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Recap: Class Logistics
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• Leonidas (Leo) Guibas (CS & EE)
• Instructor

• Kaichun Mo (CS)
• Course Assistant (TA)

• Carrie Petersen (CS)
• Admin
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The Class Principals

http://cs348n.stanford.edu

Also, a number of guest speakers …

Canvas for class videos, etc…

Class venue: Zoom, Clark S361, Gates 105, …

http://cs348n.stanford.edu/


• 3 programming assignments (1 week, 2 weeks, 2 weeks) using Google 
Cloud for Education

• 1 small project (BYI, but suggestions also provided, 3 weeks)
• 1 class presentation on research papers from the literature (topics 

covered in the previous class)
• teams of up to three students allowed

• we’ll use Piazza (www.piazza.com) as the class discussion forum, and 
Gradescope (www.gradescope.com) for assignment submissions
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Course Requirements / Mechanics

http://www.piazza.com/
http://www.gradescope.com/


• Sign up for Piazza

• Sign up for your class presentation session:
• Google form: https://forms.gle/xNzWptSzfngzmuGs7

• For access to class lecture slides:
• Use credentials:

• user: neural
• passwd: creation

• Obtain Google Cloud coupons from CA
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Other Tidbits

https://forms.gle/xNzWptSzfngzmuGs7


Geometry Representations
and

Geometry Processing
Mostly traditional …
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Images/Videos Have Canonical Representations
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Regular representations
aid ML algorithms, e.g.
convolutional deep networks

Pixel arrays



In 3D, There is Representation Diversity
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These are irregular 
representations – and the ones 

most commonly used in 3D apps

Multiple View ImagesPoint Cloud Mesh Voxels

…

RGB(D)

Constructive Solid
Geometry (CSG)Sketch-

Extrude



• B(oundary)-Reps

• more efficient
• closer to semantics, support 

local editing
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3D: Boundary or Volumetric?

• V(olume)-Reps

• more regular
• support unions and 

intersections



Many Reps, Because 3D has Many Sources
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Acquired real-world objects:
RGB or RGBD data, scanning
Points, meshes

Modeling “by hand”:
Higher-level representations, 
amendable to modification, control
Parametric surfaces, subdivision 
surfaces, implicits

Procedural modeling
Algorithms, grammars
Primitives, Polygons, 
application-dependent elements

Neural generators …



11

ML Decoding/Generation from Latent Vectors

Latent vector z
Generated Shape

Generator/Decoder: generating shapes from latent vectors 
via deep networks – but in what format?

decoder



Representation Considerations
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How should we represent geometry?
Be derivable from sensor data
Support storage efficiency
Support editing:

Modification, simplification, smoothing, filtering, repair…

Support creativity:
Input metaphors, UIs…

Support rendering:
Rasterization, raytracing…

Support ML:
Share info across related shapes
How much manipulation can we do in the latent domain?



Point Clouds
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3D Point Clouds from Many Sensors

1
4

Lidar point clouds (LizardTech) Structure from motion (Microsoft)

Depth camera (Intel, Microsoft, Google)



Output of Acquisition Process

1
5

Triangulation, time-of-flight,
structured light scanners

but also from classic computer
algorithms like stereo



• Close to raw sensor data

• Representationally simple

• Irregular neighborhoods

• Variable density
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3D Point Cloud Data

Point Cloud

LiDAR

Depth Sensor



Standard 3D data from a variety of sources/scanners -- but
Irregular, variable density
Potentially noisy

Can have holes
Registration of multiple images is required

Point Cloud Issues

1
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Points = unordered set of 3-tuples – no structure
Frequently converted to other reps 

Meshes, implicits, parametric surfaces
Easier to process, edit and/or render

Efficient point processing / modeling requires  spatial partitioning data 
structure

E.g., to figure out neighborhoods for normal estimation

Point Clouds, Often an Intermediate Representation

1
8

shading needs normals!



