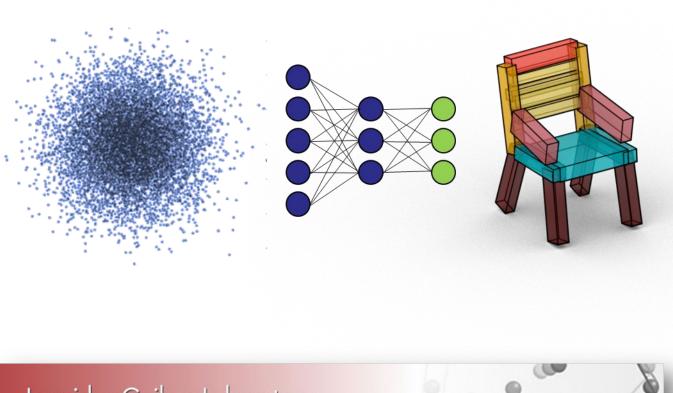
CS348n: Neural Representations and Generative Models for 3D Geometry

Geometric Computing



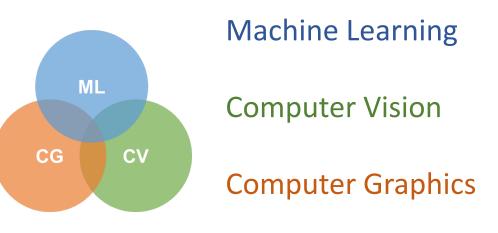
Leonidas Guibas Computer Science Department Stanford University

01-03_INTRO 1

Leonidas Guibas Laboratory

Brief Biography

- Education: CS Ph.D. Stanford University
 - Advisor: Donald E. Knuth
- Main Other Employers: Xerox PARC, DEC SRC, MIT
- Current Position: Paul Pigott Professor in the School of Engineering, Stanford University, CS + EE (courtesy)
- Other appointments at: University of Athens (Greece), National University of Singapore, Tokyo National Institute of Informatics, Swiss Federal Institute of Technology (ETH), Google Research, Hong Kong University of Science and Technology, Tsinghua-Berkeley Shenzhen Institute, Facebook Al Research



The Class Principals

- Leonidas (Leo) Guibas (CS & EE)
 - Instructor
- Kaichun Mo (CS)
 - Course Assistant (TA)
- Carrie Petersen (CS)
 - Admin

Also, a number of guest speakers ...

Canvas for class videos, etc...

http://cs348n.stanford.edu

Class venue: Zoom, Clark S361, Gates 105, ...

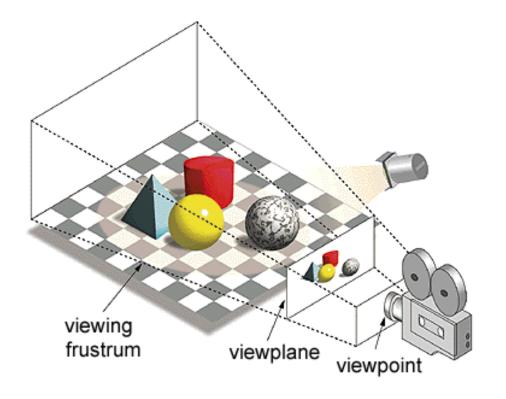
The Course: Deep Generative Models for 3D

The Classic Graphics Pipeline

From Computer Desktop Encyclopedia Reprinted with permission. © 1998 Intergraph Computer Systems

3D Scene:

- Geometry (incl. animation)
- Material
- Lighting



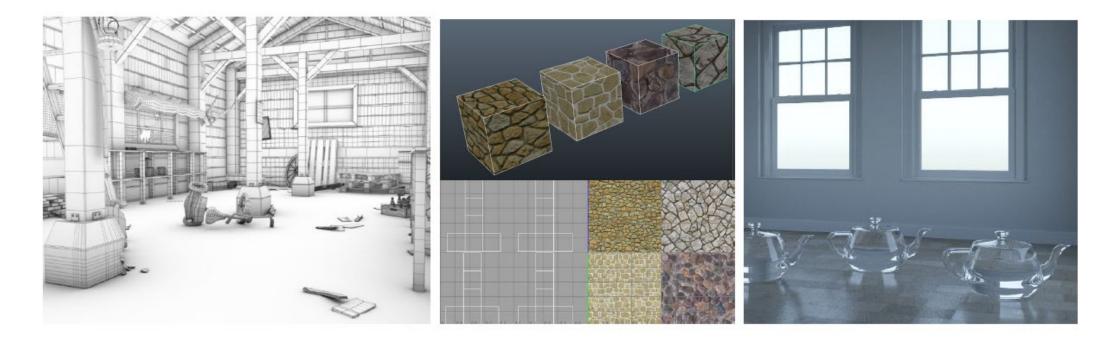
Camera Def.

- Intrinsics
- Often:
 - focal length
 - principal point

Camera View Point

- Extrinsics
- 6 DoF (3 rot, 3 trans)

Need 3D Content for Rendering

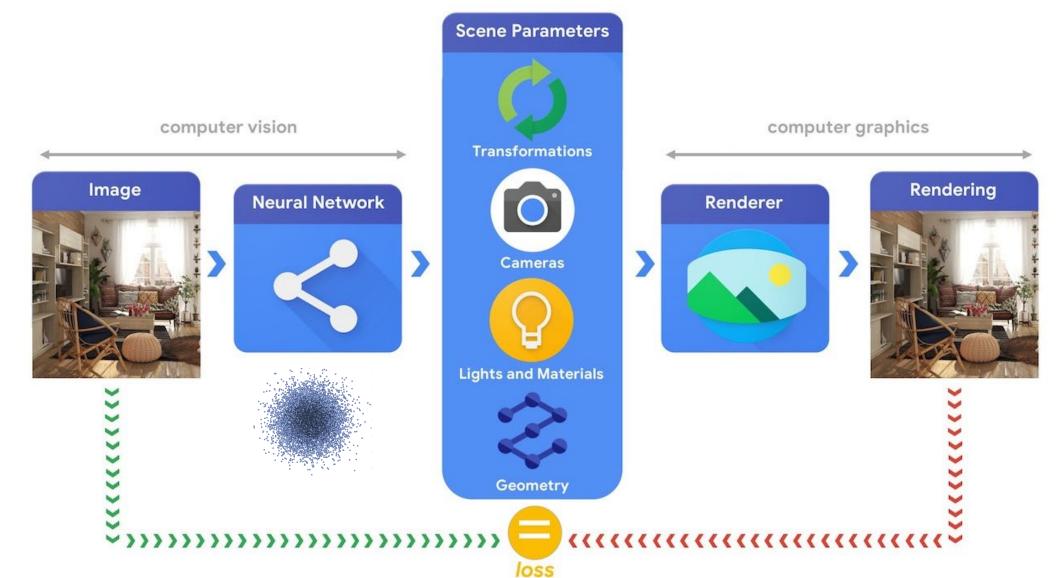


Geometry

Textures and Materials

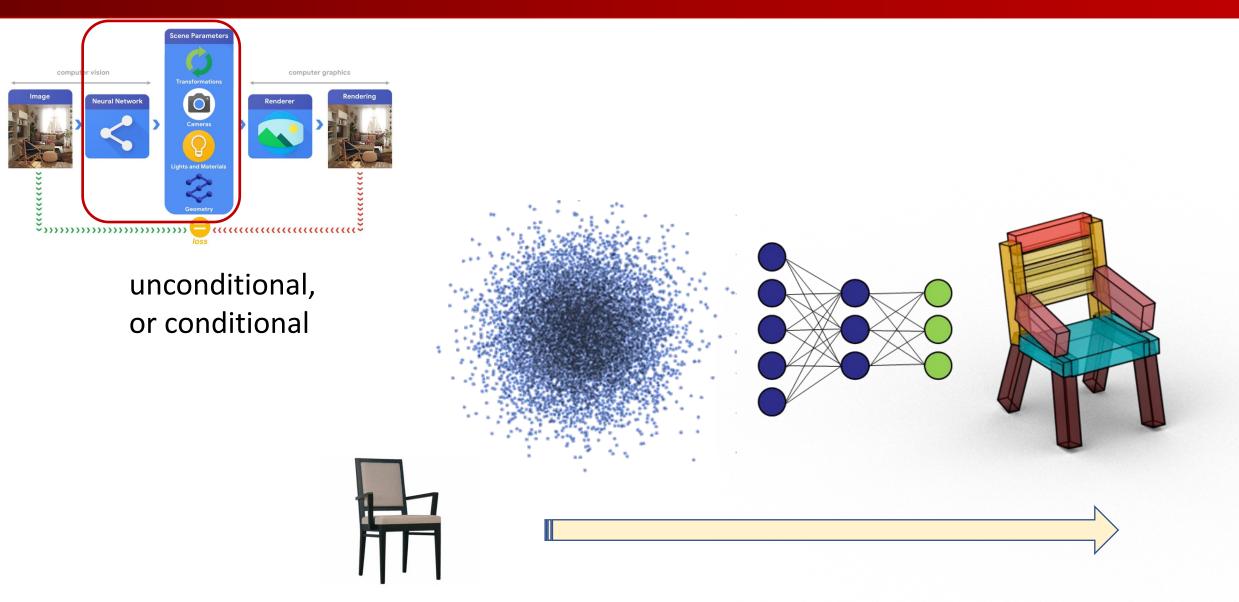
Lighting

Computer Vision vs. Computer Graphics



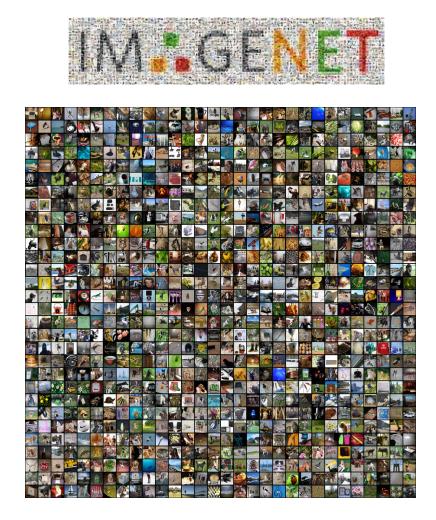
7

Use Neural Networks to Create 3D Objects / Scenes



Challenges for 3D Machine Learning

The Role of Supervision, Data Scale: 2D vs 3D



Q Options -

TAPERET	Search

Home About Download Statis

chair

Choose a taxono ShapeNetCore

a seat for one person, with a support for the back; 'he put his coat over the back of the chair and sat down' ImageNet MetaData

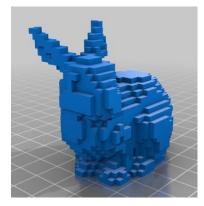
oose a taxonomy:	Synset mode	Is						
ShapeNetCore •	Displaying 1 to	40 of 7080						
	21234	5678	9 10 11	2 13 17	7			
-airplane,aeroplane,plane(12,4501)				2 10 11	11			
-aquarium,fish tank,marine museum(0,4)			~			-		
-ashcan,trash can,garbage can,wastebin,ash bi			17	X				
-bag,traveling bag,travelling bag,grip,suitcase(1			Ph				T	
-basket,handbasket(2,140)		~1>	and a					1.
-bathtub,bathing tub,bath,tub(0,932)	club chair	cantilever	armchair	straight chair	straight chair	club chair	deck chair	rex chair
-bed(13,353)		chair						
-bench(5,1953)						2)		
-birdhouse(0,79)				DE		11		
-boat(12,1635)	\mathbf{M}				XX	5 11		
-bookshelf(0,495)				~	butterfly	~~~	T	
-bottle(6,550)	straight chair	club chair	club chair	swivel chair	chair	armchair	armchair	club chair
-bowl(1,234)								
-bus,autobus,coach,charabanc,double-decker,j								
-cabinet(9,1644)		80	-		C S	T		
camera, photographic camera(4, 134)		~	*	*	V			
can,tin,tin can(2,108)	recliner	cantilever	swivel chair	swivel chair	armchair	folding chair	rocking chair	club chair
-cap(4,81)		chair						
-car,auto,automobile,machine,motorcar(18,244								
-cellular telephone,cellular phone,cellphone,cell								
-chair(23,7083)		LK						
		12		~	1.1.1	111	\times	141

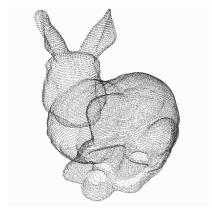
2D —15M Images

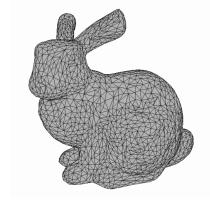
3D - 3M Shapes, scarce annotations

Challenge: Unlike 2D, Multiple 3D Representations

CAD Model







...

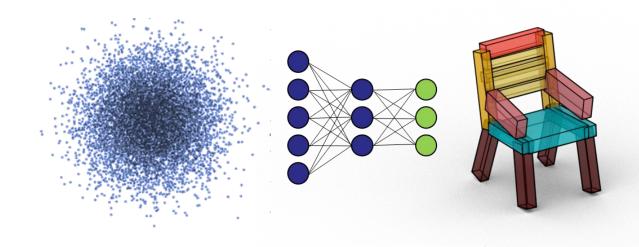
Volumetric

Point Cloud

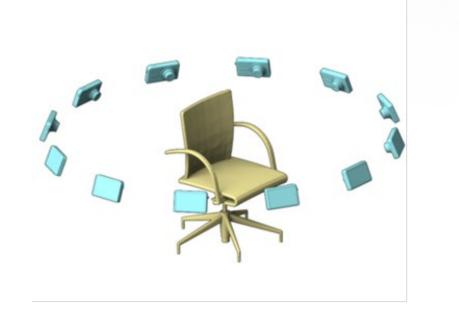
Surface Mesh

Multi-View Images

Use NNs to Create Views of 3D Objects / Scenes



Generate 3D Representation

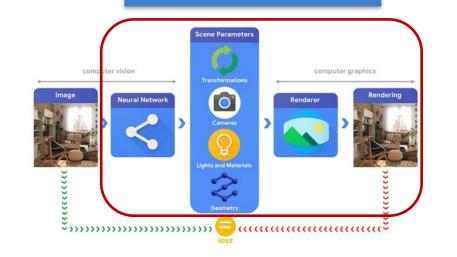


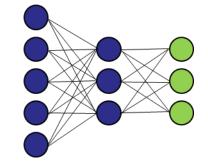
Generate 2D Views

Neural Rendering!

