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Recap: Class Logistics
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• Sign up for Piazza
• https://piazza.com/stanford/winter2022/cs348n

• Sign up for your class presentation session:
• Google form: https://forms.gle/xNzWptSzfngzmuGs7
• Deadline: Jan 11, noon PDT – otherwise we will randomly assign you
• You can sign up as a team (at max 3 students per team)
• One team per day, covering all the required papers

• For access to class lecture slides:
• Use credentials:

• user: neural
• passwd: creation
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Immediate ToDos

https://piazza.com/stanford/winter2022/cs348n
https://forms.gle/xNzWptSzfngzmuGs7


• Similar to a paper reading group
• Staff students will give an example on Jan 19

• 2-4 papers form the literature:
• provide context and relate them to the material in the previous class
• relate them to each other, if this makes sense
• discuss:

• the problem being solved and its significance
• the method(s) used
• the evaluation(s) used and your assessment of the paper’s merits and drawbacks

• Can work as teams of up to three students
• 25 mins total time
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Paper Presentations



• Homeworks address the “how” – learning specific methods
• Project addresses the “what” – to imagine what you can do with the 

class tools

• Can be an extension of one of the homeworks (we’ll provide some 
suggestions)

• Can be related to or useful for some other research you are doing
• Can work in groups of up to three students

• Need to turn in a group write up and give a brief demo at the end of 
the class
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Course Project



Recap: 3D Geometry 
Representations

(Last Lecture)
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ML Decoding/Generation from Latent Vectors

Latent vector z
Generated Shape

Generator/Decoder: generating shapes from latent vectors 
via deep networks – but in what format?

decoder



In 3D, There is Representation Diversity

These are irregular 
representations – and the ones 

most commonly used in 3D apps

Multiple View ImagesPoint Cloud Mesh Voxels

…

RGB(D)

Constructive Solid
Geometry (CSG)Sketch-

Extrude
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3D Point Clouds from Many Sensors

Lidar point clouds (LizardTech) Structure from motion (Microsoft)

Depth camera (Intel, Microsoft, Google)

Points

p0 x0 y0 z0

p1 x1 x1 z1

p2 x2 y2 z2

p3 x3 y3 z3

p4 x4 y4 z4

p5 x5 y5 z5

p6 x6 y6 z6

... ... ... ...

In addition, normals, 
colors, etc.



Normal Estimation and Outlier Removal

Fundamental problems in point cloud processing.

Although seemingly very different, can be solved with the same general 
approach – look at the “shape of neighborhoods” …

10



3D Point Cloud Processing

Traditional 3D Acquisition Pipeline

We’ll see how to apply ML directly on Point Cloud Data
11



B-Reps: Low-Level Elements

Triangle meshes
Quad meshes

trade-offs

quad meshes can be formed
by grid-like quads, but there
will almost always be
extraordinary (singular) vertices

trade-offs
12



Used in formats
OBJ, OFF, WRL
Storage

Vertex: position
Face: vertex indices
12 bytes per vertex
12 bytes per face
36*v bytes for the mesh

No explicit neighborhood info

Simple Data Structures: Triangle List

Vertices

v0 x0 y0 z0

v1 x1 x1 z1

v2 x2 y2 z2

v3 x3 y3 z3

v4 x4 y4 z4

v5 x5 y5 z5

v6 x6 y6 z6

... ... ... ...

Triangles

t0 v0 v1 v2

t1 v0 v1 v3

t2 v2 v4 v3

t3 v5 v2 v6

... ... ... ...
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Parametric Surfaces
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Implicit Curves and Surfaces

Kernel of a scalar function
Curve in 2D:
Surface in 3D: 

Zero level set of 
signed distance function
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Binary volumetric grids

Can be produced by 
thresholding the distance 
function, or from the scanned 
points directly

N3 gets expensive fast

V-Rep: Volumetric Grids

Also represents space of little informational value
16



Given a point cloud

Define a function 

with value > 0 outside the shape and < 
0 inside

Example: signed distance function 
(SDF) to the shape surface

Representation Conversion: Points --> Implicit

< 0 > 00
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Representation Conversion: Implicit --> Mesh
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Marching Squares (2D)
Marching Cubes (3D)



• Points are simple but expressive!
• Few points can suffice

• Flexible, unstructured, few constraints
• Also: ML applications!