3D Point Cloud Processing

19

Traditional 3D Acquisition Pipeline

We’ll see how to apply ML directly on Point Cloud Data



Stanford Bunny



• Simplest representation: only points, no connectivity
• Collection of (x,y,z) coordinates, possibly with normals

Point Clouds

Stanford bunny



• Simplest representation: only points, no connectivity
• Collection of (x,y,z) coordinates, possibly with normals
• Points with orientation are called surfels

Point Clouds

Filip van Bouwel



• Simplest representation: only points, no connectivity
• Collection of (x,y,z) coordinates, possibly with normals
• Points with orientation are called surfels
• Several limitations:

• no simplification or subdivision
• no direct smooth rendering
• no topological information

Point Clouds

?

or

Point cloud aliasing



• Simplest representation: only points, no connectivity
• Collection of (x,y,z) coordinates, possibly with normals
• Points with orientation are called surfels
• Several limitations:

• no simplification or subdivision
• no direct smooth rendering
• no topological information
• weak approximation power: for point clouds

• need square number of points for the same approximation power as meshes

Point Clouds



• Simplest representation: only points, no connectivity
• Collection of (x,y,z) coordinates, possibly with normals
• Points with orientation are called surfels
• Several limitations:

• no Simplification or subdivision
• no direct smooth rendering
• no topological information
• weak approximation power
• noise and outliers

• But NNs can compensate for many of these limitations

Point Clouds



1) Typically, that’s the only thing that’s available from a large class of sensors
2) Isolation: sometimes, easier to handle (esp. in hardware).

Why Point Clouds?

Meshless Animation of Fracturing Solids 
Pauly et al., SIGGRAPH ‘05

Fracturing Solids Fluids

Adaptively sampled particle fluids,
Adams et al. SIGGRAPH ‘07



Point Cloud Processing

Geometry Processing

27

→ CS348a



3D Point Cloud Processing

Typically point cloud sampling of a shape is insufficient for most 
applications. Main stages in processing:

1. Outlier removal – throw away samples from non-surface areas
2. If we have multiple scans, align them
3. Smoothing – remove local noise
4. Estimate surface normals
5. Surface reconstruction

• Implicit representation
• Triangle mesh extraction



Normal Estimation and Outlier Removal

Fundamental problems in point cloud processing.

Although seemingly very different, can be solved with the same general 
approach – look at the “shape of neighborhoods” …



Normal Estimation 

Assume we have a clean sampling of the surface. OK, start with a curve.

Our goal is to find the best approximation of the tangent direction, and 
thus of the normal to the curve. 



Normal Estimation 

Assume we have a clean sampling of the surface. OK, start with a curve.

Our goal is to find the best approximation of the tangent direction, and 
thus of the normal to the line. 



Normal Estimation 

Assume we have a clean sampling of the surface. OK, start with a curve.

Goal: find best approximation of the normal at P.

Method: Given line l through P with normal n, for another point pi:

P

n

Pi



Normal Estimation 

Assume we have a clean sampling of the surface. OK, start with a curve.

Goal: find best approximation of the normal at P.

Method: Find n, minimizing for a set of k points near P (e.g. 
k nearest neighbors of P).  

P

n

Pi



Normal Estimation 

Assume we have a clean sampling of the surface. OK, start with a curve.

Using Lagrange multipliers:

P

n

Pi



Normal Estimation 

Assume we have a clean sampling of the surface. OK, start with a curve.

Using Lagrange multipliers:

P

n

Pi



Normal Estimation 

Assume we have a clean sampling of the surface. OK, start with a curve.

The normal n must be an eigenvector of the local covariance matrix:

Moreover, since: 

P

n

Pi



Normal Estimation 

Assume we have a clean sampling of the surface. OK, start with a curve.

The normal n must be an eigenvector of the matrix:

So, nopt must be the eigenvector corresponding to the smallest 
eigenvalue of C.