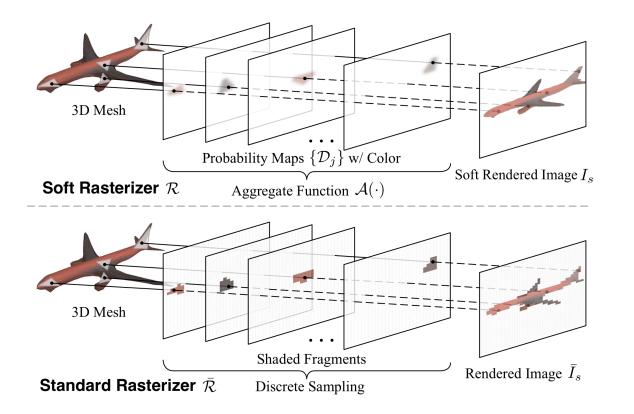
Neural Rendering

6 DoFCamera Pose / View Point Neural Network -> Encodes entire scene description, lighting, materials, etc.

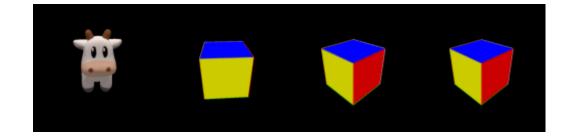




NR Challenges: Differentiability, 3D Consistency



Shichen Liu, Tianye Li, Weikai Chen and Hao Li. Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning. ICCV'2019.



3D Supervision, from 2D Images!

Where CS348n Fits In

- CS231n Convolutional Neural Networks for Visual Recognition
- CS233 Geometric and Topological Data Analysis
- CS236 Deep Generative Models
- CS348a Computer Graphics: Geometric Modeling and Processing
- CS348b Computer Graphics: Image Synthesis Techniques
- CS348i Computer Graphics in the Era of Al

CS348n is a New Class

There will be rough edges ...

Digital 3D Content Creation

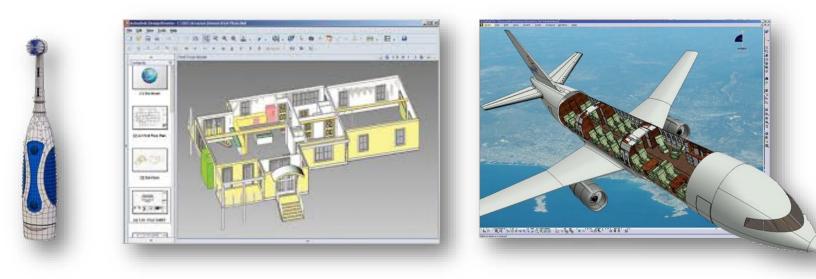
Some history

Computer-Aided Shape Design

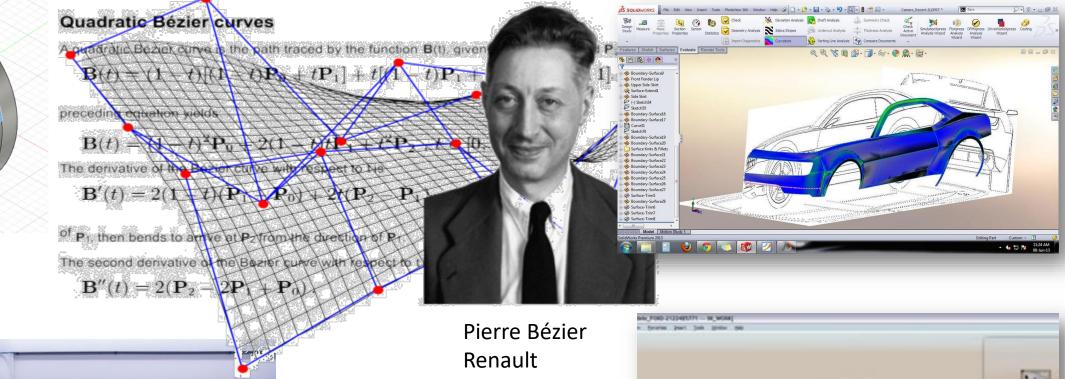
Geometric Modeling and Processing

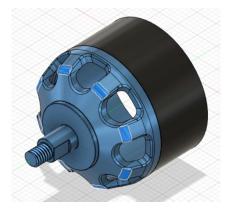
What is computer aided design (CAD), geometric modeling? Broad goal – digital twins of physical objects:

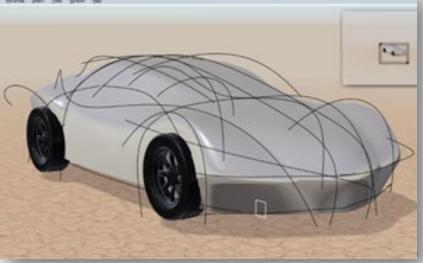
To create mathematical models and practical tools for the digital representation and manipulation of 2D/3D shapes and their physical attributes.



GM Originated in the CAD Industry ~1950





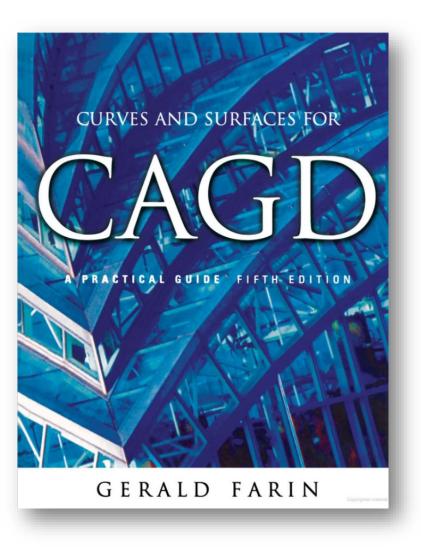


Ivan Sutherland, Sketchpad (1963)

How shape models arise: human design

"A Man-Machine Graphical Communication System"

Many Textbooks



Dugan Um

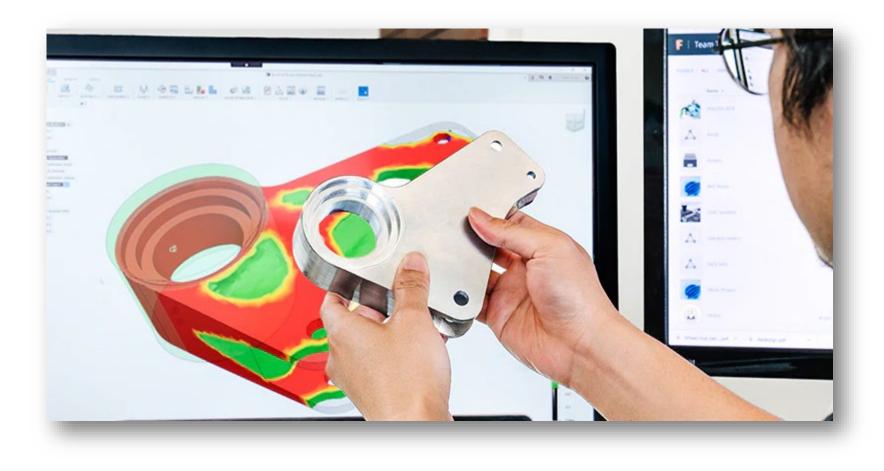
Solid Modeling and Applications

Rapid Prototyping, CAD and CAE Theory

Second Edition

🖉 Springer

Ab Initio Design: Many Software Environments



Autodesk Fusion 360

SolidWorks

Dassault Systèmes CATIA

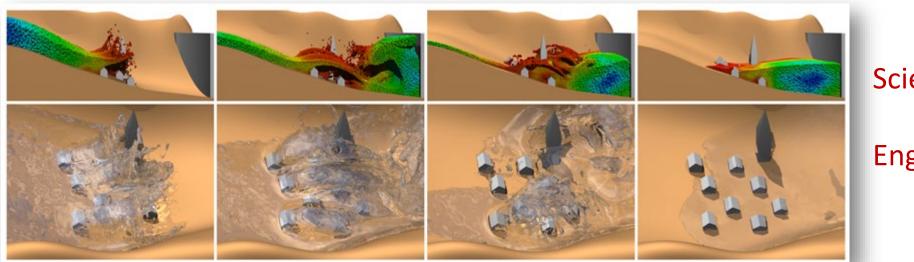
Historical Role of 3D Modeling

Beautiful synthetic imagery (ads, etc)

Computer games

Movie special effects

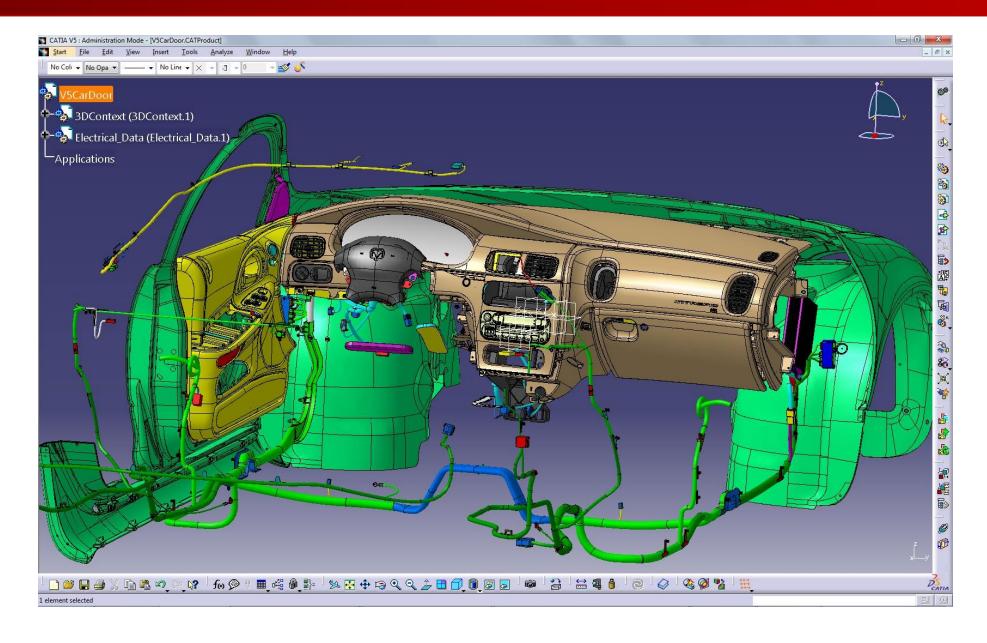
Physically-based simulation



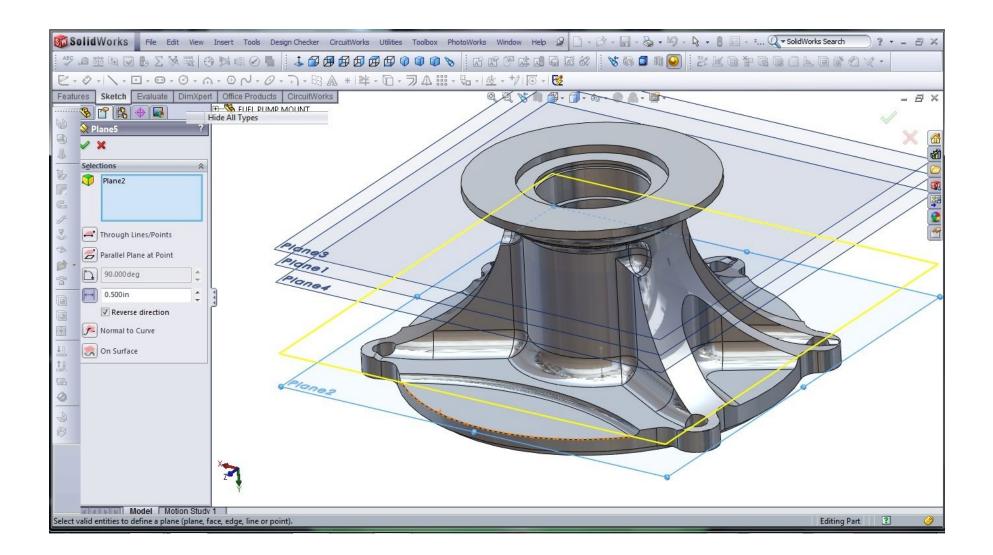
Science

Engineering

CAD Modeling is Hard — Requires Specialists



CAD Modeling is Hard — Requires Specialists

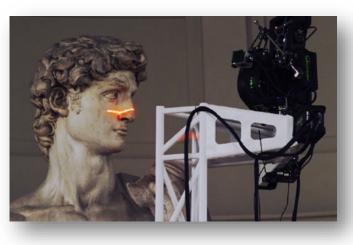


Physical Shape Acquisition

Geometry Capture

Acquisition by 3D Scanners

• Acquired shapes:



Live Body Scan Data acquired in 0.01 seconds

Point Clouds from Many Sensor Types



Structure from motion (Microsoft)

Depth camera (Intel)

2 ₂₉

Stanford Bunny

Point Clouds

- Simplest representation: only points, no connectivity
- Collection of (x,y,z) coordinates, possibly with normals



Stanford bunny

From Point Clouds to Surfaces

model



Reconstructed mesh or CAD physical acquired point cloud 3D model

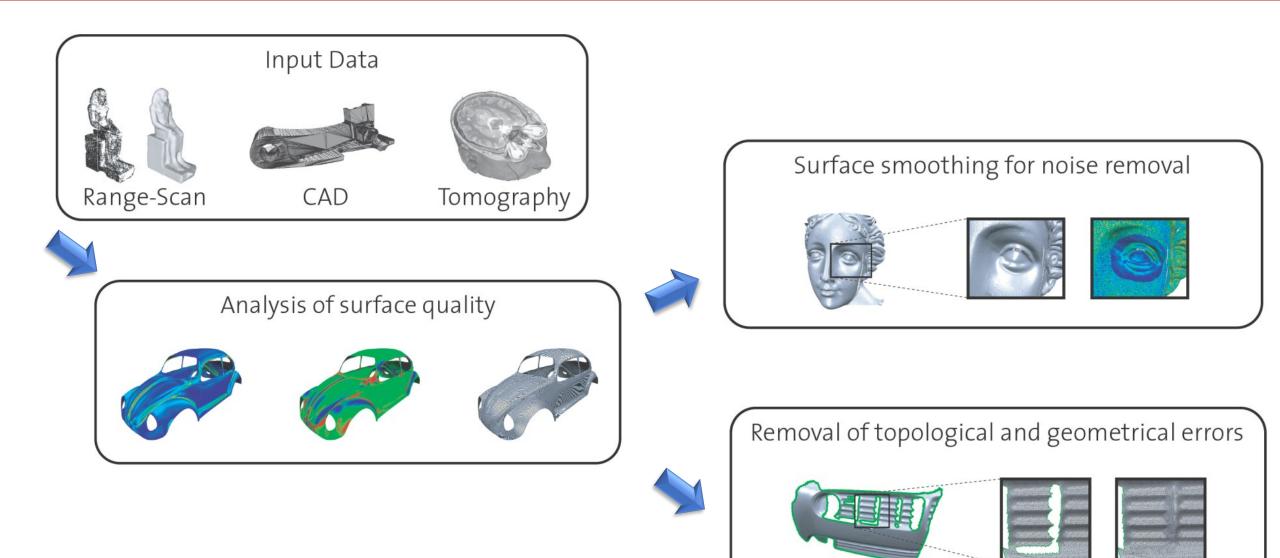
Geometry Processing Pipeline

What is Geometry Processing About?