CAD meshes:
many components
bad triangles
connectivity problems

the problem:
sampling the mesh

Representation Conversion: Mesh --> Points
Furthest Point Sampling (FPS)
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Today: DL / NNs for Images and 3D Voxel Data

These are irregular 
representations – and the ones 

most commonly used in 3D apps

Multiple View ImagesPoint Cloud Mesh Voxels

…

RGB(D)

Constructive Solid
Geometry (CSG)Sketch-

Extrude

20

Today!!!



Brief Review: ML, DL, Deep 
Nets, CNNs, Transformers
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(get prepared with DL and NN basics)



Traditional Programming

Machine Learning

ProgramInput Output
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Traditional Programming

Machine Learning

Machine Learning

ProgramInput Output

Program
Example Input

Example Output
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Machine Learning

f( )=cat

Parametrized by many 
learnable parameters

Model Fitting

Regression Classification 24



Deep learning allows computational models that are composed of 
multiple processing layers to learn representations of data
with multiple levels of abstraction.

Deep Learning

Deep Learning by Y. LeCun et al. Nature 2015

cat
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Neural networks extract powerful features from data

Neural Networks as Feature Extractors

Image Credits: Yan LeCun
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Deep Learning: Powered By

Lots of data Lots of computing power
+

Powerful Neural Network Architectures

27



Neural Networks

Model: Multi-Layer Perceptron (MLP) 

f: non-linear activation function
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Neural Networks

x1

x2

x3

w11
w21

w31

h1

h1=f(w11 * x1 + w21 * x2 + w31 * x3 + b1)
f: non-linear activation function

W1, B1

Model: Multi-Layer Perceptron (MLP) 

W2, B2 W3, B3

y’
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Neural Networks

f: non-linear activation function Sigmoid Function
Leaky ReLu

30



Neural Networks

f: non-linear activation function

Piece-wise Approximation
y = x^2
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Neural Networks

Model: Multi-Layer Perceptron (MLP) 

Loss function: L2 loss

f: non-linear activation function
W1, B1 W2, B2

W3, B3

y’ yx
Loss

W = {W1, W2, W3, B1, B2, B3}
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Neural Networks

Model: Multi-Layer Perceptron (MLP) 

Loss function: L2 loss

Optimization: Gradient descent

f: non-linear activation function
W1, B1 W2, B2

W3, B3

W = {W1, W2, W3, B1, B2, B3}

y’ yx

Back Propagation

Loss
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Neural Networks

A three-layer network approximates any continuous function

34



Neural Networks

A three-layer network approximates any continuous function

At the cost of many parameters
and much difficulty to fit
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Neural Networks

CNN

RNN
36



Convolutional Neural Networks

LeNet
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Convolutional Neural Networks

Image Credits: Andrej Karpathy
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Filters are doing pattern matching

Convolutional Neural Networks

Image Credits: Yan LeCun
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Convolutional Neural Networks

LeNet
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ImageNet Challenge
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Convolutional Neural Networks
AlexNet
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Convolutional Neural Networks

GoogleNet



Convolutional Neural Networks
ResNet
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Convolutional Neural Networks
DenseNet



Convolutional Neural Networks

Classification Error: the lower, the better
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Convolutional Neural Networks



48

Transformers
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Transformers

Credits: Jay Alammar's blog 
(http://jalammar.github.io/illustrated-transformer/)

http://jalammar.github.io/illustrated-transformer/
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Transformers for NLP: Attention Mechanism

Credits: Jay Alammar's blog 
(http://jalammar.github.io/illustrated-transformer/)

http://jalammar.github.io/illustrated-transformer/
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A Closer Look at Self-Attention

Credits: Jay Alammar's blog 
(http://jalammar.github.io/illustrated-transformer/)

Q = WQ x X; K = WK x X; V = XV x X

http://jalammar.github.io/illustrated-transformer/
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Multi-head Attentions

Credits: Jay Alammar's blog 
(http://jalammar.github.io/illustrated-transformer/)

http://jalammar.github.io/illustrated-transformer/
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Positional Encoding

Read this blog for more details --> Credits: Jay Alammar's blog 
(http://jalammar.github.io/illustrated-transformer/)

0, 1, 2, 3, ….

etc.

http://jalammar.github.io/illustrated-transformer/
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General Attention Layers v.s. Self-Attention

Image Credits: CS 231n

For example, this can be useful in 
decoding time, by feeding in the 
decoding features as queries.
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Attentions for Vision (over 2D Images)

Image Credits: CS 231n

A Query VectorKey & Value Matrix

Global Image Attention
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Attentions for Vision (over 2D Images)

Image Credits: CS 231n

A Query VectorKey & Value Matrix



57

Attentions for Vision (over 2D Images)

Image Credits: CS 231n

A Query VectorKey & Value Matrix
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Attentions for Vision (over 2D Images)

Image Credits: CS 231n

A Query VectorKey & Value Matrix
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Visual Transformer (ViT)
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Visual Transformer (ViT)

Classification
Object Detection
Caption Generation
…...

x N

Image Credits: CS 231n

Flattened into tokens, but with positional encodings

The general attention layer is a new type of layer (like Convolutional 
layer) that can be used to design new neural network architectures.