P

n

Pi



Normal Estimation 

Method Outline (PCA):

1. Given a point P in the point cloud, find its k nearest neighbors.

2. Compute the local covariance matrix

3. n: eigenvector corresponding to the smallest eigenvalue of C.

P

n



Normal Estimation 

Method Outline (PCA-like):

1. Given a point P in the point cloud, find its k nearest neighbors.

2. Compute

3. n: eigenvector corresponding to the smallest eigenvalue of C.

P

n

Variant on the theme: use



Normal Estimation 

Critical parameter: k. Because of uneven sampling typically fix a radius r, 

and use all points inside a ball of radius r.

How to pick an optimal r?

P

n

r



Normal Estimation 

Because of noise in the data, small r may lead to underfitting. 

Collusive noise



Normal Estimation 

Due to curvature, large r can lead to estimation bias.

Curvature effect



Normal Estimation 

Estimation error under Gaussian noise for different values of curvature (2D)

source: Mitra et al. ‘042
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Normal Estimation 

source: Mitra et al. ‘04
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A similar but involved analysis results in 3D,

A good choice of r is,

3/1

2
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Normal Estimation – Optimal Neighborhood Size 

2x noise1x noise
source: Mitra et 
al. ‘04



Outlier Removal

Goal: remove points that do not lie close to a surface.



Outlier Estimation

From the covariance matrix:                                                       we have:

for any vector v, the Rayleigh quotient: 

Intuitively, vmin, maximizes the sum of angles to each vector                    .

P

PivPj



Outlier Estimation

If all the points are on a line, then      and                       is large. 

There exists a direction along which the point cloud has no variability.

P Pi

v

If points are scattered randomly, then: . 

line or curve like (1D)
area like (2D)



Outlier Estimation

If all the points are on a line, then and                      is large. 

There exists a direction along which the point cloud has no variability.

P Pi

v

If points are scattered randomly, then: . 

Thus, can remove points where for some threshold. 

In 3D we expect two zero eigenvalues, so use     for some threshold. 



3D Point Cloud Processing

Typically point cloud sampling of a shape is insufficient for most 
applications. Main stages in processing:

1. Outlier removal – throw away samples from non-surface areas
2. If we have multiple scans, align them
3. Smoothing – remove local noise
4. Estimate surface normals
5. Surface reconstruction

• Implicit representation
• Triangle mesh extraction



Boundary Surface 
Representations

B-Reps

51

→ CS348a



B-Reps: Low-Level Elements

52

Triangle meshes
Quad meshes

trade-offs

quad meshes can be formed
by grid-like quads, but there
will almost always be
extraordinary (singular) vertices

trade-offs



B-Reps: High-Level Surface Patches

53

Parametric surfaces
Implicit functions
Subdivision surfaces



Parametric Curves 
and Surfaces



Range of a function

Planar curve:

Space curve:

Parametric Representation: 1D Curves

55



Example: Explicit curve/circle in 2D

1-D Parametric Curves
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Bézier curves, splines (use multiple parametric functions)

Parametric Curves: Splined Representations

57

Basis functions
Cubic Bézier curve and associated control 

polygon

Define parametric arcs
via control points
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Modeling 2D Shapes with Spline Curves

Joint many arcs to complete
a closed boundary.

