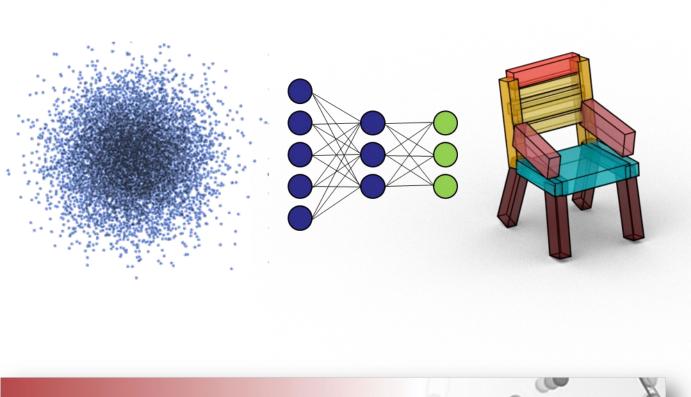
CS348n: Neural Representations and Generative Models for 3D Geometry

Geometric Computing



Leonidas Guibas Kaichun Mo (TA / Lecturer Today) Computer Science Department Stanford University

01-10_DEEP_ARCH

Leonidas Guibas Laboratory

Recap: Class Logistics

Immediate ToDos

- Sign up for Piazza
 - <u>https://piazza.com/stanford/winter2022/cs348n</u>
- Sign up for your class presentation session:
 - Google form: <u>https://forms.gle/xNzWptSzfngzmuGs7</u>
 - Deadline: Jan 11, noon PDT otherwise we will randomly assign you
 - You can sign up as a team (at max 3 students per team)
 - One team per day, covering all the required papers
- For access to class lecture slides:
 - Use credentials:
 - user: neural
 - passwd: creation

Paper Presentations

- Similar to a paper reading group
 - Staff students will give an example on Jan 19
- 2-4 papers form the literature:
 - provide context and relate them to the material in the previous class
 - relate them to each other, if this makes sense
 - discuss:
 - the problem being solved and its significance
 - the method(s) used
 - the evaluation(s) used and your assessment of the paper's merits and drawbacks
- Can work as teams of up to three students
- 25 mins total time

Course Project

- Homeworks address the "how" learning specific methods
- Project addresses the "what" to imagine what you can do with the class tools
- Can be an extension of one of the homeworks (we'll provide some suggestions)
- Can be related to or useful for some other research you are doing
- Can work in groups of up to three students
- Need to turn in a group write up and give a brief demo at the end of the class

Recap: 3D Geometry Representations

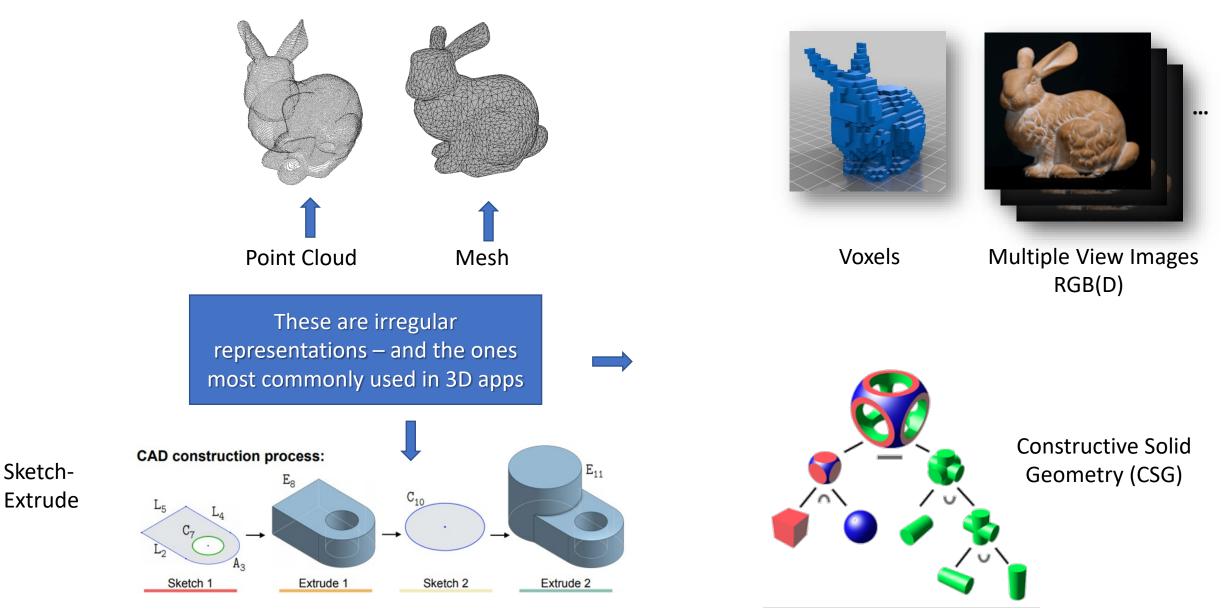
(Last Lecture)

