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Brief Biography

• Education: CS Ph.D. Stanford University
• Advisor: Donald E. Knuth

• Main Other Employers: Xerox PARC, DEC SRC, 
MIT

• Current Position: Paul Pigott Professor in the 
School of Engineering, Stanford University, 
CS + EE (courtesy)

• Other appointments at: University of Athens (Greece), 
National University of Singapore, Tokyo National Institute of 
Informatics, Swiss Federal Institute of Technology (ETH), 
Google Research, Hong Kong University of Science and 
Technology, Tsinghua-Berkeley Shenzhen Institute, Facebook 
AI Research

Machine Learning

Computer Vision

Computer Graphics



• Leonidas (Leo) Guibas (CS & EE)
• Instructor

• Kaichun Mo (CS)
• Course Assistant (TA)

• Carrie Petersen (CS)
• Admin
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The Class Principals

http://cs348n.stanford.edu

Also, a number of guest speakers …

Canvas for class videos, etc…

Class venue: Zoom, Clark S361, Gates 105, …

http://cs348n.stanford.edu/


The Course:
Deep Generative Models

for 3D

4



5

The Classic Graphics Pipeline

3D Scene:
• Geometry (incl. 

animation)
• Material
• Lighting

Camera Def.
• Intrinsics
• Often:

• focal length
• principal point

Camera View Point
• Extrinsics
• 6 DoF (3 rot, 3 trans)
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Need 3D Content for Rendering

Geometry Textures and Materials Lighting
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Computer Vision vs. Computer Graphics

[From A. Tagliasacchi]
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Use Neural Networks to Create 3D Objects / Scenes

unconditional,
or conditional



Challenges for 3D
Machine Learning
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The Role of Supervision, Data Scale: 2D vs 3D

2D —15M Images 3D —3M Shapes, scarce annotations
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Challenge: Unlike 2D, Multiple 3D Representations

Multi-View ImagesPoint Cloud Surface MeshVolumetric

…

CAD Model

2D
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Use NNs to Create Views of 3D Objects / Scenes

Generate 3D Representation

Generate 2D Views

Neural Rendering!
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Neural Rendering

6 DoFCamera
Pose / View Point
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NR Challenges: Differentiability, 3D Consistency

Shichen Liu, Tianye Li, Weikai Chen and Hao Li. 
Soft Rasterizer: A Differentiable Renderer for 
Image-based 3D Reasoning. ICCV'2019.

3D Supervision, from 2D Images!



• CS231n – Convolutional Neural Networks for Visual Recognition

• CS233 – Geometric and Topological Data Analysis

• CS236 – Deep Generative Models

• CS348a – Computer Graphics: Geometric Modeling and Processing

• CS348b – Computer Graphics: Image Synthesis Techniques

• CS348i – Computer Graphics in the Era of AI 15

Where CS348n Fits In
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CS348n is a New Class

There will be
rough edges …



Digital 3D Content Creation
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Some history



Computer-Aided
Shape Design
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What is computer aided design (CAD), geometric modeling?
Broad goal – digital twins of physical objects: 
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Geometric Modeling and Processing

To create mathematical models and practical tools for the 
digital representation and manipulation of 2D/3D shapes 
and their physical attributes.  
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GM Originated in the CAD Industry ~1950

Pierre Bézier
Renault



21

Ivan Sutherland, Sketchpad (1963) 

“A Man-Machine Graphical Communication System”

How shape models
arise: human design
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Many Textbooks
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Ab Initio Design: Many Software Environments

Autodesk Fusion 360

SolidWorks

Dassault Systèmes CATIA
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Historical Role of 3D Modeling

Beautiful synthetic imagery (ads, etc)

Physically-based simulation

Science

Engineering

Com
puter GraphicsComputer games

Movie special effects
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CAD Modeling is Hard — Requires Specialists
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CAD Modeling is Hard — Requires Specialists



Physical Shape
Acquisition

Geometry Capture
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• Acquired shapes:
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Acquisition by 3D Scanners
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Point Clouds from Many Sensor Types

2
9

Lidar point clouds (LizardTech)
Depth camera (Intel)

Structure from motion (Microsoft)



Stanford Bunny



• Simplest representation: only points, no connectivity
• Collection of (x,y,z) coordinates, possibly with normals

Point Clouds

Stanford bunny



From Point Clouds to Surfaces
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physical
model

acquired
point cloud

Reconstructed mesh or CAD 
3D model

Geometry Processing Pipeline



• Acquiring

• Analyzing/Repairing/Improving

• Manipulating

33

What is Geometry Processing About?