The fonts we use …



Range of a function

Surface in 3D:

Parametric Representation: 2D Surfaces
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Sphere in 3D

Example Parametric Surface

60



Tensor Product vs. Triangular Patch Surfaces

61

tensor product,
regular quad mesh

triangular patch,
triangular mesh

Different flavors of 
control polyhedra



Curve swept by another curve

Bézier surface:

Also : triangular patch surfaces, subdivision surfaces

Tensor Product Parametric Surfaces
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Advantages
Easy to generate points on the curve/surface
Separate x/y/z components
Name each point

Disadvantages
Hard to determine inside/outside
Hard to determine if a point is on
the curve/surface
Hard to express more complex curves/surfaces!
→ therefore use piecewise parametric patches (e.g., mesh), requiring 
continuity constraints

Parametric Curves and Surfaces

63



Splined Surfaces for CAD

64
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Preview: Parametric Decoder ‒ AtlasNet

Given that the output points form a smooth surface, enforce such a 
parametrization in input. For each point (u, v) on the parameterization,

MLP([z, uv]) -> point

Also, you can get a mesh!
AtlasNet: A Papier-Machˆe Approach to Learning 3D Surface 
Generation,  CVPR 2018
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Preview: Parametric Decoder ‒ AtlasNet

AtlasNet: A Papier-Machˆe Approach to Learning 3D Surface 
Generation,  CVPR 2018

One parameterization (an atlas) is limited for objects with 
complex topology.
So, more sheets.
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Comparison 

Input image Voxel Point cloud AtlasNet

AtlasNet: A Papier-Machˆe Approach to Learning 3D Surface 
Generation,  CVPR 2018



Implicit Curves and 
Surfaces

68



Kernel of a scalar function

Curve in 2D:
Surface in 3D: 

Space partitioning

Implicit Curves and Surfaces

69

Outside
Curve/Surface
Inside



Implicit circle and sphere

Implicit Curves and Surfaces

70



Implicit Curves and Surfaces

71

Kernel of a scalar function
Curve in 2D:
Surface in 3D: 

Zero level set of 
signed distance function



Union:

Intersection:

Boolean Set Operations
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Positive = outside, negative = inside
Boolean subtraction:

Much easier than for parametric surfaces!

More Boolean Set Operations
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Advantages
Easy to determine inside/outside
Easy to determine if a point is on
the curve/surface, on what side of the surface

Disadvantages
Hard to generate points on the curve/surface
Do not lend to (real-time) rendering

Implicit Curves and Surfaces

74
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Preview: Neural AutoEncoding Occupancy or SDF
Comparison with Octree

Decoder

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019 
Deep Meta Functionals for Shape Representation, ICCV 2019



Volumetric 
Representations



Binary volumetric grids

Can be produced by 
thresholding the distance 
function, or from the scanned 
points directly

N3 gets expensive fast
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V-Rep: Volumetric Grids

Also represents space of little informational value



Constructive Solid 
Geometry

Boolean ops over 
geometric primitives 
(spheres, boxes, cylinders, 
cones, …)

Often non-unique
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V-Rep: CSG
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Sketch-Extrude



Polygonal Meshes



Boundary representations of objects using polygonal primitives

Polygonal Meshes
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Piecewise linear approximation
• Error is O(h2) [O(h) for points]

Meshes as Approximations of  Smooth Surfaces
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25% 6.5% 1.7% 0.4%

3 6 12 24

0.

7.5

15.

22.5

30.

0 8 15 23 30

#faces vs. approximation 
error

h

h2



Polygonal meshes are a good representation

approximation O(h2) 

arbitrary topology

adaptive refinement

efficient rendering

Polygonal Meshes
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Vertices:
Edges: 

Closed:
Planar: all vertices on a plane
Simple: not self-intersecting

Planar Polygons
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• A finite set M of closed, simple polygons 
Qi is a polygonal mesh

• The intersection of two polygons in M is 
either empty, a vertex, or an edge

85

Polygonal Meshes (Complexes)

vertices edges faces



A finite set M of closed, simple 
polygons Qi is a polygonal mesh
The intersection of two polygons in M
is either empty, a vertex, or an edge
Every edge belongs to at least one 
polygon

Polygonal Mesh

86



Boundary: the set of all edges that 
belong to only one polygon 

Either empty or forms 
closed loops
If empty, then the polygonal mesh is 
closed

Polygonal Mesh
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Connectivity: vertices, edges, triangles
Geometry: vertex positions