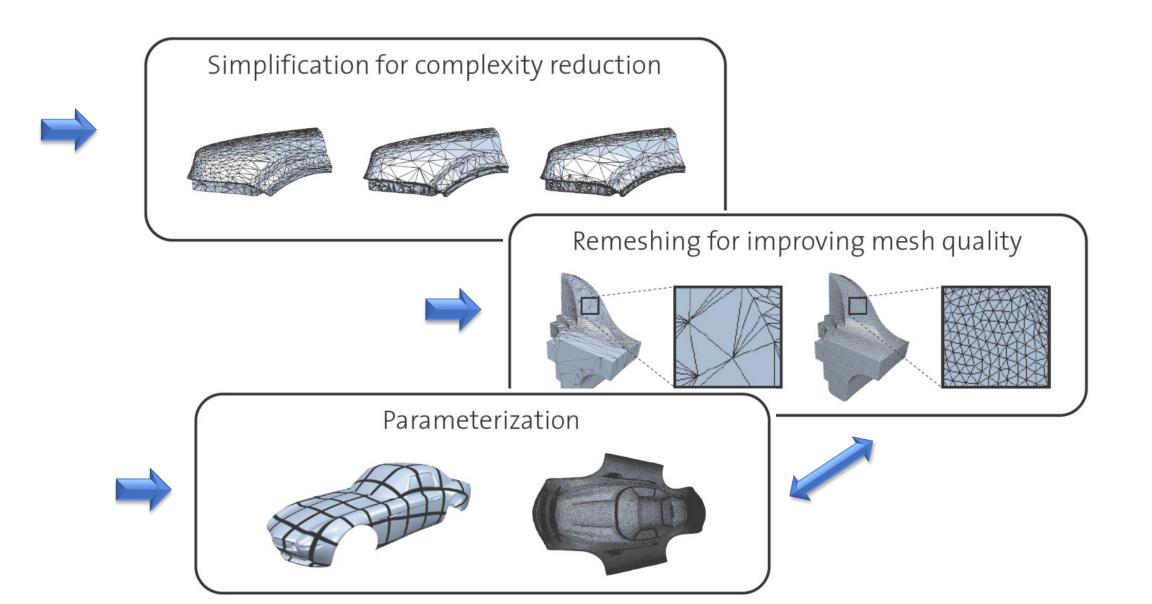
- Acquiring
- Analyzing/Repairing/Improving
- Manipulating

3D Models

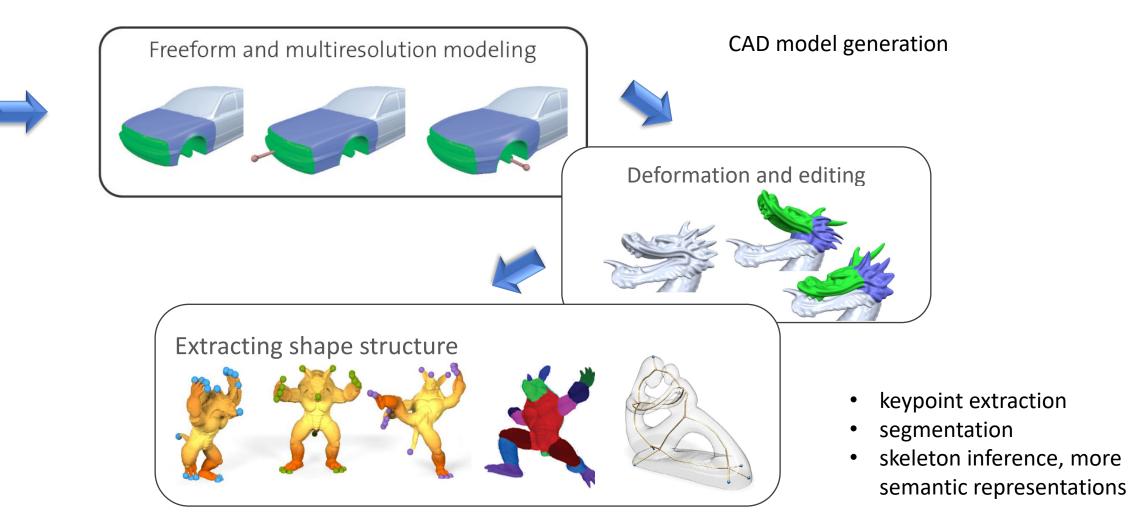
A Geometry Processing Pipeline: Low Level Algorithms



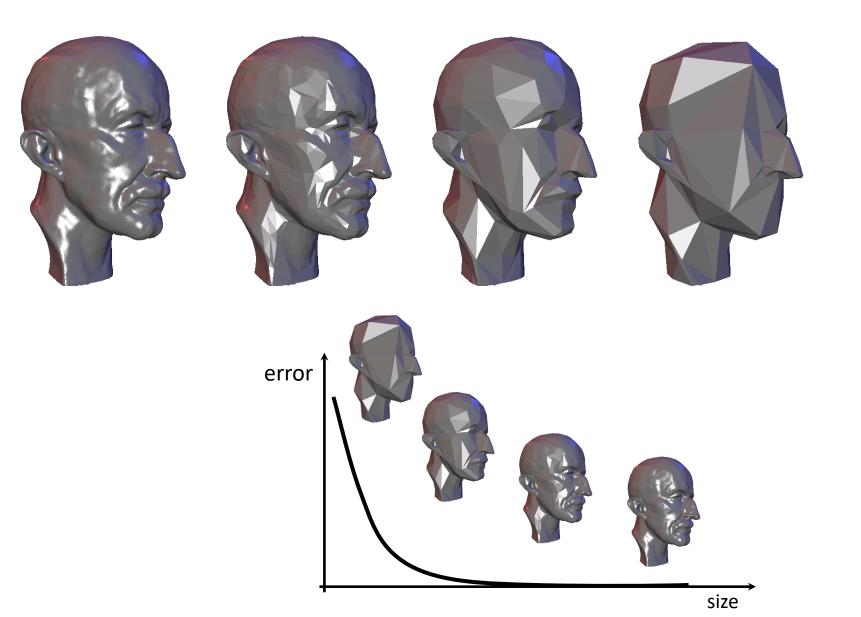
A Geometry Processing Pipeline: Intermediate Algorithms



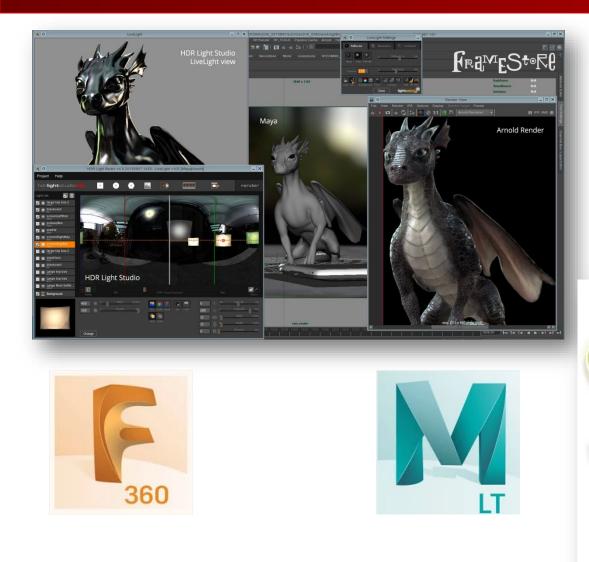
A Geometry Processing Pipeline: High Level Algorithms

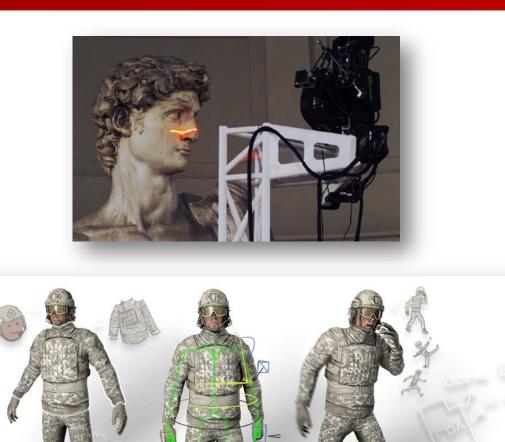


Always Trade-Offs for a Representation



3D Content Creation/Acquisition Is Hard





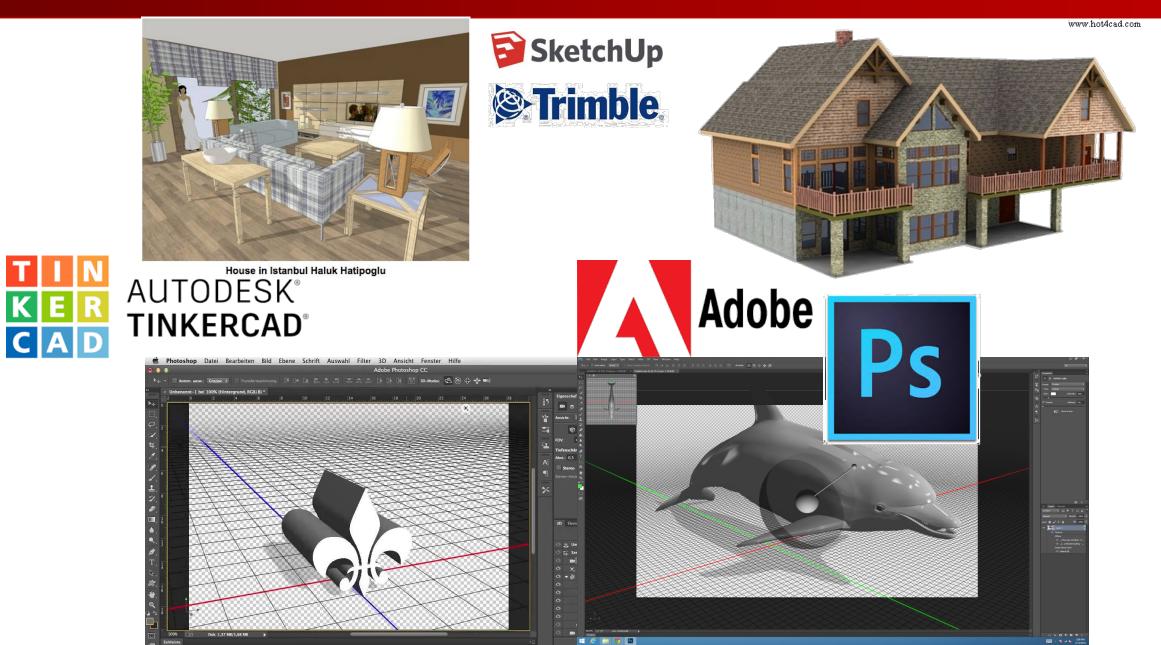
Autodesk Fusion 360

Autodesk Maya

All This Is Changing ... Better Software, Hardware, and Machine Learning

Democratization of 3D Content Creation

Simpler 3D Modeling Software



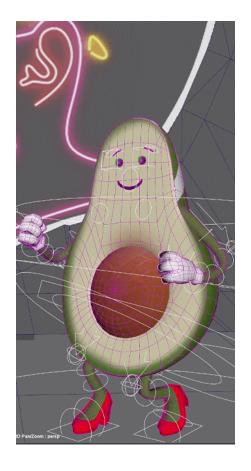
Affordable 3D Scanners

Microsoft Kinect

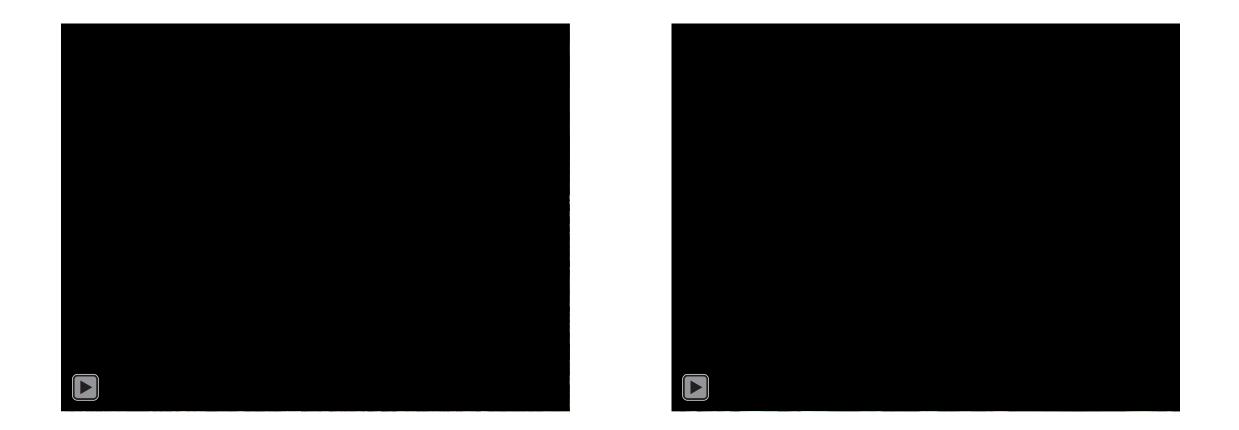
Google Tango

Intel RealSense

SnapChat AR Lenses



Neural Radiance Fields (NeRFs)



Capturing the World in 3D from a Few Photos

The Course

http://cs348n.stanford.edu

Course Topics

January 3	January 5	January 17	<u>January 19</u>
Introduction.	Classical 3D Geometry Representations.	Martin Luther King, Jr., Day (holiday, no classes).	Introduction to Generative Models (VAEs, deepSDF).
Traditional 3D modeling pipelines.	Low level: voxel grids, point clouds,		•
Computer vision as inverse graphics. Neural			Autoencoders and autodecoders.
3D representations and neural rendering. Democratization of 3D content creation.	parametric and implicit boundary representations. Review of some classical		Variational autoencoders. Deep signed distance functions.
Synthetic 3D data for ML training pipelines.	geometric concepts (normals, curvature).		
			Lecture Slides:
Lecture Slides:	Lecture Slides:		Reading: VarEncoders1, VarEncoders2,
Reading:	Reading:		VQVAE, DeepMetafunctionals, IMNet,
January 10	January 12		DeepSDF
Neural Architectures for Regular Data.	Irregular Geometries: Point Clouds.		Student Presentation: <u>KPConv</u> , <u>PointConv</u>
Brief review of deep nets and convolutional	PointNet and PointNet++. KPConv and		Homework 1 out.
architectures for images. Sparse	other related methods. Sampling issues.	January 24	January 26
convolutions. Transformers. Voxel-based 3D	Applications to object detection,	Parametric Models. Generative	3D Shape Public Data Sets. Flow and
methods for shapes and hierarchical variants.	classification, and segmentation	Adversarial Networks (GANs) for 3D.	Auto-Regressive Models.
variants.	Lecture Slides:	Disentanglement.	ShapeNet, PartNet, PointFlow, PolyGen.
Lecture Slides:	Reading Reinthict Reinthict & DCCNN	AtlasNet. HoloGAN, 3D-GAN, StyleGAN.	
Reading:	Reading: <u>PointNet</u> , <u>PointNet++</u> , <u>DGCNN</u> , <u>VoteNet</u>	Lecture Slides:	Lecture Slides:
rice ang.	Totenet	Lecture sinces.	Reading:
		Reading: <u>GAN1</u> , <u>GAN2</u> , <u>AtlasNet</u> , <u>HoloGAN</u> , <u>WassersteinGAN</u> , <u>StyleGAN1</u>	Student Presentation: <u>ParSeNet</u> , <u>StyleGAN2</u> , <u>StyleGAN3</u>
		Student Presentation: <u>StructuredImplicits</u> ,	
		LocalImplicits	Homework 1 due. Homework 2 out.