3D Models
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A Geometry Processing Pipeline: Low Level Algorithms
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A Geometry Processing Pipeline: Intermediate Algorithms



36

A Geometry Processing Pipeline: High Level Algorithms

Deformation and editing

Extracting shape structure

• keypoint extraction
• segmentation
• skeleton inference, more 

semantic representations

CAD model generation
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Always Trade-Offs for a Representation

error

size
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3D Content Creation/Acquisition Is Hard

Autodesk Fusion 360 Autodesk Maya



All This Is Changing …
Better Software, Hardware, and 

Machine Learning
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Democratization of 3D Content Creation
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Simpler 3D Modeling Software
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Affordable 3D Scanners

Microsoft Kinect Google Tango

Intel RealSense
iSense 3D for iPad
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SnapChat AR Lenses
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Neural Radiance Fields (NeRFs)

Capturing the World in 3D from a Few Photos









The Course
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http://cs348n.stanford.edu

http://cs348n.stanford.edu/
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Course Topics
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Course Topics
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Course Topics



• 3 programming assignments (1 week, 2 weeks, 2 weeks) using Google 
Cloud for Education

• 1 small project (BYI, but suggestions also provided, 3 weeks)
• 1 class presentation on research papers from the literature (topics 

covered in the previous class)
• teams of up to three students allowed

• we’ll use Piazza (www.piazza.com) as the class discussion forum, and 
Gradescope (www.gradescope.com) for assignment submissions
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Course Requirements / Mechanics

http://www.piazza.com/
http://www.gradescope.com/


• Form collaboration teams, if you so desire (Piazza can help find 
partners)

• Negotiate the date of your literature paper presentation

• Start thinking about a project (we are here to provide feedback)
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Action Items



First Steps Towards 3D ML
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Generative Modeling

Richard Feynman: “What I cannot 
create, I do not understand”

Generative modeling: “What I 
understand, I can create”
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Generative Model (Unconditional)
Given training data, generate new samples from the same distribution:

Training data ~ pdata(x) Generated samples~ pmodel(x)

Objective: learn a  pmodel(x) that matches pdata(x). 
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Decoding/Generation

Latent vectors z Generated Shapes

Generator/Decoder: generating shapes from latent vectors
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How to Learn Generative Models

• Explicitly modeling data 
probabilistic density,               
learn a network p⍬(x) that 
maximize data probability 

• Implicitly modeling 
probabilistic density,      
e.g. learn a network that 
scores how “real” the 
generated data is, f⍬(x)  

• Markov chain
• Autoregressive models
• Variational autoencoder

(VAE)
• Flow-based models
• Structure-based models
• Energy based models
• …

• Generative adversarial 
network (GAN)

• Score-based generative
• …
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Generative Model (Conditional)

• Data: (x, y) where x is a condition and y is the corresponding content.

Objective: learn a  pmodel(y|x) that matches pdata(y|x). 

Image generation based 
on scene-graph

Single-view 3D 
reconstruction

Shape completion



Latent Spaces in Deep Learning
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Feature extraction,
encoding

Output generation,
decoding

In
pu

t d
at

a
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ng
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lt

Latent representation

A latent code acts as a low-d proxy for input data w.r.t. a learning task

Discriminative tasks,
conditional 
generative tasks



3D Representations 
and Learning Frameworks

Encoding
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[Makwana, 2016]

[Lee et al., 2009]

Convolutional Image Networks
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Encoder
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From 2D to 3D Convolutions: Pixels to Voxels