Triangle Meshes

93



What should be stored?
Geometry: 3D coordinates
Connectivity

Adjacency relationships
Attributes

Normal, color, texture coordinates
Per vertex, face, edge

Data Structures

94

Continuous information
Discrete information



STL ("Standard Triangle Language”) 
format (used in CAD)
Storage

Face: 3 positions
4 bytes per coordinate
36 bytes per face

on average: f = 2v (Euler)
72*v bytes for a mesh 
with v vertices

No explicit connectivity information

Simple Data Structures: Triangle List
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Triangles

0 x0 y0 z0

1 x1 y1 z1

2 x2 y2 z2

3 x3 y3 z3

4 x4 y4 z4

5 x5 y5 z5

6 x6 y6 z6

... ... ... ...



Used in formats
OBJ, OFF, WRL
Storage

Vertex: position
Face: vertex indices
12 bytes per vertex
12 bytes per face
36*v bytes for the mesh

No explicit neighborhood info

Simple Data Structures: Triangle List
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Vertices

v0 x0 y0 z0

v1 x1 x1 z1

v2 x2 y2 z2

v3 x3 y3 z3

v4 x4 y4 z4

v5 x5 y5 z5

v6 x6 y6 z6

... ..
.

..

.
..
.

Triangles

t0 v0 v1 v2

t1 v0 v1 v3

t2 v2 v4 v3

t3 v5 v2 v6

... ..
.

..

.
..
.



Quad-Edge: Encoding Mesh Topology
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Edge-based
(many variants,
half-edge, etc)

Topological traversal algorithms



Brisson: Cell-Tuple

98

(v,e,f)



Summary
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Parametric Implicit Discrete/Sampled

• Splines, tensor-product 
surfaces

• Subdivision surfaces
• Distance fields
• Metaballs/blobs

• Meshes
• Point set surfaces



Representation 
Conversions

Points → Implicit
Implicit → Mesh
Mesh → Points



3D Point Cloud Reconstruction

Main Goal:

Construct a polygonal (e.g. triangle mesh) representation of the point 
cloud. 

PCD curve/ surface

Reconstruction 
algorithm



3D Point Cloud Reconstruction

Main Problem:

Data is unstructured. E.g. in 2D the points are not ordered.

PCD curve/ surface

Reconstruction 
algorithm



3D Point Cloud Reconstruction

Main Problem:

Data is unstructured. E.g. in 2D the points are not ordered.
Inherently ill-posed (aka difficult) problem.

PCD curve/ surface

Reconstruction 
algorithm



3D Point Cloud Reconstruction

Reconstruction through Implicit models.



POINTS → IMPLICIT

Implicit Surface Reconstruction

105



Implicit Surfaces

Given a function f(x), the surface is defined as:



Given a point cloud

Define a function 

with value > 0 outside the shape and < 
0 inside

Example: signed distance function 
(SDF) to the shape surface

107

Implicit Function Approach

< 0 > 00



Define a function 

with value > 0 outside the shape 
and < 0 inside

108

Implicit Function Approach

> 0 < 00

Extract the zero-set



Converting from a point cloud to an implicit surface:

Simplest method:
1. Given a point x in space, find nearest point p in PCD.
2. Set     – signed distance to the tangent plane.

p

Implicit Surfaces

Hugues Hoppe: Surface reconstruction from unorganized points  



Converting from a point cloud to an implicit surface:

Simplest method:
1. Given a point x in space, find nearest point p in PCD.
2. Set – signed distance to the tangent plane.

p

Implicit Surfaces

Hugues Hoppe: Surface reconstruction from unorganized points  



Implicit Surfaces

Converting from a point cloud to an implicit surface:

Simplest method:
1. Given a point x in space, find nearest point p in PCD.
2. Set – signed distance to the tangent plane.
3. Note: need consistently oriented normals.