CS 231n: http://cs231n.stanford.edu/
Deep Learning for Visual Data

CS 224n: http://cs224n.stanford.edu/
Deep Learning for Language / Sequential Data

CS 234: http://cs234.stanford.edu/
Reinforcement Learning

Useful Courses
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http://cs231n.stanford.edu/
http://cs224n.stanford.edu/
http://cs234.stanford.edu/


TensorFlow, Python, Google
https://www.tensorflow.org/

PyTorch, Python, Facebook
https://pytorch.org/

Caffe, Berkeley
http://caffe.berkeleyvision.org/

Programming Neural Networks
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https://www.tensorflow.org/
https://pytorch.org/
http://caffe.berkeleyvision.org/


Programming Neural Networks
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3D Deep Learning
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(let's do DL / train NNs over 3D data)



A field with very short history — starting from 2015 (approx.)
But very active due to huge industry interests!

3D Deep Learning
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3D Applications

Autonomous driving

Robotics Augmented  Reality

Medical Image Processing
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3D Deep Learning Tasks

3D Shape Understanding and Analysis

Classification Parsing
(segmentation)

Correspondence
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3D Deep Learning Tasks

3D Shape Generation and Synthesis

Monocular 
3D reconstruction

Shape completionShape generation
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3D Deep Learning Tasks

3D Scene Understanding and Analysis

69

Object Detection / Scene Segmentation Scene Structure Parsing



3D Deep Learning Tasks

3D Scene Generation and Synthesis

70

Scene CompletionScene Generation Scene Reconstruction



3D Deep Learning Tasks

Autonomous Driving Applications
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3D Deep Learning Tasks

Robotics Applications
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3D Deep Learning Tasks

Metaverse Applications

73



3D Voxel CNNs
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(DL / NNs over the simplest / most regular 3D representation)



Volumetric Representation: 2D Images

Images: canonical representation with regular data structure
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Volumetric Representation: 3D Geometry

Image Credits: Scannet
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Volumetric Representation: Applications

fMRI Manufacturing 
(finite-element analysis)

GeologyCT
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Volumetric Representation: Conversions
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Volumetric Representation

Resolution: 32 64 128
Occupancy:

Resolution N       O(N^3)
79



Volumetric Representation

< 1%

Image Credits: Scannet
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Classification (Recognition)
Reconstruction (Generation)

Voxel CNNs for 3D Data Understanding
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3D Voxel CNNs: Classification

Z. Wu, S. Song, A. 

Khosla, F. Yu, L. Zhang, 

X. Tang and J. Xiao, 

“3D ShapeNets: A 

Deep Representation 

for Volumetric Shape 

Modeling”, 

CVPR2015
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3D Voxel CNNs: Classification

Daniel Maturana and 

Sebastian Scherer, 

“VoxNet: A 3D 

Convolutional Neural 

Network for Real-

Time Object 

Recognition”, 

IROS2015
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3D Voxel CNNs: Classification
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3D Voxel CNNs: Reconstruction
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3D Voxel CNNs: Completion

Image Credits: Angela Dai et. al. 
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3D Voxel CNNs: Generation
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3D Voxel CNNs: Reconstruction

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction
Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, Silvio Savarese
ECCV 2016
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3D Voxel CNNs: Reconstruction

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction
Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, Silvio Savarese
ECCV 2016
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3D Voxel CNNs: Reconstruction

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction
Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, Silvio Savarese
ECCV 2016
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3D Voxel CNNs: Reconstruction

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction
Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, Silvio Savarese
ECCV 2016
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3D Voxel CNNs: Completion

Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis
Angela Dai, Charles R. Qi, Matthias Niessner
CVPR2017
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3D Voxel CNNs: Generation

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Jiajun Wu*, Chengkai Zhang*, Tianfan Xue, William T. Freeman, and Joshua B. Tenenbaum
NeurIPS2016
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Pros
Regular grids representation
Intuitive extension of images
Easy to input to Neural Nets
Each grid can have many feature inputs