3D convolution
Kernel: Kh ☓ Kw ☓ Kd
Kernel weight: Kh ☓ Kw ☓ Kd ☓ C1 ☓ C2
Feature grid: H ☓W ☓ D ☓ C

2D convolution
Kernel: Kh ☓ Kw
Kernel weight: Kh ☓ Kw ☓ C1 ☓ C2
Feature grid: H ☓W ☓ C
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Voxelized 3D Convolution

[Wu et al. 2015]

voxelization + 3D CNN

Con: High space complexity -- 3D convolution O(N3)
Quantization errors in voxelization

Not very attractive for generative models
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Efficiency: Sparse Convolution

Submanifold sparse convolutional 
network (from FAIR)

Minkowski Engine (from SVL)

Pro: efficient computation           Con: quantization remains
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Point Clouds from Many Sensors

6
2

Lidar point clouds (LizardTech)
Depth camera (Intel)

Structure from motion (Microsoft)

But irregular!
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PointNet++: Convolutions on Point Clouds

Object Classification

Object Part Segmentation

Semantic Scene Parsing

...

PointNet/
PointNet++

End-to-end learning for irregular point data 

Unified framework for various tasks

Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas. 
PointNet: Deep Learning on Point Sets for 3D 
Classification and Segmentation (CVPR’17)
Charles R. Qi, Li Yi, Hao Su, Leonidas Guibas. PointNet++: 
Deep Hierarchical Feature Learning on Point Sets in a 
Metric Space (NeurIPS 2017)
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Convolution on Mesh/Graph

Message passing:

Wang, et.al., Dynamic Graph CNN for Learning on Point Clouds, ToG 2019



3D Representations 
and Learning Frameworks

Decoding
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Encoding 3D Using Convolution

Encoding: Convolution networks can transform a 3D data into a 
vector in latent space.

PointNet++
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Decoding/Generation

Latent vectors z Generated Shapes

Generator/Decoder: generating shapes from latent vectors
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Upsampling and Deconvolution (Transposed Conv)

Stride = 1,
Padding = 0

Stride = 2,
Padding = 1

Image credit:  
https://github.com/vdumoulin/conv_arithmetic

•Padding (p): The number of zeros padded around the original input increasing the size to (i+2*p)x(i+2*p)
•Stride (s): The amount by which the kernel is shifted when sliding across the input image.

https://github.com/vdumoulin/conv_arithmetic
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Decoders Really Matter for Generative Models
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Auto-Encoder

• AE encodes itself into a latent z
• AE then decodes the latent z back 

to itself
• Understanding AE is the first step 

to understand generative models.

Image Credit: Stanford CS231N
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Auto-Encoder Training (Self-Supervised)

Task: Learn to encode the input and decode itself
Reconstruction loss: measuring the distance between the input/output
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Volumetric AE

Binary Cross-Entropy Loss: 

CoRR 2016
Generative and Discriminative Voxel Modeling with Convolutional Neural Networks
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Auto-Encoder Connecting 2D and 3D

Encoder: 2D Conv
Decoder: 3D Deconv (Octree decoder)
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Point Cloud AE

Encoder: PointNet (N*3  L)
Decoder: MLP (L  3N  N*3)

ICML, 2018, Learning Representations and Generative Models for 
3D Point Clouds, Panos Achlioptas, et. al.
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Auto-encoder Latent Space

• Where is the data manifold in the latent space?
• Is a vanilla autoencoder a generative model?

Need to “structure” the latent space
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Variational Auto-Encoder

We can assume z follows a 
distribution.

Choose prior p(z) to be 
simple, e.g. Gaussian. 