PCA only gives normals up to orientation
Hugues Hoppe: Surface reconstruction from unorganized points  



Implicit Surfaces

Converting from a point cloud to an implicit surface:

Simplest method:
1. Given a point x in space, find nearest point p in PCD.
2. Set – signed distance to the tangent plane.
3. Note: need consistently oriented normals. In general, difficult problem, 

but can try to locally connect points and fix orientations. 
Hugues Hoppe: Surface reconstruction from unorganized points  



Input: Points + Normals
Normals help to distinguish 
between inside and outside
Computed via locally fitting 
planes at the points (and 
consistently oriented)
Previous method is very 
local and gives noisy results

SDF from Points and Normals

113

- +

“Surface reconstruction from unorganized points”, Hoppe et al., ACM SIGGRAPH 1992
http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/

http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/


Find smooth implicit  F
Scattered data interpolation:

F is smooth
Avoid trivial 

A More Global, Smooth SDF

114

0

0

0 0

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001



Scattered data interpolation:

F is smooth
Avoid trivial

Add off-surface constraints 

Smooth SDF
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0

0

0 0

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001



RBF: Weighted sum of shifted, smooth kernels

Radial Basis Function Interpolation
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Scalar weights
Unknowns

Smooth kernels 
(basis functions)

centered at constrained 
points.

For example: 



How do we find the weights?

Radial Basis Function Interpolation

117

Kernel centers: on- and off-surface points



Interpolate the constraints:

Radial Basis Function Interpolation

118

0

0

0 0



Interpolate the constraints:

Symmetric linear system to get the weights:

Radial Basis Function Interpolation

119

3n equations
3n variables



Triharmonic:
Globally supported
Leads to dense symmetric linear system
C2 smoothness
Works well for highly irregular sampling

RBF Kernels
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Polyharmonic spline

Multiquadratic

Gaussian

B-Spline (compact support)

RBF Kernels

121



RBF Reconstruction Examples
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“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001



Off-Surface Points
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Insufficient number/
badly placed off-surface points

Properly chosen off-surface points

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001



IMPLICT → MESH

Marching Cubes

124



Wish to compute a manifold mesh of the level set

Extracting the Surface
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Marching Cubes
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Converting from implicit to explicit representations.

Goal: Given an implicit representation:

Create a triangle mesh that approximates the surface. 

Lorensen and Cline, SIGGRAPH ‘87



Sample the SDF
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Sample the SDF

128



Sample the SDF

129



Marching Squares (2D)

130

Given a function:

• inside
• outside

1. Discretize space.

2. Evaluate on a grid. 



Given a function:

• inside
• outside

1. Discretize space.

2. Evaluate on a grid.

3. Classify grid points (+/-)

4. Classify grid edges 

5. Compute intersections

6. Connect intersections 

Marching Squares (2D)

131



Computing the intersections:

• Edges with a sign switch contain 
intersections.

• Simplest way to compute t: assume f 
is linear between x1 and x2:

Marching Squares (2D)

132



Connecting the intersections:

• Grand principle: treat each cell separately!
• Enumerate all possible inside/outside combinations.

Marching Squares (2D)

133



Connecting the intersections:

• Grand principle: treat each cell separately!
• Enumerate all possible inside/outside combinations.
• Group those leading to the same intersections

Marching Squares (2D)

134

16 cases



Connecting the intersections:

• Grand principle: treat each cell separately!
• Enumerate all possible inside/outside combinations.
• Group those leading to the same intersections.
• Group equivalent after rotation.
• Connect intersections

Marching Squares (2D)

135



Connecting the intersections:

Ambiguous cases:

Two options: 
1) Can resolve ambiguity by subsampling inside the cell.
2) If subsampling is impossible, pick one of the two possibilities.