ML Decoding/Generation from Latent Vectors

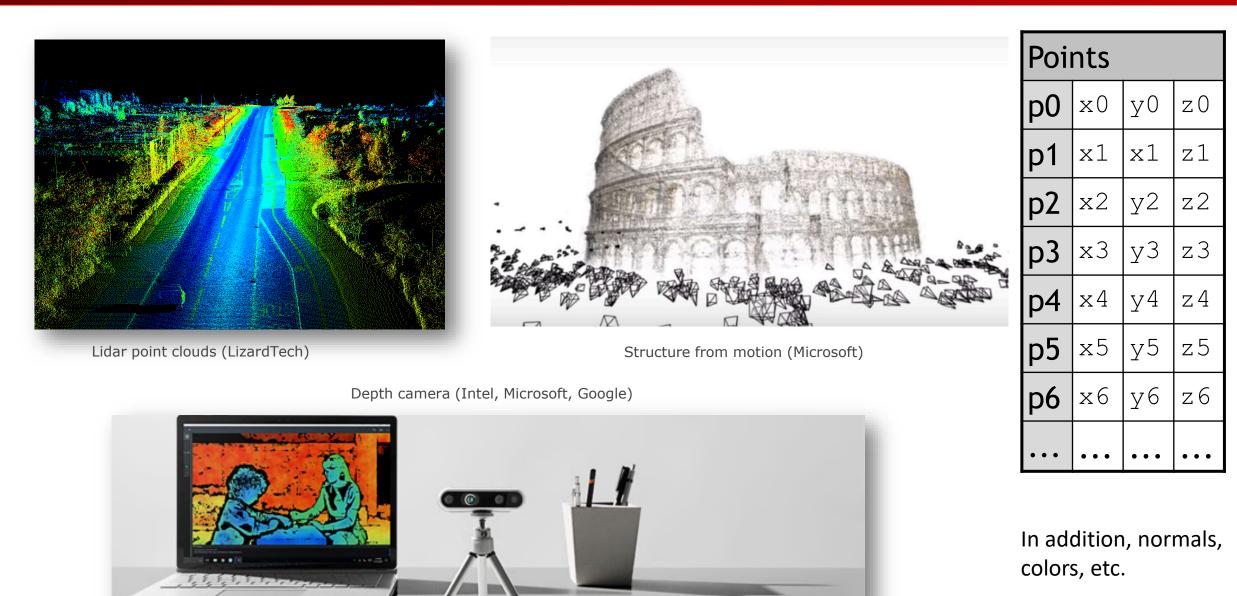
Generated Shape

Generator/Decoder: generating shapes from latent vectors via deep networks – but in what format?