Course Topics

January 31	February 2	February 14	February 16
Hierarchical Generation of Structure and Geometry.	Vector Graphics, Deep Architectures for Meshes.	Conditional Generation: From Image to Shape.	Learning Discrete and Continuous Shape Edits/Deformations. Shaping Latent Spaces.
GRASS, StructureNet, ComplementMe. Lecture Slides: Reading:	Vector graphics generation, convolutions on meshes. MeshCNN. Lecture Slides:	Lecture Slides: Reading: Student Presentation:	Latent shape differences. Neural shape deformations/edits. Lecture Slides: Reading:
Student Presentation: February 7	Reading: Student Presentation: February 9		Student Presentation: Project proposals due
Pose Equivariance and Invariance in 3D Data.	Conditional Generation: 3D Shape Completion.	February 21 Presidents' Day (holiday, no classes).	February 23 Neural Functions: 3D from 2D Supervision.
Vector neurons. Lecture Slides:	Lecture Slides: Reading:		Neural rendering. Neural radiance fields (NeRFs). GRAF, GIRAFFE.
Reading:	Student Presentation:		Lecture Slides: Reading:
Student Presentation:	Homework 2 due. Homework 3 out.		Student Presentation: Homework 3 due

Course Topics

February 28	March 2	
Neural Fields and Surfaces.	Scene Generation and Object Placement.	
Surface and Neural field extraction. UNISURF, NeuS. Lecture Slides: Reading: Student Presentation:	MetaSim, MetaSim2. Lecture Slides: Reading: Student Presentation:	
March 7	March 9	
Object/Scene Generation and Language.	Student Project Presentations.	
ShapeGlot, PartGlot.	Lecture Slides:	
Lecture Slides:	Reading:	
Reading:	Project due.	
Student Presentation:		

Course Requirements / Mechanics

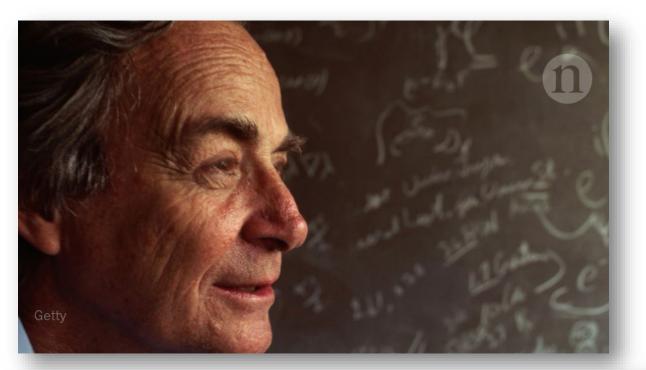
- 3 programming assignments (1 week, 2 weeks, 2 weeks) using Google Cloud for Education
- 1 small project (BYI, but suggestions also provided, 3 weeks)
- 1 class presentation on research papers from the literature (topics covered in the previous class)
- teams of up to three students allowed
- we'll use Piazza (<u>www.piazza.com</u>) as the class discussion forum, and Gradescope (<u>www.gradescope.com</u>) for assignment submissions

Action Items

- Form collaboration teams, if you so desire (Piazza can help find partners)
- Negotiate the date of your literature paper presentation
- Start thinking about a project (we are here to provide feedback)

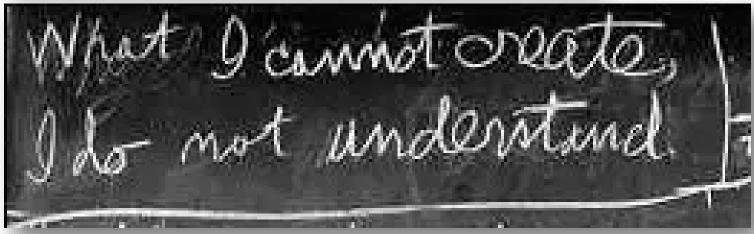
First Steps Towards 3D ML

Generative Modeling



Richard Feynman: "What I cannot create, I do not understand"

Generative modeling: "What I understand, I can create"



Generative Model (Unconditional)

Given training data, generate new samples from the same distribution:

Training data ~ $p_{data}(x)$

Generated samples~ p_{model}(x)

Objective: learn a $p_{model}(x)$ that matches $p_{data}(x)$.

Decoding/Generation

Latent vectors **z**

Generated Shapes

Generator/Decoder: generating shapes from latent vectors

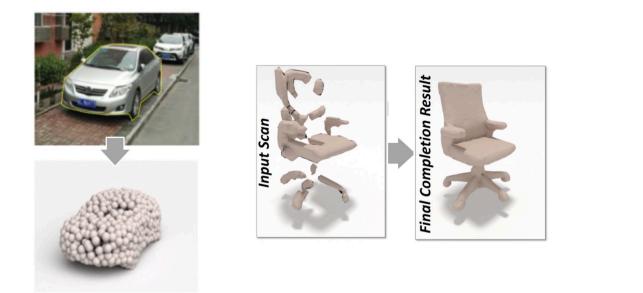
How to Learn Generative Models

- Explicitly modeling data probabilistic density, learn a network p_θ(x) that maximize data probability
- Implicitly modeling probabilistic density,
 e.g. learn a network that scores how "real" the generated data is, f_θ(x)

- Markov chain
- Autoregressive models
- Variational autoencoder (VAE)
 - Flow-based models
 - Structure-based models
 - Energy based models
 - •
- Generative adversarial network (GAN)
- Score-based generative

Generative Model (Conditional)

• Data: (x, y) where x is a **condition** and y is the corresponding **content.**



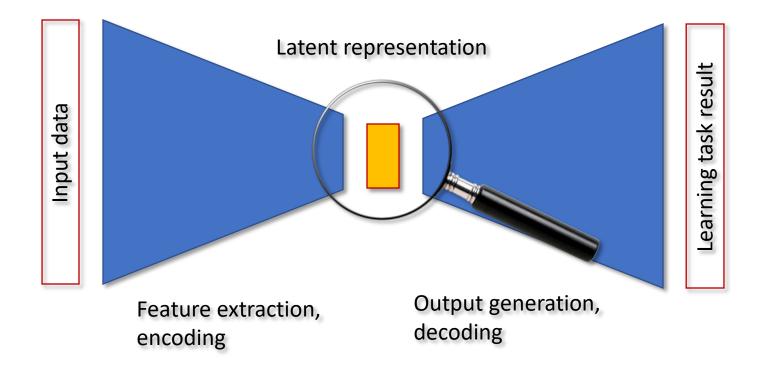
Single-view 3D reconstruction

Shape completion

Image generation based on scene-graph

Objective: learn a $p_{model}(y|x)$ that matches $p_{data}(y|x)$.

Latent Spaces in Deep Learning



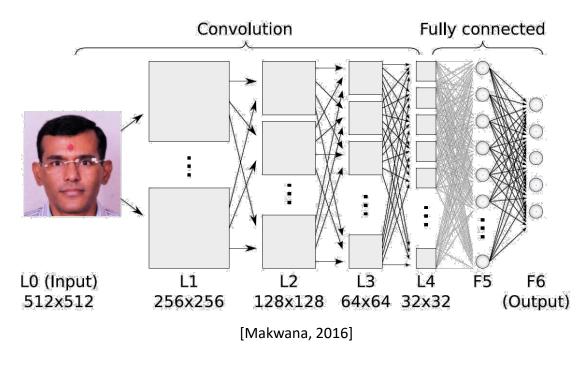
Discriminative tasks, conditional generative tasks

A latent code acts as a low-d proxy for input data w.r.t. a learning task

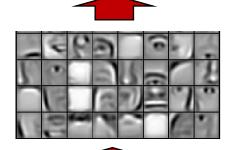
3D Representations and Learning Frameworks

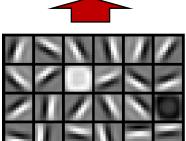
Encoding

Convolutional Image Networks



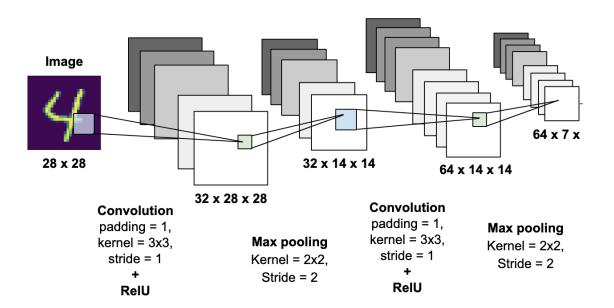
Encoder

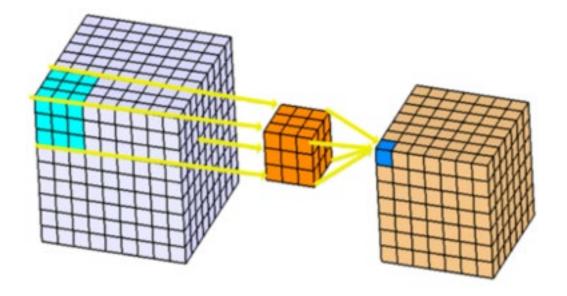




[Lee et al., 2009]

From 2D to 3D Convolutions: Pixels to Voxels



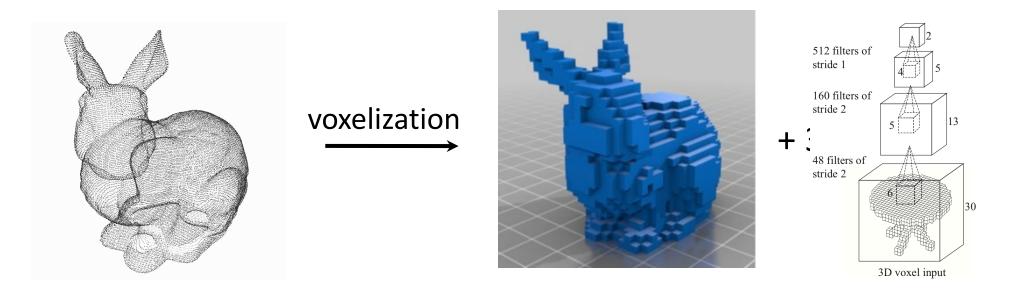


2D convolution Kernel: $K_h X K_w$ Kernel weight: $K_h X K_w X C_1 X C_2$ Feature grid: H X W X C

3D convolution

Kernel: $K_h X K_w X K_d$ Kernel weight: $K_h X K_w X K_d X C_1 X C_2$ Feature grid: H X W X D X C

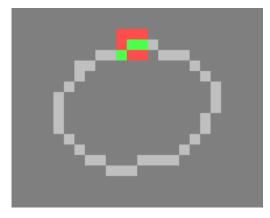
Voxelized 3D Convolution

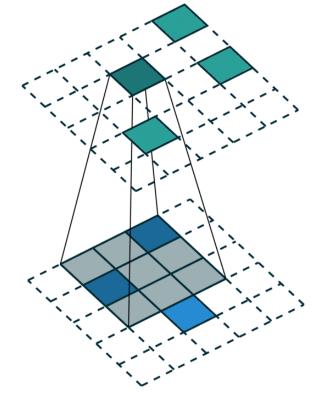


[Wu et al. 2015]

Con: High space complexity -- 3D convolution $O(N^3)$ Quantization errors in voxelization Not very attractive for generative models

Efficiency: Sparse Convolution





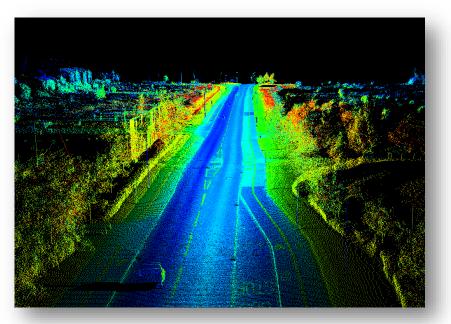
Submanifold sparse convolutional network (from FAIR)

Pro: efficient computation

Minkowski Engine (from SVL)

Con: quantization remains

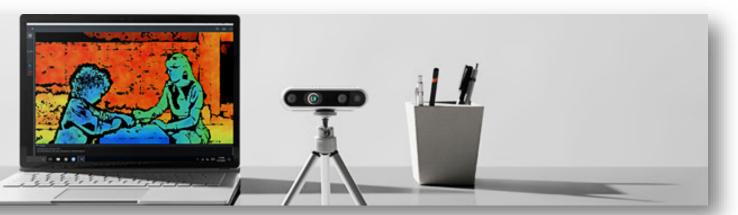
Point Clouds from Many Sensors



Structure from motion (Microsoft)

Lidar point clouds (LizardTech)

Depth camera (Intel)

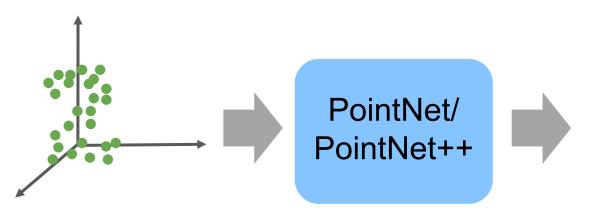


But irregular!

6₆₂

PointNet++: Convolutions on Point Clouds

. . .