Marching Squares (2D)

136



Same machinery: cells → cubes (voxels), lines → triangles

• 256 different cases - 15 after symmetries, 6 ambiguous cases 
• More subsampling rules → 33 unique cases

Chernyaev, Marching Cubes 33,’95 

the 15 cases

Marching Cubes (3D)

137

explore ambiguity to avoid holes!



Marching Cubes (3D)

138

Main Strengths:

• Very multi-purpose.
• Extremely fast and parallelizable.
• Relatively simple to implement.
• Virtually parameter-free

Main Weaknesses:

• Can create badly shaped (skinny) triangles.
• Many special cases (implemented as big lookup tables).
• No sharp features.



Recap: Points→Implicit→Mesh
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MESH-> POINT CLOUD

Sampling

140



• Points are simple but expressive!
• Few points can suffice

• Flexible, unstructured, few constraints
• Also: ML applications!

141

From Surface to Point Cloud Why?

CAD meshes:
many components
bad triangles
connectivity problems



• Points are simple but expressive!
• Few points can suffice

• Flexible, unstructured, few constraints
• Also: ML applications!

142

From Surface to Point Cloud Why?

CAD meshes:
many components
bad triangles
connectivity problems

the problem:
sampling the mesh



Introduced for progressive transmission/acquisition of images
Quality of approximation improves with increasing number of samples

as opposed eg. to raster scan
Key Idea: repeatedly place next sample  in the middle of the least-known area of the 
domain.

Farthest Point Sampling

143

Gonzalez 1985, “Clustering to minimize the maximum intercluster distance”
Hochbaum and Shmoys 1985, “A best possible heuristic for the k-center problem”



1.Create an initial sample point set S
• Image corners + additional random point.

2. Find the point which is the farthest from all point in S

3. Insert the point to S and update the distances
4. While more points are needed, iterate

Pipeline

144



Depends on a notion of distance on the sampling domain
Can be made adaptive, via a weighted distance

Farthest Point Sampling

145
Eldar et al. 1997, “The Farthest Point Strategy for Progressive Image Sampling”



What’s an appropriate distance?

FPS on surfaces

146



Geodesics: Straightest and 
locally shortest curves 

147

On-Surface Distances

isolines - euclidean

isolines - geodesic



Recall: a mesh is a graph!
Approximate geodesics as paths along edges

Discrete Geodesics

148

Dijkstra’s 
algorithm!



Dijkstra Geodesics

149

Dikjstra as wave front propagation



Can be asymmetric - no 
matter how fine the mesh!

Dijkstra Geodesics

150



A better approximation: allow fronts to cross triangles!

Fast Marching Geodesics

151
Kimmel and Sethian 1997, “Computing Geodesic Paths on Manifolds”
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Initialization



Adaptive FPS

153
Peyré and Cohen 2003, Geodesic Remeshing Using Front Propagation



Faster Distance Approximations

154
Carne, Weischedel, and Wardetzky 2017,
The Heat Method for Distance Computation



Software

Libigl http://libigl.github.io/libigl/tutorial/tutorial.html
MATLAB-style (flat) C++ library, based on indexed face set structure

OpenMesh www.openmesh.org
Mesh processing, based on half-edge data structure

CGAL www.cgal.org
Computational geometry

MeshLab http://www.meshlab.net/
Viewing and processing meshes

155

http://libigl.github.io/libigl/tutorial/tutorial.html
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Software

Alec Jacobson’s GP toolbox
https://github.com/alecjacobson/gptoolbox
MATLAB, various mesh and matrix routines

Gabriel Peyre’s Fast Marching Toolbox
https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-
marching
On-surface distances (more next time!)

OpenFlipper https://www.openflipper.org/
Various GP algorithms + Viewer
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Local Differential Notions



Geometry of manifolds
Properties that can be discovered by local observation: point + a 
neighborhood

Differential Geometry Basics
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Geometry of manifolds
Properties that can be discovered by local observation: point + 
neighborhood

Differential Geometry Basics 2D
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manifold point



Geometry of manifolds
Properties that can be discovered by local observation: point + 
neighborhood

Differential Geometry Basics 2D
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manifold point



Geometry of manifolds
Properties that can be discovered by local observation: point + 
neighborhood

Differential Geometry Basics 2D
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manifold point
continuous 1-1 
mapping

can use this mapping
to calculate things!



