions are 3 for single noise, 6 for 1=f 2 noise

and 18 for 1=f noise (six octaves). The timings in Table 2 corresponding to the images in Figure 11

show that the 1=f 2-noise rendering time was actually 7:3 times (instead of the expected value of
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Figure 13: Halving step sizes doubles convergence time.
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twice) the single noise time. The likely reason is that the 1=f 2 noise invokes the noise function six

times more than the single noise function (yielding an expected value of 12 times). The 1=f -noise

rendering time was 27:5 times longer than that of single noise (less than the expected 36 times),

and 3:75 times longer than the 1=f 2 noise (slightly larger than the expected value of 3).

5 Conclusion

Sphere tracing provides a tool for investigating a larger variety of implicit surfaces than before

possible.

With its enhancements and prefiltering, sphere tracing becomes a competitive presentation-

quality implicit surface renderer. In particular, the convexity enhancement greatly increases

rendering speeds, and the triangle inequality is quite effective for large assortments of objects.

Bounding volumes also increase rendering performance as expected. However, techniques based

on image coherence and space coherence (octree) did not perform as well.

Whereas sphere tracing performed significantly slower than standard ray tracing on simple

objects consisting of quadrics and polygons, it excelled at rendering the results of sophisticated

geometric modeling operations.

The geometric nature of sphere tracing adapts it to symbolic prefiltering, supporting antialiasing

at a nominal overhead.

In lieu of direct experimental comparison, several theoretical arguments show sphere tracing

as a viable alternative to interval analysis and L-G surfaces.

5.1 Further Research

Sphere tracing demonstrates the utility of signed distance functions in the task of rendering

geometric implicit surfaces. We expect these functions will similarly enhance other applications,

particularly in the area of geometric processing. As geometric distance becomes more important

in computer-aided geometric design and other areas of modeling, the demand for more efficient

geometric distance algorithms will increase.

5-103



In retrospect, the use of the Euclidean distance metric seems an arbitrary choice for sphere

tracing. The linear nature of the chessboard and Manhatten metrics may result in more efficiently

computed distances and ray intersection. ‘‘Cube-tracing’’ and ‘‘octahedron-tracing’’ algorithms

are left as further research.
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A Distance to Natural Quadrics and Torus

These appendices derive signed distance functions, bounds and Lipschitz constants and bounds

for a variety of primitives and operations in the hope that they will aid in the implementation of

sphere tracing, while also serving as a tutorial in developing signed distance functions, bounds and

Lipschitz constants and bounds for other primitives and operations.

Distances to the standard solid modeling primitives are listed below. The geometric rendering

algorithm is not as efficient compared to the standard closed-form solutions. Instead, these

distances are useful when the primitives are used in higher-order constructions such as blends and

deformations.

Plane The signed distance to a plane P with unit normal n intersecting the point rn isd(x; P ) = x � n� r: (23)

Sphere A sphere is defined as the locus of points a fixed distance from given point. The distance

to the unit sphere S about at the origin hence given byd(x; S) = jjxjj � 1: (24)

Through domain transformations (Section E, the radius and location of the sphere may be

changed. The sphere may even become an ellipsoid, though this reformulates the signed distance

function into one requiring the solution to a sixth-degree polynomial [Hart, 1994]. Through

alternate distance metrics (Section B), the sphere can become a superellipsoid. These techniques

also generalize the rest of the basic primitives as well.
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Cylinder The distance to a unit-radius cylinder centered about the z-axis is found by projecting

into the xy-plane and measuring the distance to the unit circled(x; Cyl) = jj(x; y)jj � 1: (25)

Note that in (25), and throughout the rest of the appendix, x = (x; y; z):
Cone The distance to a cone centered at the origin oriented along the z-axis isd(x; Cone) = jj(x; y)jj cos� � jzj sin �; (26)

where � is the angle of divergence from the z-axis. The trigonometry behind its derivation is

illustrated by Figure 14. jj(x; y)jj � jzj tan �(x; y; z)
� �jzj tan � jzjjj(x;y)jj cos ��jzj sin �

Figure 14: Geometry for distance to a cone.