Object Classification

Object Part Segmentation

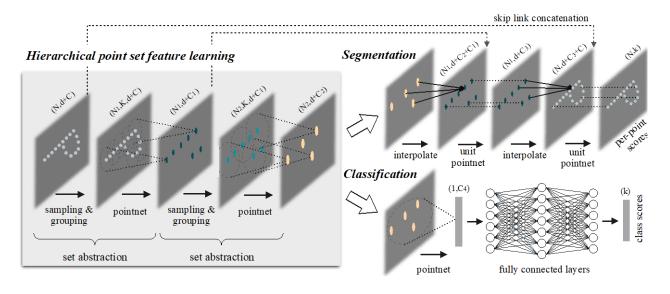
Semantic Scene Parsing

End-to-end learning for irregular point data

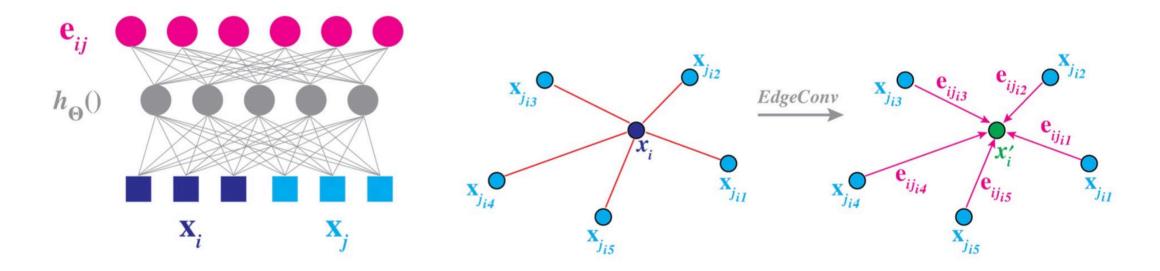
Unified framework for various tasks

Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation (CVPR'17)

Charles R. Qi, Li Yi, Hao Su, Leonidas Guibas. *PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space* (NeurIPS 2017)



Convolution on Mesh/Graph



Message passing: The output of EdgeConv at the *i*-th vertex is thus given by

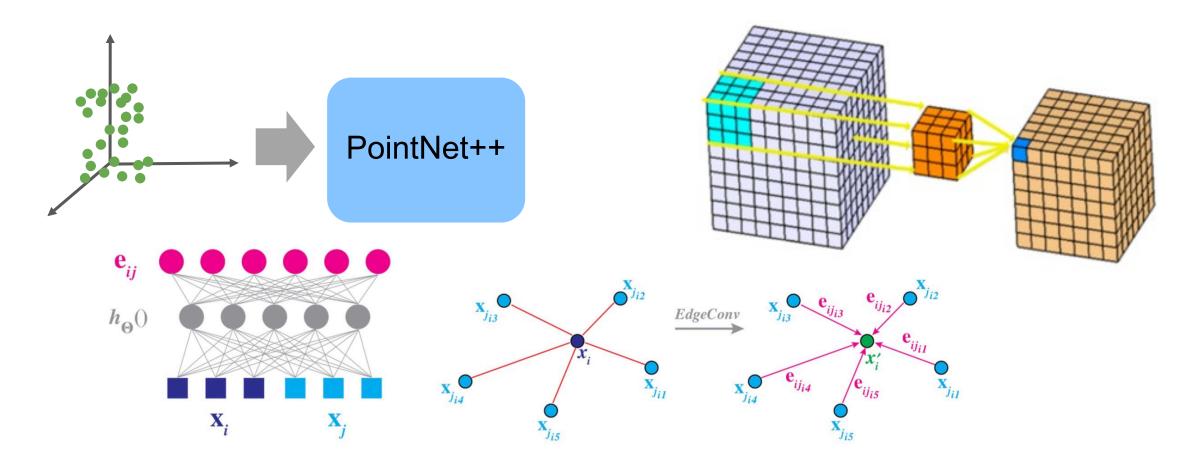
$$\mathbf{x}'_{i} = \prod_{j:(i,j)\in\mathcal{E}} h_{\Theta}(\mathbf{x}_{i}, \mathbf{x}_{j}).$$
(1)

Wang, et.al., Dynamic Graph CNN for Learning on Point Clouds, ToG 2019

3D Representations and Learning Frameworks

Decoding

Encoding 3D Using Convolution



Encoding: Convolution networks can transform a 3D data into a vector in latent space.

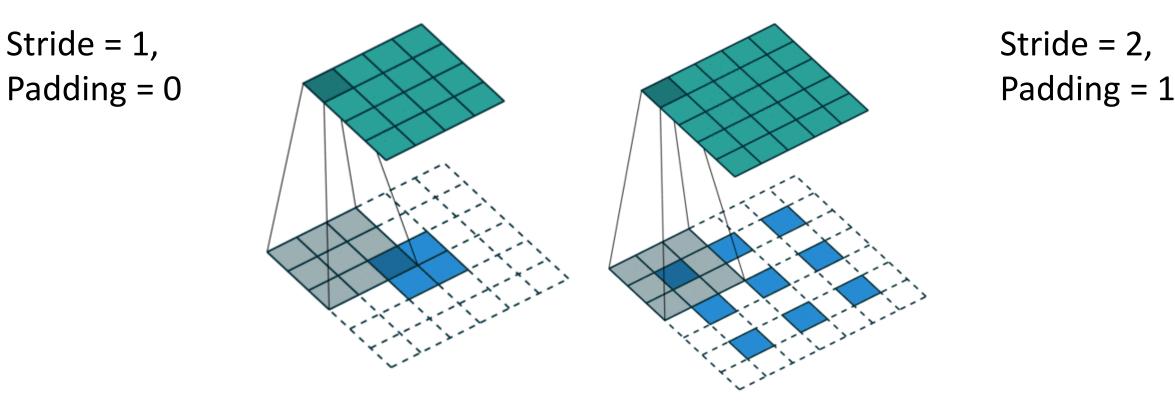
Decoding/Generation

Latent vectors **z**

Generated Shapes

Generator/Decoder: generating shapes from latent vectors

Upsampling and Deconvolution (Transposed Conv)



Padding (p): The number of zeros padded around the original input increasing the size to (i+2*p)x(i+2*p)
Stride (s): The amount by which the kernel is shifted when sliding across the input image.

Image credit: <u>https://github.com/vdumoulin/conv_arithmetic</u>

Decoders Really Matter for Generative Models

Description Springer Link

Published: 14 March 2019

The Devil is in the Decoder: Classification, Regression and GANs

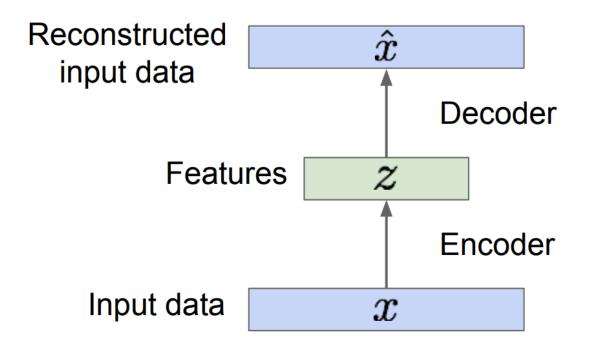
Zbigniew Wojna ^{CD}, <u>Vittorio Ferrari</u>, <u>Sergio Guadarrama</u>, <u>Nathan Silberman</u>, <u>Liang-Chieh Chen</u>, <u>Alireza Fathi</u> & <u>Jasper Uijlings</u>

International Journal of Computer Vision **127**, 1694–1706 (2019) Cite this article **1435** Accesses **20** Citations **1** Altmetric Metrics

Abstract

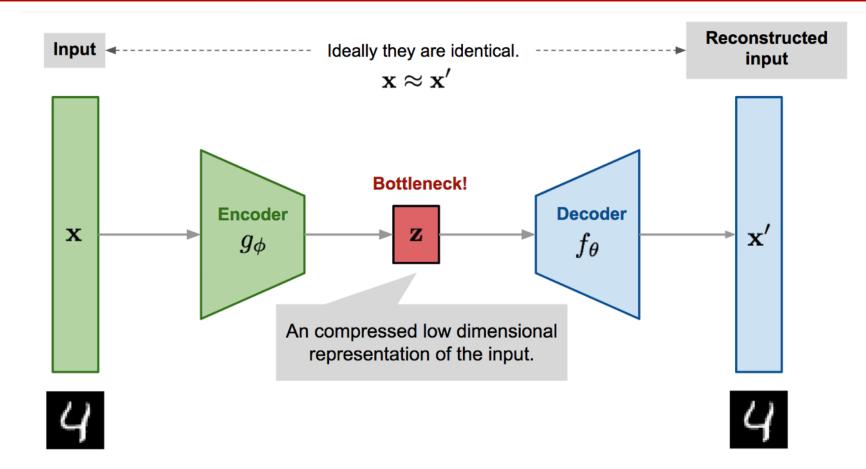
Many machine vision applications, such as semantic segmentation and depth prediction, require predictions for every pixel of the input image. Models for such problems usually consist of encoders which decrease spatial resolution while learning a high-dimensional representation, followed by decoders who recover the original input resolution and result in low-dimensional predictions. While encoders have been studied rigorously, relatively few studies address the decoder side. This paper presents an extensive comparison of a variety of decoders for a variety of pixel-wise tasks ranging from classification, regression to synthesis.

Auto-Encoder



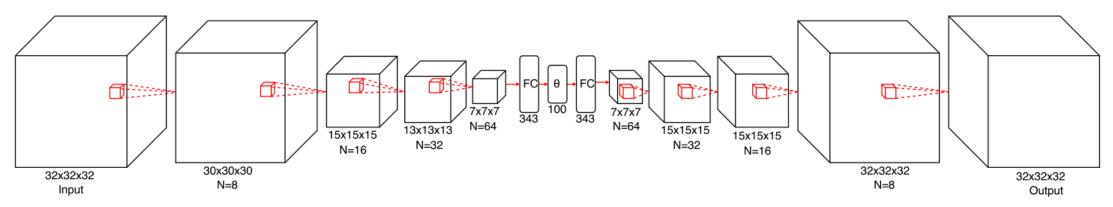
- AE encodes itself into a latent z
- AE then decodes the latent z back to itself
- Understanding AE is the first step to understand generative models.

Auto-Encoder Training (Self-Supervised)



Task: Learn to encode the input and decode itself **Reconstruction loss**: measuring the distance between the input/output

Volumetric AE



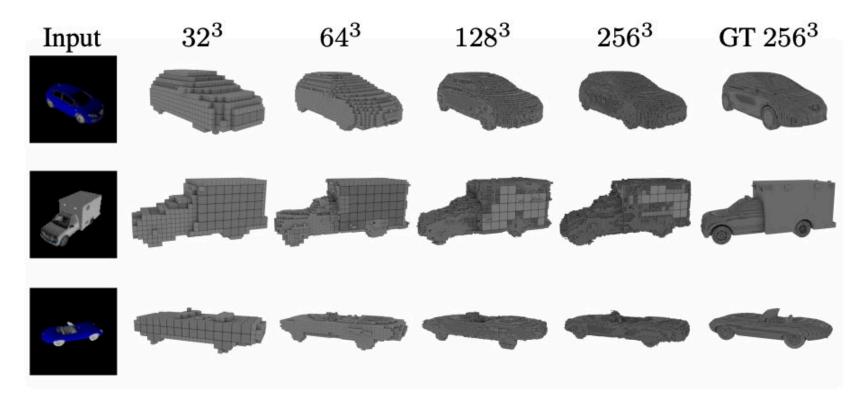
Binary Cross-Entropy Loss: $\mathcal{L} = -t \log(o) - (1-t) \log(1-o)$

CoRR 2016

Generative and Discriminative Voxel Modeling with Convolutional Neural Networks

Auto-Encoder Connecting 2D and 3D

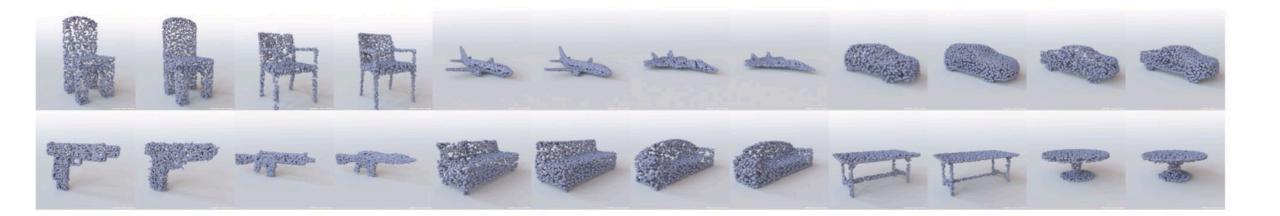
Encoder: 2D Conv Decoder: 3D Deconv (Octree decoder)



Tatarchenko et al., "Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs", *ICCV 2017*

Point Cloud AE

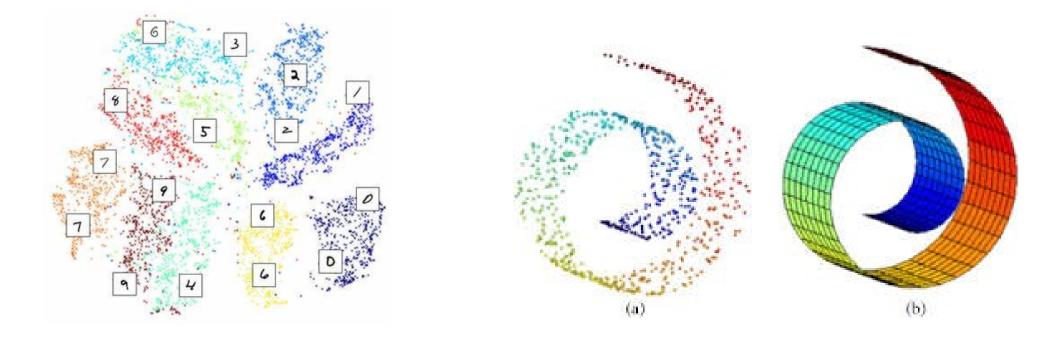
Encoder: PointNet (N*3 \rightarrow L) Decoder: MLP (L \rightarrow 3N \rightarrow N*3)



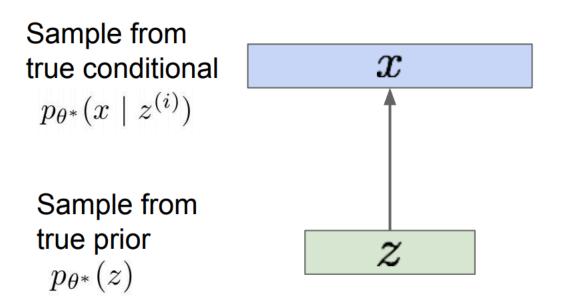
ICML, 2018, Learning Representations and Generative Models for 3D Point Clouds, Panos Achlioptas, et. al.

Auto-encoder Latent Space

- Where is the data manifold in the latent space?
- Is a vanilla autoencoder a generative model?



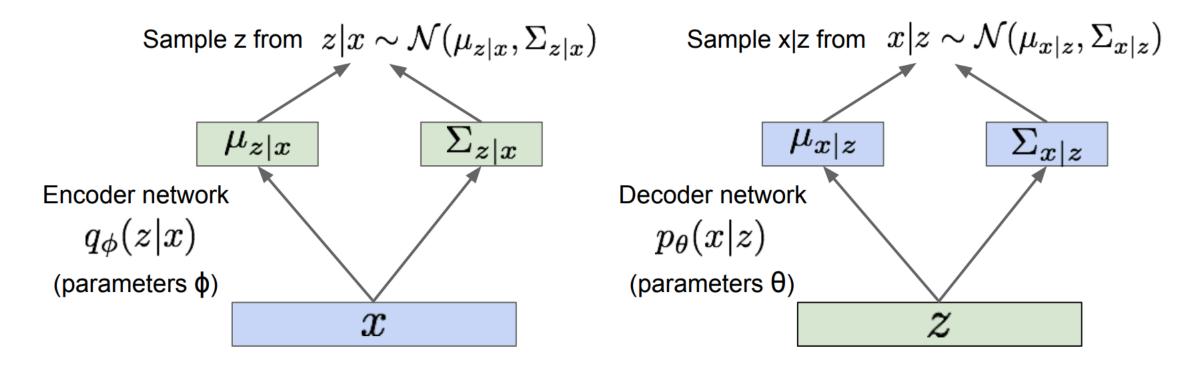
Need to "structure" the latent space



We can assume z follows a distribution.

Choose prior p(z) to be simple, e.g. Gaussian.