Image Credit: Stanford CS231N
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Variational Auto-Encoder

Encoder Decoder

Image Credit: Stanford CS231N
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Generating New Samples & Interpolation

CoRR 2016
Generative and Discriminative Voxel Modeling with Convolutional Neural Networks



Geometry and Structure

backrest

seat

leg

armrest

Now with point clouds for the geometry
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Structure: Part Hierarchy

80



Structural Consistency

…
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Object Representation: Sibling Relationships

Reflectional Symmetry
Rotational Symmetry
Translational Symmetry
Adjacency
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Object Representation: Example
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A Hierarchy of Graphs
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Hierarchical Graph Encoder

feature
vector

feature
vector
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Hierarchical Graph Decoder

feature
vector

v

feature
vector
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Architecture Overview: VAE Training

encoder decoder

shape space

object with structure
Reconstructed

object with structure
reconstruction loss

structure consistency loss
(variational regularization)
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Interpolation With vs. Without Structure

source target
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Application: Generation

decoder

novel object

random

shape space

+ structure
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Generation

90
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Flow-Based 3D Generative Model

Discrete Point Flow Networks
From Univ. Grenoble Alpes

PointFlow (continuous 
normalizing flow)
From Cornell

Note that bijectivity requires same dimensionality.
From left to right: latent points to generated points
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Flow-Based Generative Model

Flow-based model is constructed by a sequence of invertible transformations.
Explicitly modeling probability.  Loss: negative loglikelihood of z = f(x)

Image credit:  Lil’log

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
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How to Learn Generative Models

• Explicitly modeling data 
probabilistic density,               
learn a network p⍬(x) that 
maximize data probability 

• Implicitly modeling 
probabilistic density,      
e.g. learn a network that 
scores how “real” the 
generated data is, f⍬(x)  

• Markov chain
• Autoregressive models
• Variational autoencoder

(VAE)
• Flow-based models
• Structure-based models
• Energy based models
• …

• Generative adversarial 
network (GAN)

• Score-based generative
• …
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GAN

Credit: Stanford CS231N
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Voxel GAN

Wu et. al., Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial 
Modeling, NeurIPS 2016
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Point Cloud GANs

ICML, 2018, Learning Representations and Generative Models for 
3D Point Clouds, Panos Achlioptas, et. al.
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In 3D, Not Close to Direct 2D Results Using GANs

https://thispersondoesnotexist.com



Synthetic 3D for ML
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Collecting per-pixel annotations is hard
Typical annotation speed for real images: 300 pixels per second

Cordts et al. CVPR 2016



Image credit: V-Ray

Synthetic Data Easily Provides Multi-Modal Annotations
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Synthetic Data Improves Performance

Real-World Tasks
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Need Quantity, Quality, Diversity in Generation

Greater diversity is better
Want all plausible scenes, views, lighting conditions, 
materials, ... 
Sadeghi and Levine RSS 2017, Tobin et al. IROS 2017 

More photorealism is better
Zhang et al. CVPR 2017, Li and Snavely ECCV 2018

Zhang et al. CVPR 2017

Li and Snavely ECCV 2018

Tobin et al. IROS 2017

[Roberts and Paczan]

“Sim2Real”
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Synthetic Indoor Environments
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Synthetic Imagery Has Its Own Costs

Scene Images
... ...

Cloud compute nodes

Photorealistic rendering in the cloud
is very costly

$51K for 77K images @ 1024x768 resolution
Specialist design time/effort
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Intermediate-Level Annotations
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Opportunity: Deferred Shading

Diffuse reflectance Diffuse illumination Non-diffuse residual Final image

Fixed camera, fixed lighting, dynamic materials

can randomize
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Faster Shading

Original Image
1.5 hours to render

Random Variations
10 milliseconds to render
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Faster Shading
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Deferred Shading is Differentiable

Perturbational can be random,
or adversarial

Fine-grained integration of data synthesis and ML training



Generative Model for Geometry Deformations/Edits

Learn possible variations of an input shape, discrete or continuous, 
meeting semantic constraints.

latent space

110
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Learning Variation Generation

Learning to Vary
• Re-use what we already have
• Populate sparsely sampled 

regions

Varying to Learn
• Provide generation diversity
• Create training data tailored 

for hard concepts

Geometry,
Arrangement,
Appearance,
Motion

for Objects and 
Scenes
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Generative Modeling

Richard Feynman: “What I cannot 
create, I do not understand”

Generative modeling: “What I 
understand, I can create”
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That’s All
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CS348n: Neural Generative Models for 3D Geometry
Winter 2021-22
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