Torus The torus is the product of two circles, and its distance is evaluated as suchd(x; T ) = jj(jj(x; y)jj �R; z)jj � r (27)

for a torus of major radius R and minor radius r; centered at the origin and spun about the z-axis.
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B Distance to Superquadrics

Superquadrics [Barr, 1981] result from the generalization of distance metrics. Distance to the basic

primitives all used the jj � jj operator. In two dimensions, this operator generalizes to the p-normjj(x; y)jjp = (jxjp + jyjp) 1p (28)

which, when p = 2; becomes the familiar Euclidean metric whose circle is a round circle. The

Manhattan metric (p = 1) has a diamond for its circle. Taking the limit as p ! 1 results in the

chessboard metric jj(x; y)jj1 = maxx; y (29)

where a square forms its circle. The other intervening values for p produce rounded variations

on these basic shapes, and setting 0 < p < 1 produces pinched versions. Generalized spheres,

so-called superellipsoids, are produced by a pq-norm asjj(x; y; z)jjpq = jj( jj(x; y)jjp; z)jjq: (30)

The natural quadrics now generalize to superquadrics, and tori likewise become supertori,

whose distances are measured in the appropriate metric. One unifying metric space must be used

for the distances to be comparable. Hence, pq-norm distances must be converted into Euclidean

distances.

Let f (x) return a pq-norm distance to its implicit surface. This distance defines the radius of

an unbounding superellipsoid. The radius of the largest Euclidean sphere re inscribed within thepq-norm superellipsoid of radius rs (in the pq-norm metric) is given byre =

8><>: rs=jj(p3
3 ; p3

3 ; p3
3 )jjpq if p < 2rs otherwise

(31)

C Distance to Offset Surfaces

Given some closed skeleton geometry S � R3; then the global offset surface is defined geometri-

cally by the implicit equation d(x; S) � r = 0: (32)
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When r is constant, the resulting implicit surface fleshes out the skeleton S:
The point-to-set distance is defined as a search through the entire set for the closest point. If @S

has a surface normal defined everywhere, then the point y in S closest to x is one of the points on@S whose normal extends directly toward x: This greatly reduces the search space for point-to-set

distance determination to some primitives, such as parametric surfaces.

This formulation of the point-to-set distance can cause problems when used to define an offset,

however. If the skeleton is a generator surface represented by the parametric function g(u; v); then

the local offset surface is defined by the parametric functionp(u; v) = g(u; v) + rn(u; v) (33)

where n(u; v) =
gu(u; v)jjgu(u; v)jj � gv(u; v)jjgv(u; v)jj (34)

is the unit-length surface normal at g(u; v) and gu;gv are the partial derivatives with respect to u; v:
Global offsets are usually defined as geometric implicit surfaces whereas local offsets are

usually defined parametrically. Global offsets are the more desirable representation [Hoffman,

1989], and in particular avoid interior surfaces which can cause problems in ray-tracing and CSG

[van Wijk, 1984].

The offset of an algebraic implicit surface is algebraic, though of higher degree in general.

Likewise, parametric versions of the offset surface are typically of higher degree than the

generator. This increase in degree is due, in part, to the use of distance (requiring a cross

product and square root in (34)) in the definition of offset surfaces. Several techniques have

been developed to approximate offset surfaces with lower-degree representations. Treating offset

surfaces geometrically overcomes the problems of dealing with unnecessarily high degree algebraic

representations and loss of precision due to inexact low-degree approximations.

One useful skeletal model is the simplified generalized cylinder, which is a global offset surface

defined as the locus of points a fixed distance from a space curve piecewise defined by 3-D Bezier

curves.

Define the space curve parametrically as the image of the function p : R! R3: Without loss

of generality, assume the point we want to find the distance from the space curve is the origin.
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Then the closest point on the space curve will be either of the endpoints, or a point on the space

curve whose tangent is perpendicular with a vector pointing to the origin. The latter are found by

solving p(u) � pu(u) = 0: (35)

Let pbe a cubic Bezier curve. Then [Schneider, 1990] shows how (35) can be converted into a

degree-five 1-D Bezier curve, a Bernstein polynomial whose graph is bounded by the convex hull

of the control points. Bernstein polynomials can be solved efficiently using a technique described

in [Rockwood & Owen, 1987].

Generalized cylinders are demonstrated in Figure 9 in Section 4.2.

D Distance to Blended Objects

A blend is a smoothing of the joint where sections of an object meet. The following two blends

are local, meaning that they affect only a portion of the object. This is useful in computer-aided

geometric design so that blends on different parts of an object do not interfere, and is useful in

computer graphics to bound and cull blends from rendering when possible.

D.1 Soft Metablobbies

[Blinn, 1982] used a Gaussian distribution function to produce a blending function which has

come to be known as the ‘‘blobby’’ model. ‘‘Soft’’ objects approximate Gaussian distribution

with a sixth-degree polynomial to avoid exponentiation and localize the blends [Wyvill et al,

1986]. ‘‘Metaballs’’ approximate Gaussian distributions with piecewise quadratics to avoid

exponentiation and iterative root-finding [Nishimura et al, 1985].