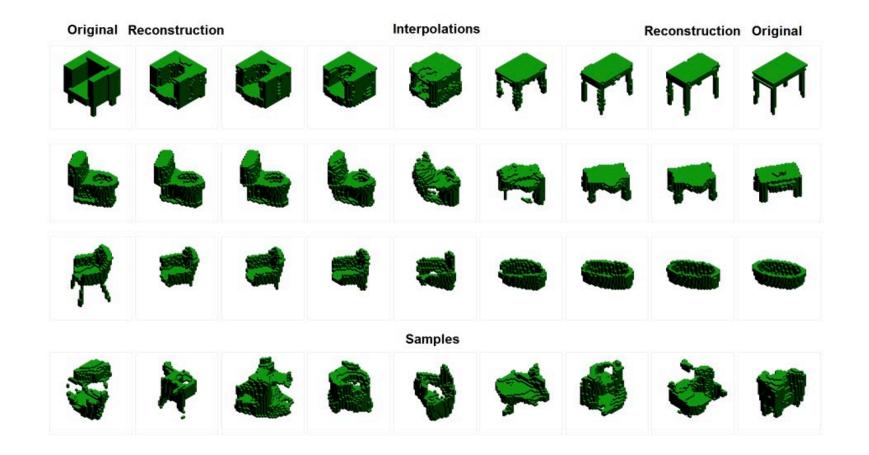
Variational Auto-Encoder



Encoder

Image Credit: Stanford CS231N

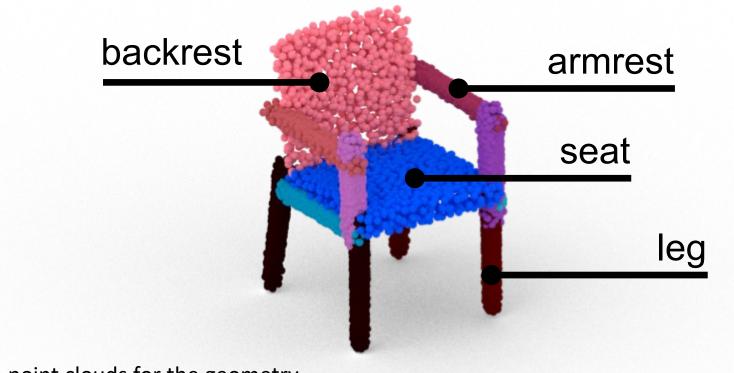
Generating New Samples & Interpolation



CoRR 2016

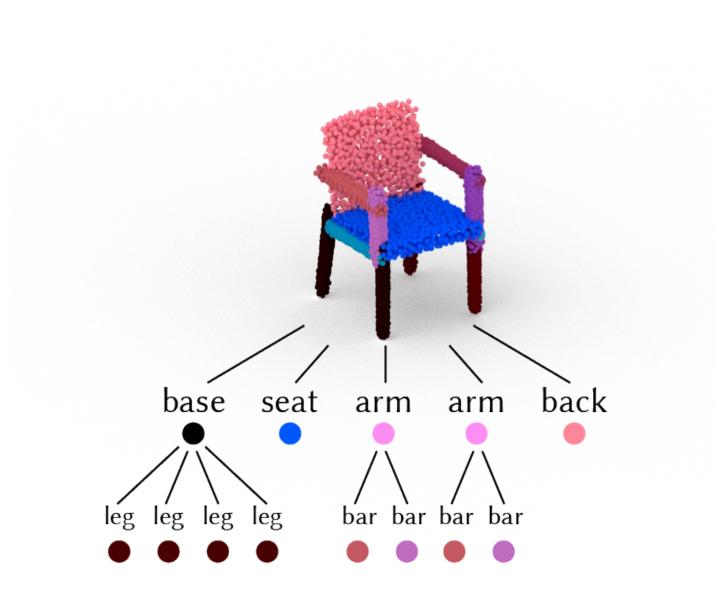
Generative and Discriminative Voxel Modeling with Convolutional Neural Networks

Geometry and Structure

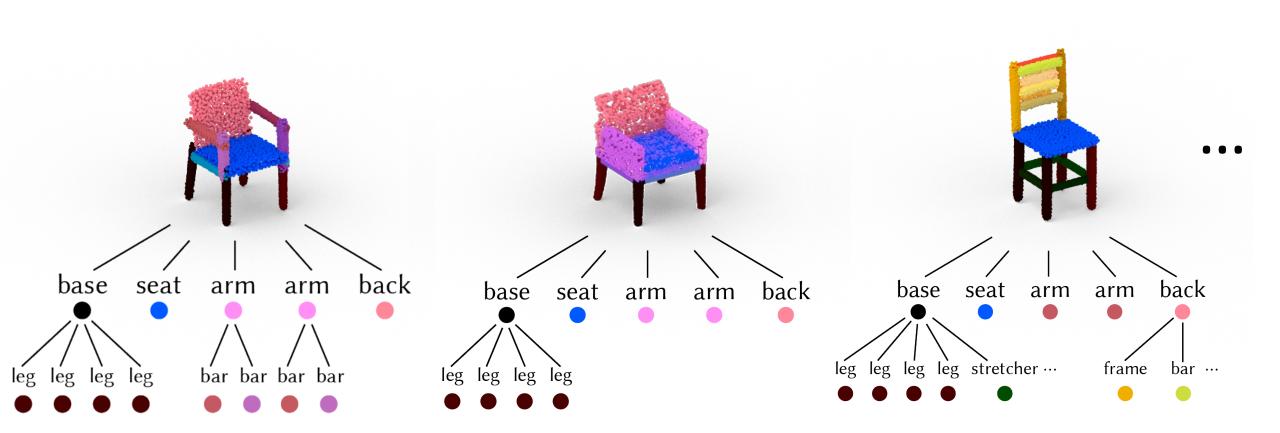


Now with point clouds for the geometry

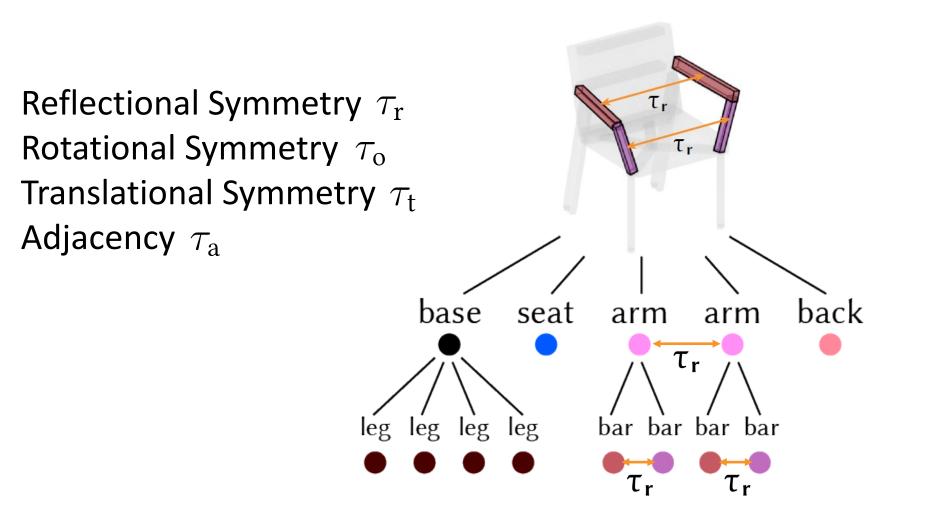
Structure: Part Hierarchy



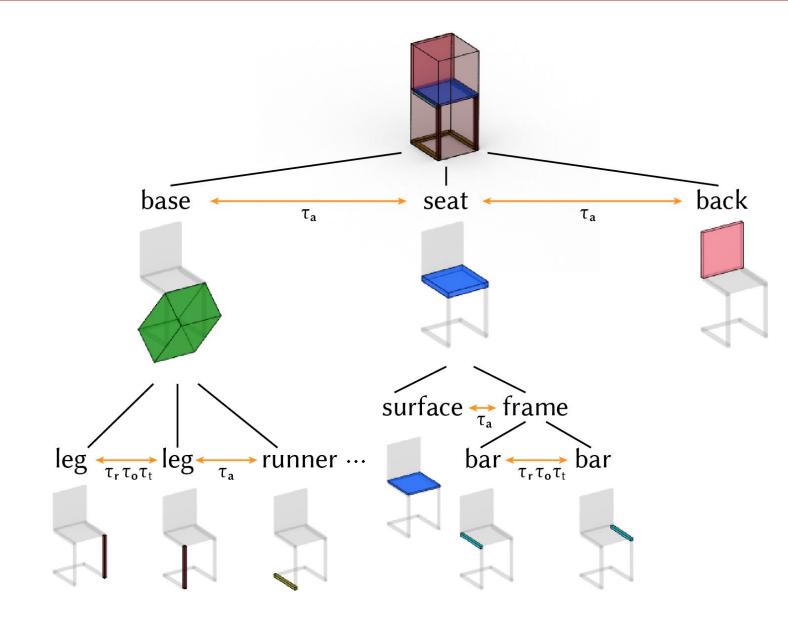
Structural Consistency



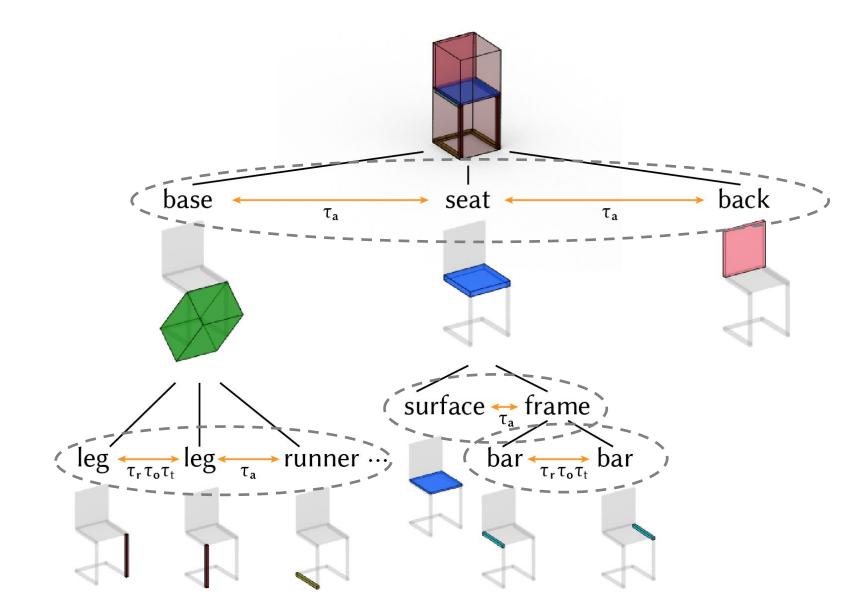
Object Representation: Sibling Relationships