Cons
Need to convert from point clouds scans
Surface voxels? / solid voxels?
Space / Time Complexities

Volumetric Representation
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Hierarchical 3D Voxel CNNs
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(Use Hierarchical Architectures to Alleviate the Curse of Dimensionality)



3D Voxel Data: Curse of Dimensionality

Resolution: 32 64 128
Occupancy:

Resolution N       O(N^3)
96



Hierarchical Volumetric Representation

Octree 3D KD-Tree
Image Credits: Wikipedia
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Hierarchical Volumetric Representation

OctNet: Learning Deep 3D Representations at High Resolutions
Gernot Riegler, Ali Osman Ulusoy, Andreas Geiger, CVPR 2017 98



Hierarchical Volumetric Representation

99



Hier 3D Voxel NN: Recognition

Classification Accuracy: 89.9%
100

SIGGRAPH 2017



Hier 3D Voxel NN: Generation

Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox
“Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs”
ICCV, 2017
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Hier 3D Voxel NN: Generation

Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox
“Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs”
ICCV, 2017
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Hier 3D Voxel NN: Generation

Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox
“Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs”
ICCV, 2017
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Hierarchical 3D Voxel NNs

104

Pros
Address the O(N^3) Storage / Computation Explosion
Allow 3D CNNs to work with Larger N --> better performance

Cons
Still have computations over empty voxels
Not very flexible given the specific data structure (e.g. the octree)



3D Sparse ConvNets
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(Only Perform Convolution over Existing Voxels)



3D Sparse ConvNets
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3D Semantic Segmentation with Submanifold Sparse Convolutional Networks
Benjamin Graham, Martin Engelcke, Laurens van der Maaten, CVPR, 2018

Submanifold Sparse Convolution (SSC)

carefully engineered that no 
computational overhead at the 
empty cells, using a hash-table
and a rule-book

only computed when the 
kernel center is over an 
occupied cell



3D Sparse ConvNets
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3D Semantic Segmentation with Submanifold Sparse Convolutional Networks
Benjamin Graham, Martin Engelcke, Laurens van der Maaten, CVPR, 2018

SSC with Stride 2
(Size 3)

perform strided convolutions, pooling 
operations, or regular sparse convolutions
(i.e. perform convolution over regions 
containing at least one occupied cell) to 
correlate disconnected components

SSC with Stride 1
(Size 3)



3D Sparse ConvNets
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3D Semantic Segmentation with Submanifold Sparse Convolutional Networks
Benjamin Graham, Martin Engelcke, Laurens van der Maaten, CVPR, 2018

allow training 3D ConvNets as 
deep as the 3D counterparts!!!
and, as we expect, deeper 

networks often work better

VSC: Submanifold Sparse Conv
SC: Regular Sparse Conv



3D Sparse ConvNets
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3D Semantic Segmentation with Submanifold Sparse Convolutional Networks
Benjamin Graham, Martin Engelcke, Laurens van der Maaten, CVPR, 2018

deconvolution layers can also be implemented for 
Sparse ConvNet Decoders, which allows us to train 
3D-Sparse-UNet for per-voxel labeling tasks (e.g. 
semantic segmentation)

Deconvolution



Minkowski Engine: A GenSparseConv System
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4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks
Christopher Choy, JunYoung Gwak, Silvio Savarese, CVPR, 2019

Implement generalized sparse convolution
Generalize to 4D and higher dimensional data
Cover the previous work Submanifold Sparse 
Conv as a special case

An open-source, well-engineered, well-
documented, auto-differentiation library

Sparse Convolution over Sparse Tensors



Minkowski Engine: Applications

111

4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks
Christopher Choy, JunYoung Gwak, Silvio Savarese, CVPR, 2019

3D Shape Classification

3D Scene Semantic Segmentation



Minkowski Engine: Applications
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4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks
Christopher Choy, JunYoung Gwak, Silvio Savarese, CVPR, 2019

3D Shape Generation

3D Shape Completion



Minkowski Engine: Applications
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4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks
Christopher Choy, JunYoung Gwak, Silvio Savarese, CVPR, 2019

3D Scene Object Detection



3D Voxel Transformers
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(Extend Visual Transformers to 3D Voxel Geometry)



VoTr: Voxel Transformer
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Voxel Transformer for 3D Object Detection
Jiageng Mao, Yujing Xue, Minzhe Niu, Haoyue Bai, Jiashi Feng, ICCV, 2021



VoTr: Voxel Transformer
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Voxel Transformer for 3D Object Detection
Jiageng Mao, Yujing Xue, Minzhe Niu, Haoyue Bai, Jiashi Feng, ICCV, 2021

using efficient Sparse Operations for Querying, Retrieval, Convolution, Multiplication, etc.