Following [Wyvill et al, 1986], the following piecewise cubic in distance rCR(r) =

8><>: 2 r3R3 � 3 r2R2 + 1 if r < R;
0 otherwise.

(36)
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approximates a Gaussian distribution. A similar sixth-degree algebraic version also exists and is

typically used instead, avoiding distance computations at the expense of the higher degree [Wyvill

& Trotman, 1990].

Reformulating this function to accommodate the implicit surface definitions in this paper, (36)

forms the basis for a soft implicit surface consisting of n key points pi with radii Ri; and thresholdT; defined by the function f (x) = T � nXi=1

CRi(jjx� pijj) (37)

Negative keypoints are incorporated into the model by negating the value returned by CRi():
Theorem 5 The distance to the implicit blend B defined by (37) is bounded byd(x; B) � 2

3
f (x)

nXi=1

Ri: (38)

Proof: Repeated differentiation of (36) producesC 0(r) = 6
r2R3

� 6
rR2

(39)C 00(r) = 12
rR3
� 6R2

: (40)

Solving C 00(r) = 0 yields the maximum slope, which occurs at the midpoint r = R=2: Its Lipschitz

constant is given by

LipC(r) = jC 0(R=2)j =
3

2R: (41)

The Lipschitz constant of a sum is bounded by the sum of the Lipschitz constants, which gives the

above result. 2
In practice, local Lipschitz bounds may be used for tighter distance bounds by taking the first

summation in (38) over keypoints i with non-zero contributions. Additional efficiency results from

the use of bounding volumes of radius Ri surrounding the keypoints pi; as detailed in [Wyvill &

Trotman, 1990].

D.2 Superelliptic Blends

The pseudonorm blend of [Rockwood & Owen, 1987] is a local blend. It returns the p-norm

distance to the blended union of implicit surfaces of signed distance functions. This blend is based
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on the pioneering work of [Ricci, 1974], where implicit surfaces were defined by setting strictly

non-negative functions equal to one. Hence, we need to reformulate our functions into this style

by defining gA(x) = maxf1� fA(x)rA ; 0g (42)

and similarly for gB: The parameters rA; rB will delineate the extent of the local blends, in

Euclidean units if the components are signed distance functions. The pseudonorm blend of the

union of the implicit surface of fA with the implicit surface of fB is defined by the implicit surface

of fAB(fA(x); fB(x)) =

 gA(x)rA + gB(x)rBgA(x) + gB(x)
(1� gA(x)p � gB(x)p)! 1p : (43)

The parameter p is a thumbweight which describes how tightly the blend adheres to the original

surfaces. Conversely, the blended intersection is defined by �fAB(�fA(x);�fB(x)):
The domain of fAB is the area where fA(x) � rA and fB(x) � rB: Outside this domain, it

is impossible to smoothly combine the results of fA and fB , resulting in a crease in the space

surrounding the blend [Rockwood & Owen, 1987]. Such gradient discontinuities can be disastrous

for some root finders, but do not impact the geometric ray intersection method described earlier.

The pseudonorm blend is demonstrated in Figures 8 and 10 in Section 4.2.

E Distances to Transformed Objects

Implicit surfaces are transformed by applying the inverse transformation to the space before

applying the function. Let T(x) be a transformation and let f (x) define the implicit surface. Then

the transformed implicit surface is defined as the implicit surface off (T�1(x)) = 0: (44)

The Lipschitz constant of the composition is no greater than the product of the component Lipschitz

constants. We are concerned with the Lipschitz constant of the transformation inverse, which is

not necessarily the inverse of the Lipschitz constant of the transformation.
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Isometry Isometries are transformations that preserve distances. If I is an isometry, the distance

returned by f needs no adjustmentd(x; I � f�1(0)) = d(I�1(x); f�1(0)): (45)

Isometries include rotations, translations and reflections.

Uniform Scale A uniform scale is a transformation S(x) of the formS(x) = sx (46)

where s is the scale factor. The inverse S�1 is a scale by 1=s: Hence, the distance to a scaled

implicit surface is d(x;S(f�1(0))) = sd(S�1(x); f�1(0)) (47)

and the Lipschitz constant of the inverse scale is 1=s:
Linear Deformation The distance to the linear image of an implicit surface is found by

determining the Lipschitz constant of the linear transformation’s inverse, which is also a linear

transformation.

The Lipschitz constant of an arbitrary linear transformation is found by the power method,

which iteratively finds the largest eigenvalue of a matrix [Gerald & Wheatley, 1989].