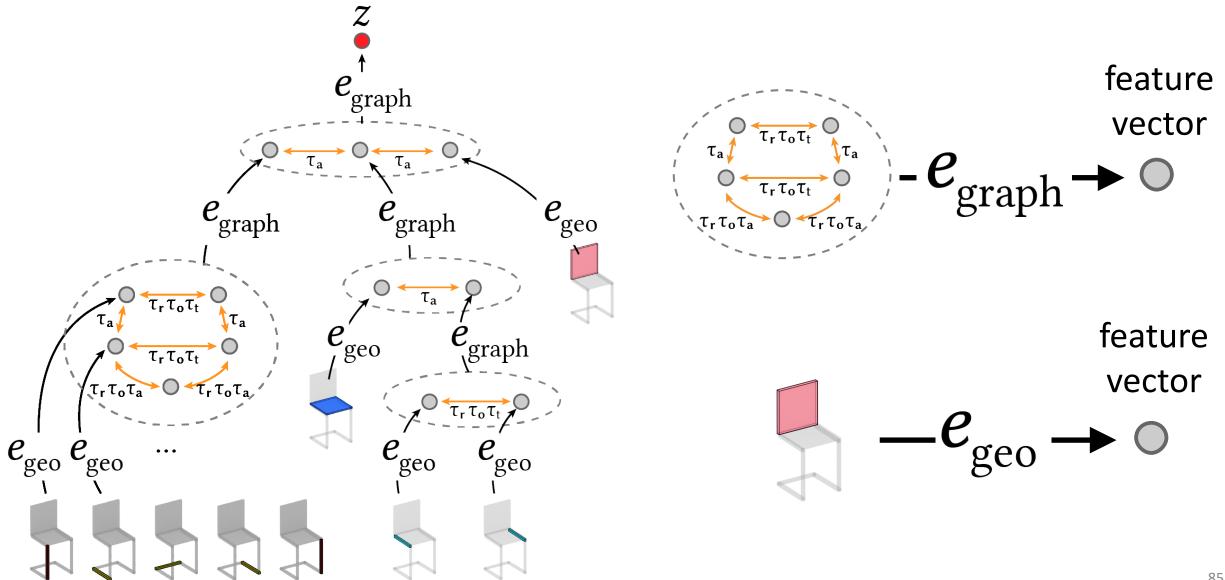
Object Representation: Example



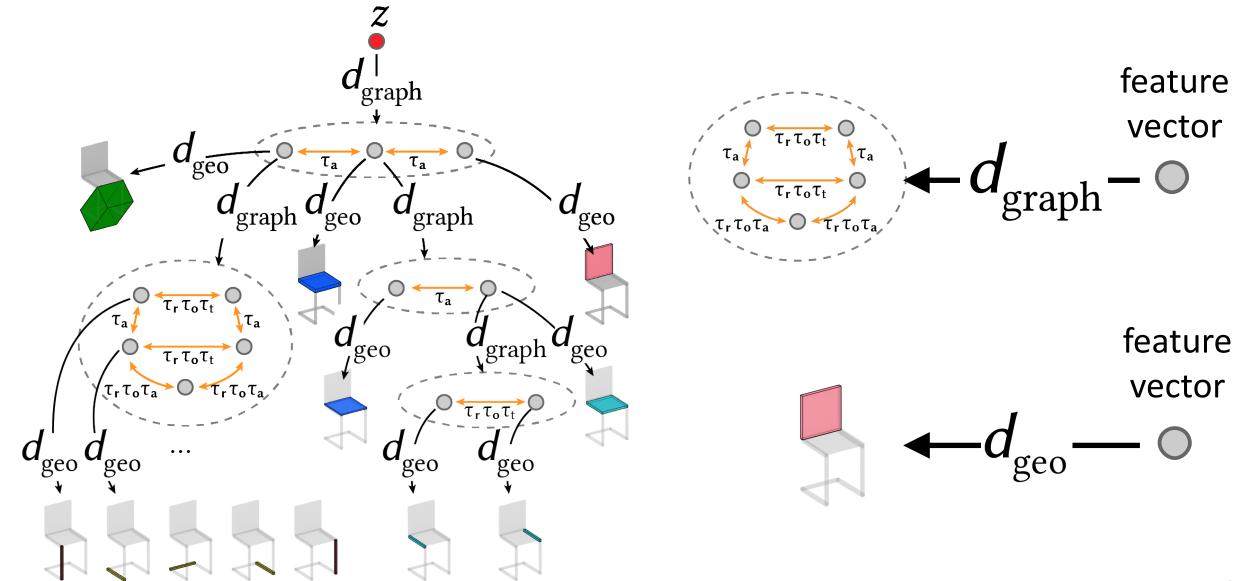
A Hierarchy of Graphs



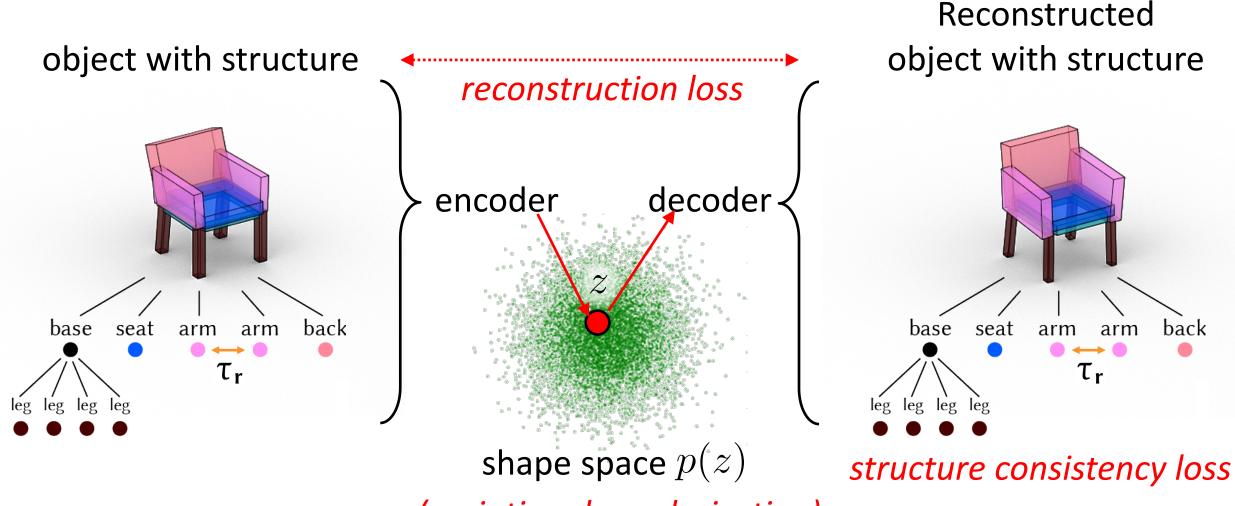
Hierarchical Graph Encoder



Hierarchical Graph Decoder

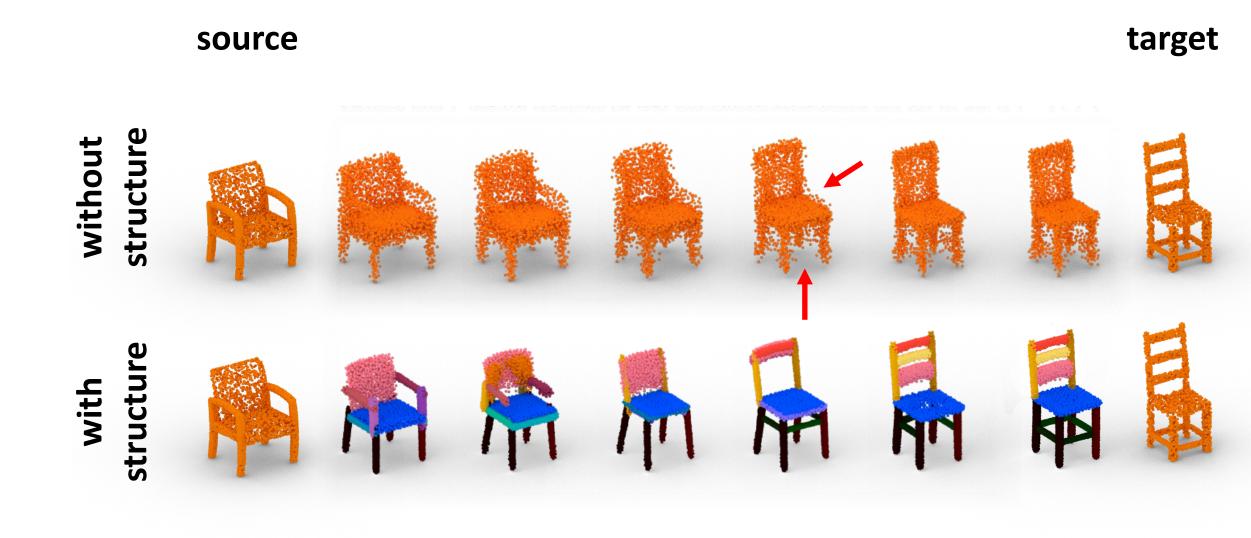


Architecture Overview: VAE Training

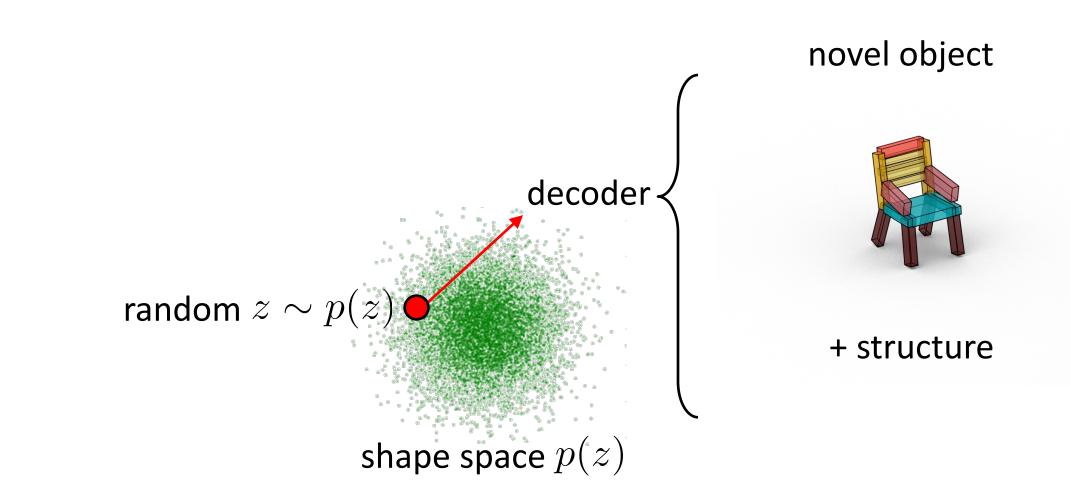


(variational regularization)

Interpolation With vs. Without Structure



Application: Generation



Generation

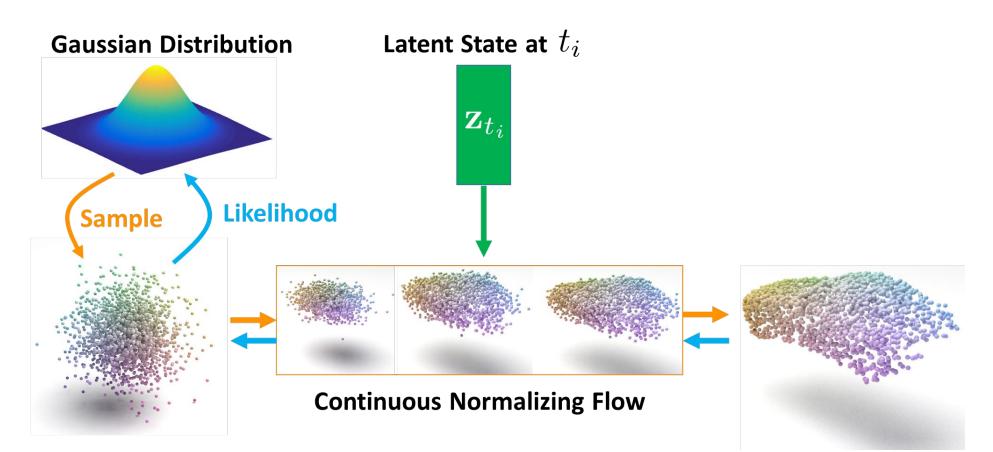
Flow-Based 3D Generative Model

Discrete Point Flow Networks From Univ. Grenoble Alpes

PointFlow (continuous normalizing flow) From Cornell

Note that bijectivity requires same dimensionality. From left to right: latent points to generated points

Flow-Based Generative Model



Flow-based model is constructed by a sequence of **invertible transformations.** Explicitly modeling probability. Loss: negative loglikelihood of z = f(x)

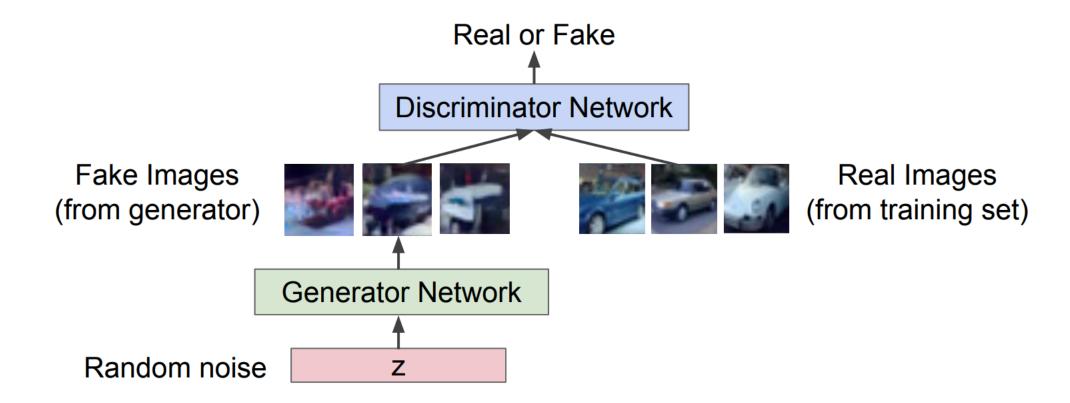
Image credit: Lil'log

How to Learn Generative Models

- Explicitly modeling data probabilistic density, learn a network p_θ(x) that maximize data probability
- Implicitly modeling probabilistic density,
 e.g. learn a network that scores how "real" the generated data is, f_θ(x)

- Markov chain
- Autoregressive models
- Variational autoencoder (VAE)
 - Flow-based models
 - Structure-based models
 - Energy based models
 - •
- Generative adversarial network (GAN)
- Score-based generative

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images



Voxel GAN

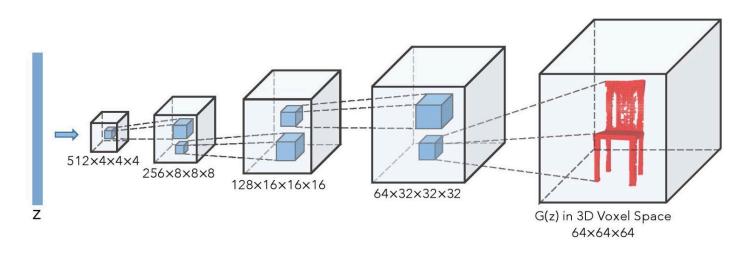
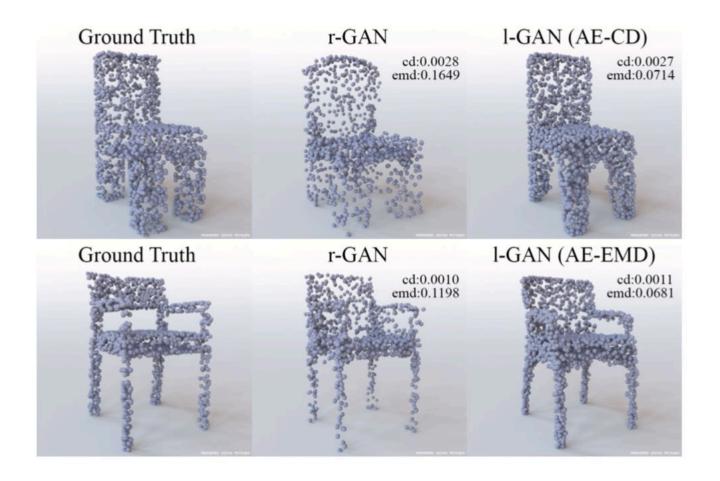


Figure 1: The generator of 3D Generative Adversarial Networks (3D-GAN)

Figure 2: Shapes synthesized by 3D-GAN

Wu et. al., Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling, NeurIPS 2016

Point Cloud GANs



ICML, 2018, Learning Representations and Generative Models for **3D Point Clouds**, Panos Achlioptas, et. al.

In 3D, Not Close to Direct 2D Results Using GANs

https://thispersondoesnotexist.com

Synthetic 3D for ML

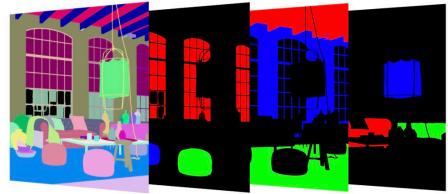
Collecting per-pixel annotations is hard Typical annotation speed for real images: 300 pixels per second

Synthetic Data Easily Provides Multi-Modal Annotations

Beauty Render Elements

The Beauty Render Elements are the primary render elements that form V-Ray's pre-composited final render pass Beauty RGB_Color. These Include the Lighting, Global Illumination, Reflection, Refraction, Specular, etc.

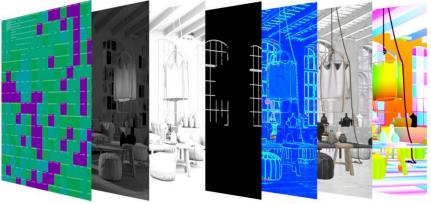
Geometry Render Elements



The Matte Render Elements aid selection masking in the compositing process. These include the Material ID, Multimatte, Object ID, and Render ID render elements.

Utility Render Elements

The Geometry Render Elements rely on geometry to generate geometry data for the compositing process. These include the Velocity, Z-Depth, Wire Color, and Normals render elements.

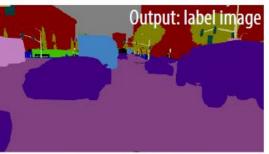


The Utility Render Elements give insight into how V-Ray is running and extra functionality for compositing. These include the Distributed Render ID, Sample Rate, Denoiser, Extra texture, Sampler

Info, etc

Synthetic Data Improves Performance

Semantic segmentation



Richter et al. ECCV 2016

3D mesh reconstruction

Johnson et al. ICCV 2019

Inverse rendering

Li et al. ICCV 2019

Reasoning behind occlusions

Ehsani et al. CVPR 2018

Real-World Tasks

Need Quantity, Quality, Diversity in Generation

Zhang et al. CVPR 2017

Li and Snavely ECCV 2018

Less photorealistic

More photorealistic

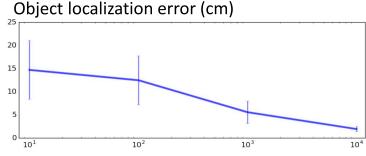
"Sim2Real"

More photorealism is better

Zhang et al. CVPR 2017, Li and Snavely ECCV 2018

Training





Number of unique textures seen during training (log scale)

Greater diversity is better

Want all plausible scenes, views, lighting conditions, materials, ...