Geometry of manifolds
Properties that can be discovered by local observation: point + 
neighborhood

Differential Geometry Basics 2D
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manifold point
continuous 1-1 
mapping non-manifold point



Geometry of manifolds
Properties that can be discovered by local observation: point + 
neighborhood

Differential Geometry Basics
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manifold point
continuous 1-1 
mapping non-manifold point

x



Geometry of manifolds
Properties that can be discovered by local observation: point + 
neighborhood

Differential Geometry Basics 3D
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Geometry of manifolds
Properties that can be discovered by local observation: point + 
neighborhood

Differential Geometry Basics 3D
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continuous 1-1 
mapping



Geometry of manifolds
Properties that can be discovered by local observation: point + 
neighborhood

Differential Geometry Basics 3D
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continuous 1-1 
mapping

u

v

If a sufficiently smooth 
mapping can be constructed, 
we can look at its first and 
second derivatives

Local quantities: 
Tangents, normals, 
curvatures, curve angles, 
distances



2D:

must be continuous

Parametric Curves
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Equal pace of the parameter 
along the curve

len (p(s1), p(s2)) = |s1 – s2|

Now parameter goes from 0 to L

Arc Length Parameterization
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A line through two points on the curve.

Secant
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A line through two points on the curve.

Secant
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The limiting secant as the two points come together.

Tangent
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Secant: p(t) – p(s)
Tangent: p′(t) = (x′(t), y′(t), …)T

If t is arc-length:
||p′(t)|| = 1

Secant and Tangent – Parametric Form
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Recall



Consider the circle passing through three points on the curve…

Circle of Curvature
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…the limiting circle as three points come together.

Circle of Curvature
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Tangent, normal, radius of curvature
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p

r

Osculating circle
“best fitting circle”



Radius of Curvature, r = 1/κ
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Curvature



Curvature is Scale Dependent
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Assuming t is arc-length parameter: 

Curvature and Normal
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p(t)

p′(t)

normal to the curve



Continuous surface

Tangent plane at point 
p(u,v) is spanned by

Surfaces, Parametric Form
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n

p(u,v)
pu

u

v

pv

These vectors don’t have to be orthogonal



Surface normal:

Assuming regular
parameterization, i.e.,

Surface Normals
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n

p(u,v)

pu

u

v

pv



n

p

pu pv

t

Normal Curvature
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Unit-length direction t in the 
tangent plane (if pu and pv are orthogonal):

t
j

Tangent plane



Normal Curvature
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n

p

pu pv

t
g

The curve γ is the intersection 
of the surface with the plane 
through n and t - a normal 
section.

Normal curvature:

κn(ϕ) = κ(γ(p))

t
j

Tangent plane



Principal curvatures
Minimal curvature

Maximal curvature

Mean curvature

Gaussian curvature

Surface Curvatures
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Principal directions:
tangent vectors
corresponding to
ϕmax and ϕmin

Principal Directions

184

min curvature max curvaturetangent 
plane

ϕ min

t1
t2



Euler’s Theorem: Planes of principal curvature are orthogonal
and independent of parameterization.

Principal Directions
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Principal Directions
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Local Surface Shape By Curvatures
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Isotropic:
all directions are 
principal directions

spherical (umbilical) planar

K > 0, κ1= κ2

Anisotropic:
2 distinct principal 
directions

elliptic parabolic hyperbolic

κ1 > 0, κ2 > 0

κ1= 0

κ2 > 0

K > 0 K = 0 K < 0

K = 0

κ1 < 0

κ2 > 0
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That’s All
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