In 3D, There is Representation Diversity



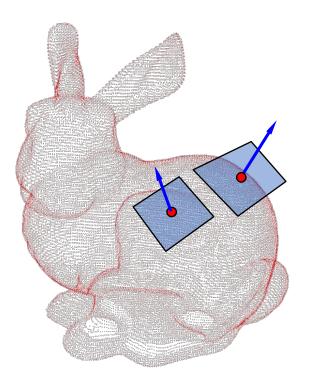
3D Point Clouds from Many Sensors



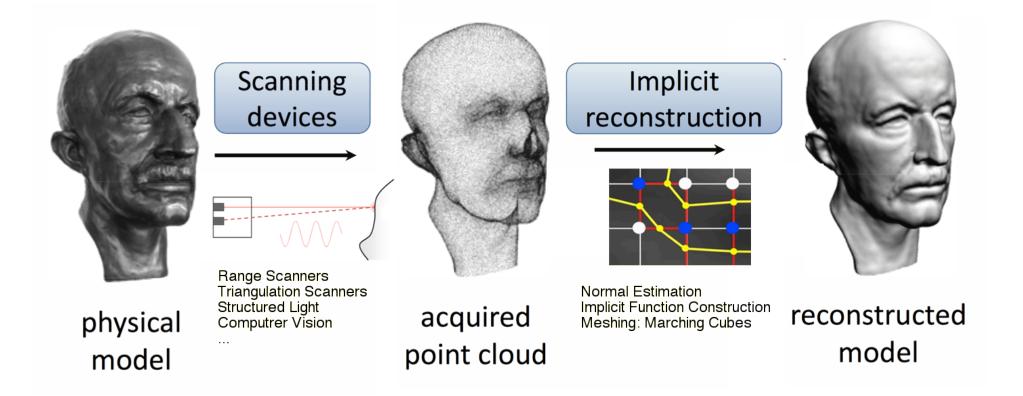
Normal Estimation and Outlier Removal

Fundamental problems in point cloud processing.

Although seemingly very different, can be solved with the same general approach – look at the "shape of neighborhoods" ...



3D Point Cloud Processing

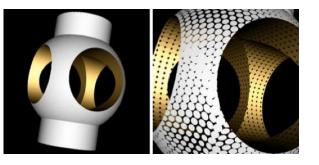


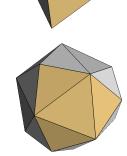
Traditional 3D Acquisition Pipeline

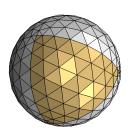
We'll see how to apply ML directly on Point Cloud Data

B-Reps: Low-Level Elements

- Triangle meshes
- Quad meshes

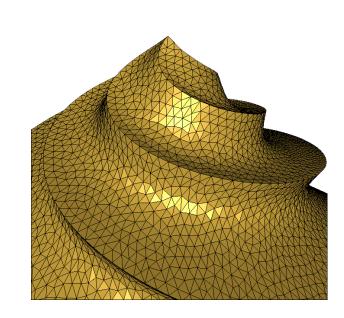






trade-offs

quad meshes can be formed by grid-like quads, but there will almost always be extraordinary (singular) vertices



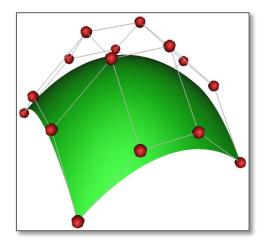
Simple Data Structures: Triangle List

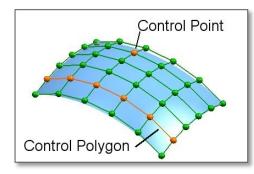
- Used in formatsOBJ, OFF, WRL
- Storage
 - Vertex: position
 - Face: vertex indices
 - 12 bytes per vertex
 - 12 bytes per face
 - 36*v bytes for the mesh
- No explicit neighborhood info