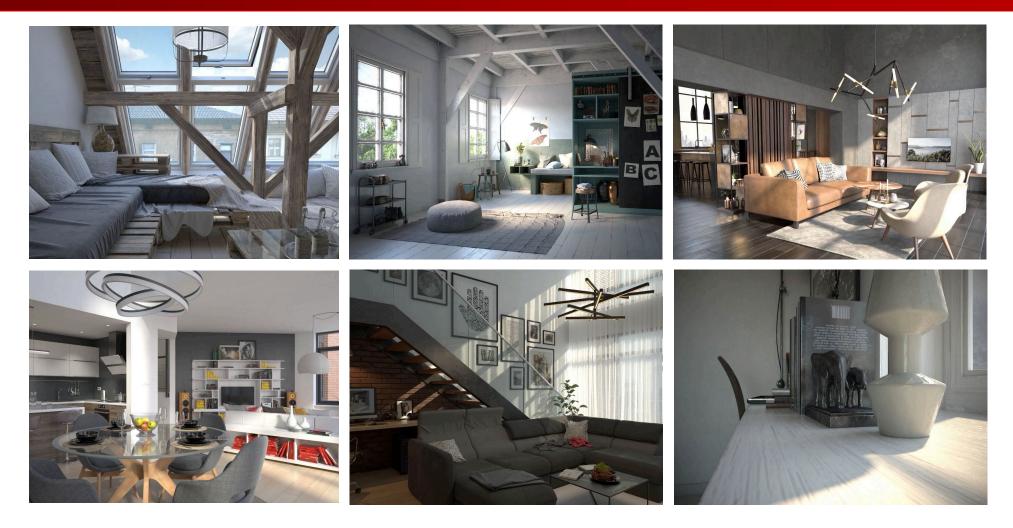
Sadeghi and Levine RSS 2017, Tobin et al. IROS 2017

Tobin et al. IROS 2017

Test

102

Synthetic Indoor Environments



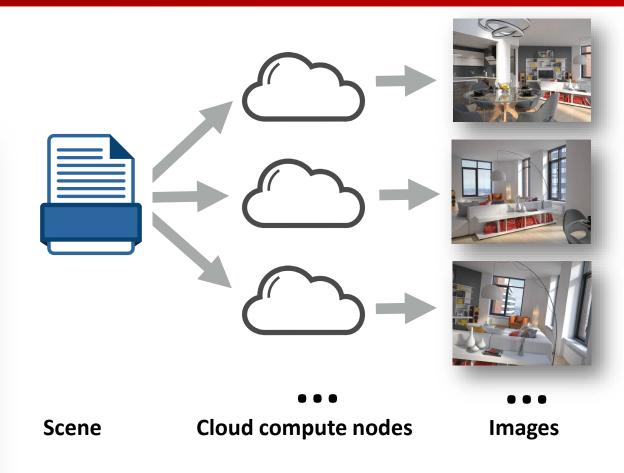
Hypersim: A Photorealistic Synthetic Dataset for Holistic Scene Understanding

461 indoor scenes, 77k images

Images ✓ 3D assets ✓ Segmentation ✓ Intrinsic ✓

Synthetic Imagery Has Its Own Costs

Specialist design time/effort



Photorealistic rendering in the cloud is very costly

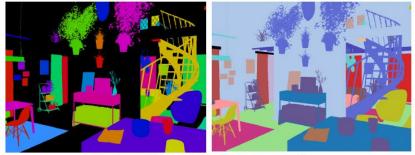
\$51K for 77K images @ 1024x768 resolution

Intermediate-Level Annotations

RGB image

Depth

Surface normal



Instance-level semantic segmentation

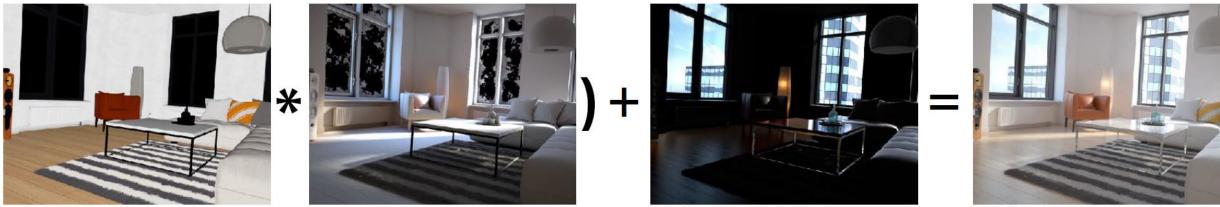
Non-Lambertian intrinsic image decomposition

Hypersim: A Photorealistic Synthetic Dataset for Holistic Scene Understanding

461 indoor scenes, 77k images

Images ✓ 3D assets ✓ Segmentation ✓ Intrinsic ✓

Opportunity: Deferred Shading



Diffuse reflectance

Diffuse illumination

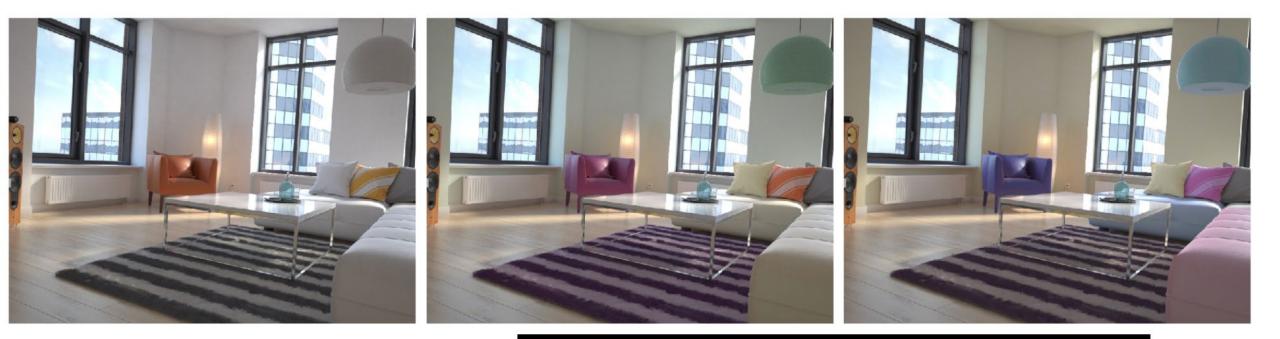
Non-diffuse residual

Final image

can randomize

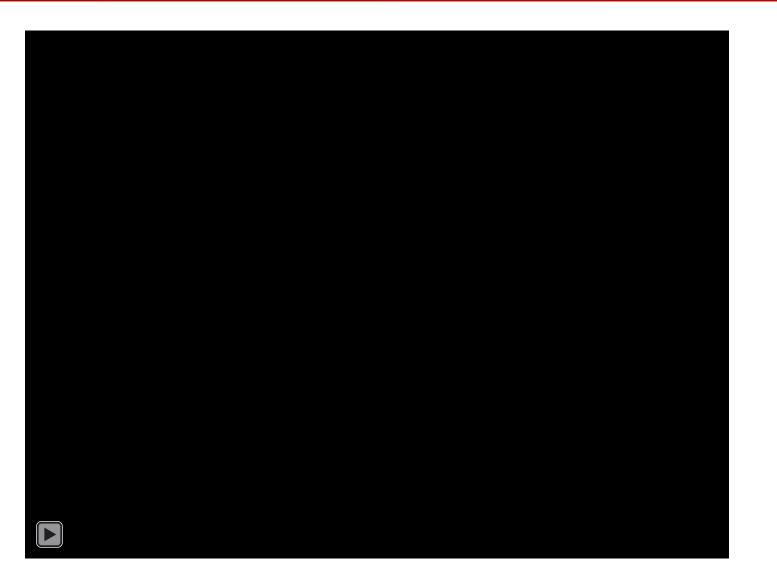
Fixed camera, fixed lighting, dynamic materials

Faster Shading

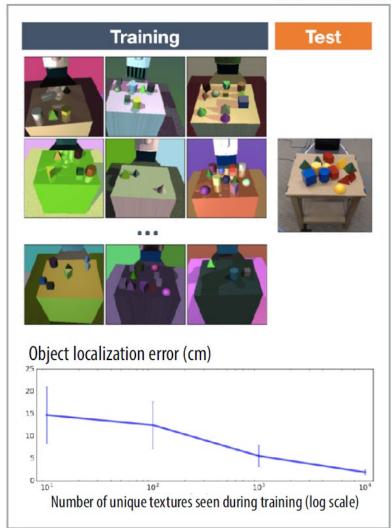


Original Image 1.5 hours to render **Random Variations** 10 milliseconds to render

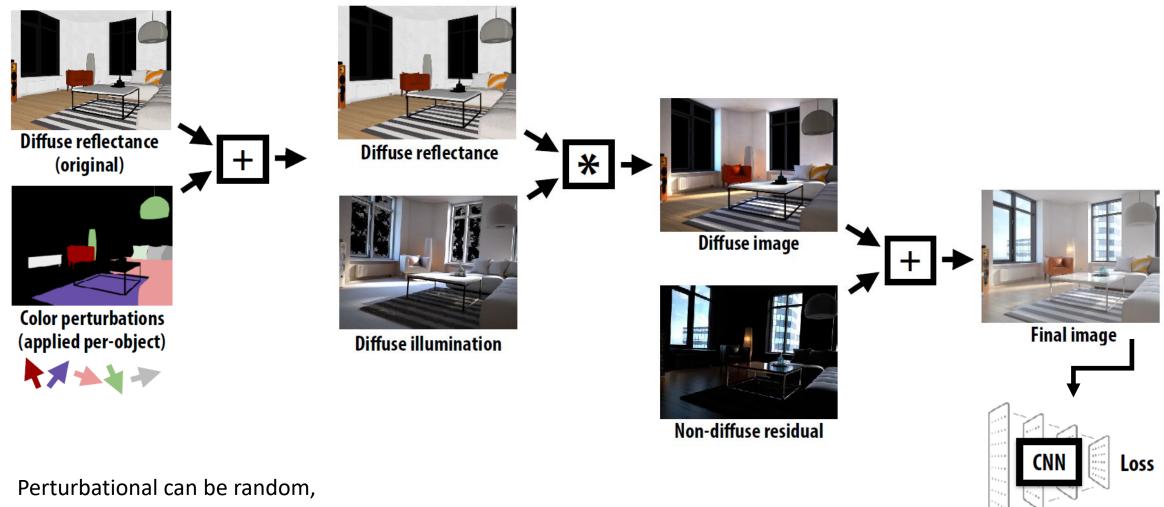
Faster Shading



Tobin et al. IROS 2017



Deferred Shading is Differentiable



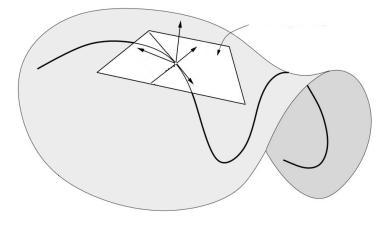
or adversarial

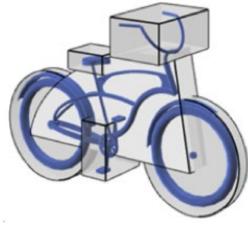
Fine-grained integration of data synthesis and ML training

Generative Model for Geometry Deformations/Edits

Learn possible variations of an input shape, discrete or continuous, meeting semantic constraints.

latent space





Learning Variation Generation

Learning to Vary

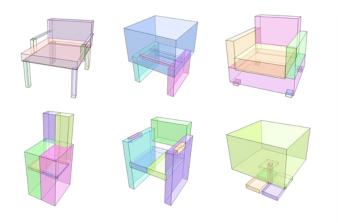
- Re-use what we already have
- Populate sparsely sampled regions

Geometry, Arrangement, Appearance, Motion

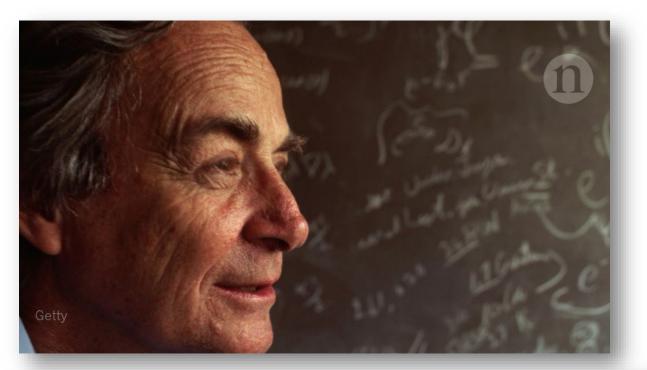
for Objects and Scenes

Varying to Learn

- Provide generation diversity
- Create training data tailored for hard concepts

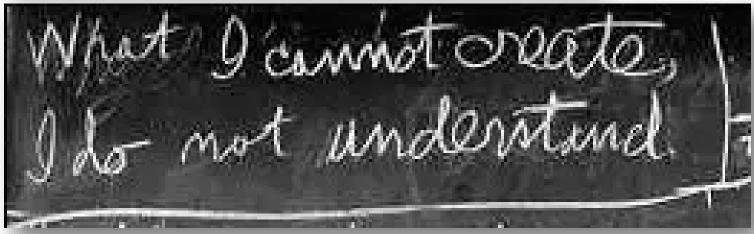


Generative Modeling

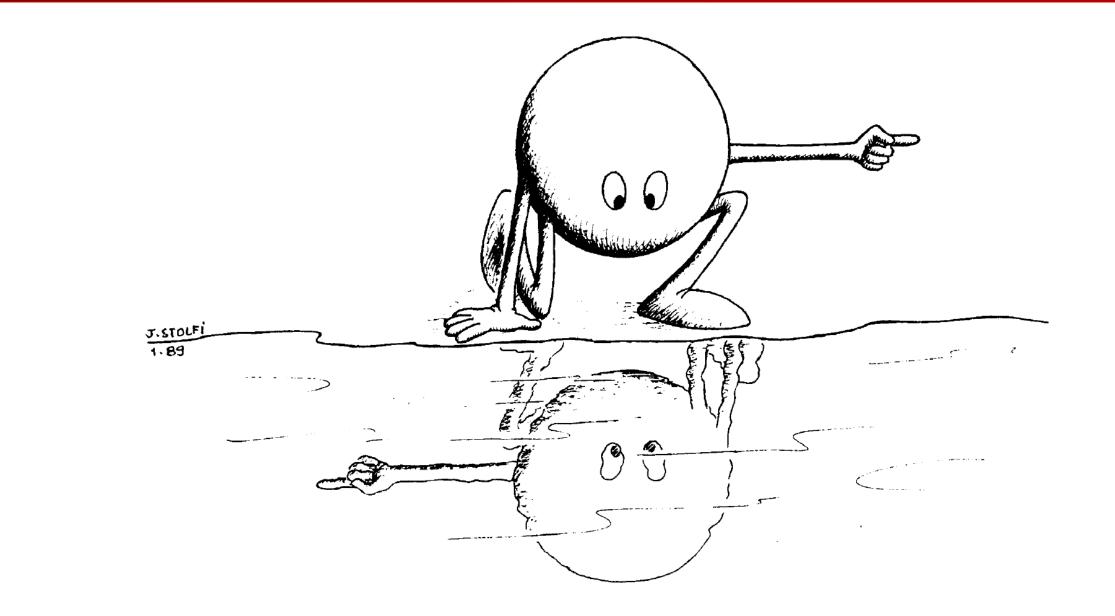


Richard Feynman: "What I cannot create, I do not understand"

Generative modeling: "What I understand, I can create"



That's All



CS348n: Neural Generative Models for 3D Geometry