Taper The taper deformation scales two axes by a function r(�) of the third axis [Barr, 1984].

The taper is defined

taper (x) = (r(z)x; r(z)y; z) (48)

whereas its inverse differs only by using r�1(�) instead of r(�):The Lipschitz constant of the inverse

deformation is

Lip taper = minz2Rr�1(z): (49)

In other words, the Lipschitz constant of the inverse taper is the amount of its ‘‘tightest’’ tapering.
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Twist The twisting deformation rotates two axes by a linear function a(�) of the third axis.

Twisting is defined

twist (x) =

0BBBBB@ x cos a(z)� y sin a(z);x sin a(z) + y cosa(z);z 1CCCCCA (50)

whereas its inverse differs only by using a�1(�) instead of a(�): Twisting is not Lipschitz on Rn
since for any Lipschitz bound � one can find two points Rn at a great distance from the twisting

axis that are transformed farther apart by a ratio greater than �: Thus, twisting must be constrained

to a domain where it satisfies the Lipschitz criterion. One such domain is the unit cylinder oriented

along the twisting axis. The Lipschitz constant of the twist is computed from the worst case

scenario within the bounds of the unit cylinder as illustrated in Figure 15,

Lip twist =

s
4 +

� �a0�2: (51)

21

twist

z z�a0 �a0
Figure 15: Geometric calculation of the Lipschitz constant of the bounded twist deformation.

F Distance to Hypertextures

The use of sophisticated noise functions has greatly increased the power of procedural models for

making existing geometric representations more realistic. The recent work has applied stochastic
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textures directly to the geometry instead of altering the shading [Perlin & Hoffert, 1989; Lewis,

1989].

The original ‘‘Hypertexture’’ system formulated implicit models for a variety of surface

phenomena, including hair and fire. This appendix focuses on incorporating hypertexture’s model

of noise into sphere tracing, though the same techniques can be used to adapt the other hypertexture

models as well.

‘‘Hypertexture’’ treats solid procedural noise as a deformation, and was designed for use

with implicit surfaces. Its original ray-tracing algorithm stepped along the ray in fixed intervals.

Determining a distance bound on a ‘‘hypertextured’’ shape allows sphere tracing to more efficiently

render its result.

Departing slightly from [Perlin & Hoffert, 1989], a noise function noise : R3 ! R deforms the

implicit surface of a signed distance function f by affecting its range (instead of its domain, as did

the previous appendix). The deformed surface is defined implicitly by the function f (x) + noise(x):
Band-limited solid noise results from the smooth interpolation of a lattice of random unit

vectors. Condensing [Perlin & Hoffert, 1989], the noise function is given by

noise(x; y; z) =
bzc+1Xk=bzc byc+1Xj=byc bxc+1Xi=bxcC1(jx� ij)C1(jy�jj)C1(jz�kj)Γ(i; j; k) � (x� i; y�j; z�k) (52)

where CR is the cubic Gaussian approximation (36) used for soft objects, and Γ is an array of

random unit vectors. From Theorem 5, we know that Lip C1 = 3=2: Two opposing vectors can be

neighbors in Γ; so Lip Γ = 2: Hence, their composition results in Lip noise = 3:
Fractal noise based on the 1=f� spectral distribution are formed by summing scaled versions

of the noise function

1=f� noise(x) =
n�1Xi=0

noise(2ix)
2�i : (53)

over n octaves [Perlin & Hoffert, 1989].

Setting the parameter � = 0 results in white noise, � = 1 in 1=f noise typically found in nature

and � = 2 in Brownian motion. When in the range 1 � � � 3; its relationship to the fractal

dimension D of the resulting surface it deforms is given by D = 2+ 3��
2 [Voss, 1988]. The 2i factor

increases the frequency (contracts the graph horizontally) whereas the 1=2�i factor decreases the
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amplitude (contracts the graph vertically).

For 1=f noise, the amplitude decreases proportionately to the increase in frequency, so its

Lipschitz constant equals the sum of the individual noise functions,

Lip 1=f noise = 3n: (54)

Thus 1=f noise is not Lipschitz, but its band-limited form for finite n is.

For Brownian motion (� = 2), the amplitude decreases geometrically as the frequency increases,

resulting in

Lip 1=f 2 noise = 3(2� 1=2n�1) � 6: (55)

Hence, Brownian motion is Lipschitz (which can also be derived from the definition of Brownian

motion as the integral of white noise).

The noise functions are demonstrated in Figure 11 in Section 4.2.
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