Summary

117

Brief Review: ML, DL, Deep Nets, CNNs, Transformers

3D Deep Learning

3D Voxel CNNs

Hierarchical and Sparse 3D Voxel CNNs

3D Voxel Transformers



That’s All


	CS348n: Neural Representations and�Generative Models for 3D Geometry
	Recap: Class Logistics
	Immediate ToDos
	Paper Presentations
	Course Project
	Recap: 3D Geometry Representations
	Slide Number 7
	In 3D, There is Representation Diversity
	Slide Number 9
	Normal Estimation and Outlier Removal
	3D Point Cloud Processing
	B-Reps: Low-Level Elements
	Simple Data Structures: Triangle List
	Parametric Surfaces
	Implicit Curves and Surfaces
	V-Rep: Volumetric Grids
	Representation Conversion: Points --> Implicit
	Representation Conversion: Implicit --> Mesh
	Representation Conversion: Mesh --> Points
	Today: DL / NNs for Images and 3D Voxel Data
	Brief Review: ML, DL, Deep Nets, CNNs, Transformers
	Machine Learning
	Machine Learning
	Machine Learning
	Deep Learning
	Neural Networks  as Feature Extractors
	Deep Learning: Powered By
	Neural Networks
	Neural Networks
	Neural Networks
	Neural Networks
	Neural Networks
	Neural Networks
	Neural Networks
	Neural Networks
	Neural Networks
	Convolutional Neural Networks
	Convolutional Neural Networks
	Convolutional Neural Networks
	Convolutional Neural Networks
	ImageNet Challenge
	Convolutional Neural Networks
	Convolutional Neural Networks
	Convolutional Neural Networks
	Convolutional Neural Networks
	Convolutional Neural Networks
	Convolutional Neural Networks
	Transformers
	Transformers
	Transformers for NLP: Attention Mechanism
	A Closer Look at Self-Attention
	Multi-head Attentions
	Positional Encoding
	General Attention Layers v.s. Self-Attention
	Attentions for Vision (over 2D Images)
	Attentions for Vision (over 2D Images)
	Attentions for Vision (over 2D Images)
	Attentions for Vision (over 2D Images)
	Visual Transformer (ViT)
	Visual Transformer (ViT)
	Useful Courses
	Programming Neural Networks
	Programming Neural Networks
	3D Deep Learning
	3D Deep Learning
	3D Applications
	3D Deep Learning Tasks
	3D Deep Learning Tasks
	3D Deep Learning Tasks
	3D Deep Learning Tasks
	3D Deep Learning Tasks
	3D Deep Learning Tasks
	3D Deep Learning Tasks
	3D Voxel CNNs
	Volumetric Representation: 2D Images
	Volumetric Representation: 3D Geometry
	Volumetric Representation: Applications
	Volumetric Representation: Conversions
	Volumetric Representation
	Volumetric Representation
	Voxel CNNs for 3D Data Understanding
	3D Voxel CNNs: Classification
	3D Voxel CNNs: Classification
	3D Voxel CNNs: Classification
	3D Voxel CNNs: Reconstruction
	3D Voxel CNNs: Completion
	3D Voxel CNNs: Generation
	3D Voxel CNNs: Reconstruction
	3D Voxel CNNs: Reconstruction
	3D Voxel CNNs: Reconstruction
	3D Voxel CNNs: Reconstruction
	3D Voxel CNNs: Completion
	3D Voxel CNNs: Generation
	Volumetric Representation
	Hierarchical 3D Voxel CNNs
	3D Voxel Data: Curse of Dimensionality
	Hierarchical Volumetric Representation
	Hierarchical Volumetric Representation
	Hierarchical Volumetric Representation
	Hier 3D Voxel NN: Recognition
	Hier 3D Voxel NN: Generation
	Hier 3D Voxel NN: Generation
	Hier 3D Voxel NN: Generation
	Hierarchical 3D Voxel NNs
	3D Sparse ConvNets
	3D Sparse ConvNets
	3D Sparse ConvNets
	3D Sparse ConvNets
	3D Sparse ConvNets
	Minkowski Engine: A GenSparseConv System
	Minkowski Engine: Applications
	Minkowski Engine: Applications
	Minkowski Engine: Applications
	3D Voxel Transformers
	VoTr: Voxel Transformer
	VoTr: Voxel Transformer
	Summary
	Slide Number 118