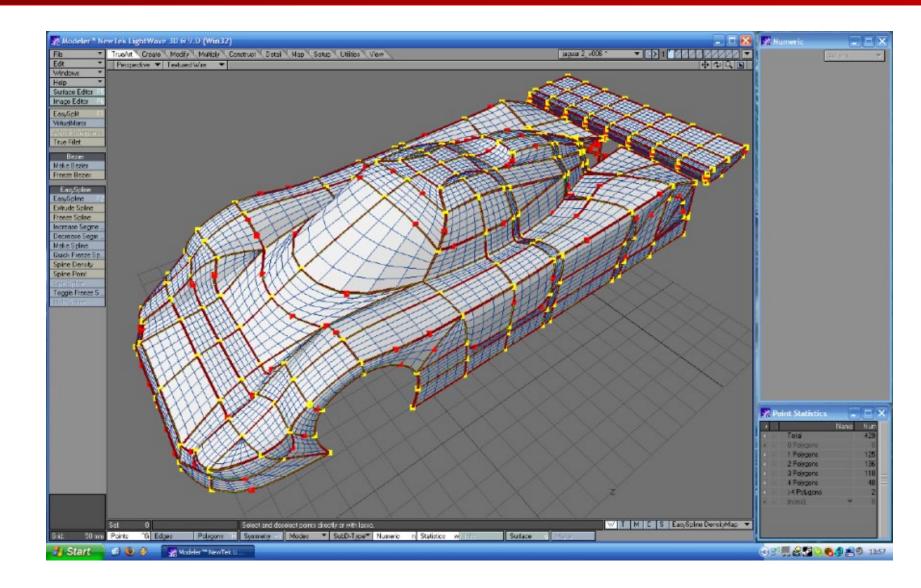
Vertices				
v0	x0	у0	z 0	
v1	x1	x1	z1	
v2	x2	y2	z2	
v3	хЗ	yЗ	z3	
v4	x4	y4	z4	
v5	x5	у5	z5	
v6	хб	уб	z 6	
•••	•••	•••	• • •	

Triangles				
t0	v0	v1	v2	
t1	v0	v1	v3	
t2	v2	v4	v3	
t3	v5	v2	v6	
• • •	•••	•••	• • •	

Parametric Surfaces



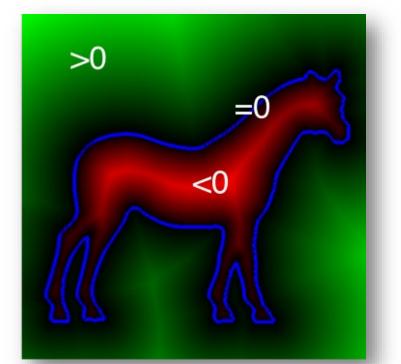




Implicit Curves and Surfaces

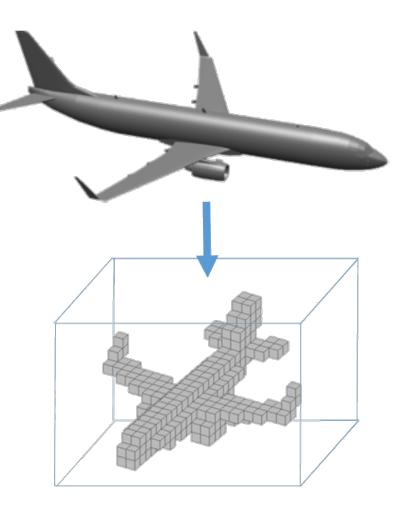
• Kernel of a scalar function $f: \mathbb{R}^m \to \mathbb{R}$

- Curve in 2D: $S = \{x \in \mathbb{R}^2 | f(x) = 0\}$
- Surface in 3D: $S = \{x \in \mathbb{R}^3 | f(x) = 0\}$
- Zero level set of signed distance function



V-Rep: Volumetric Grids

- Binary volumetric grids
- Can be produced by thresholding the distance function, or from the scanned points directly
- N^3 gets expensive fast



Also represents space of little informational value

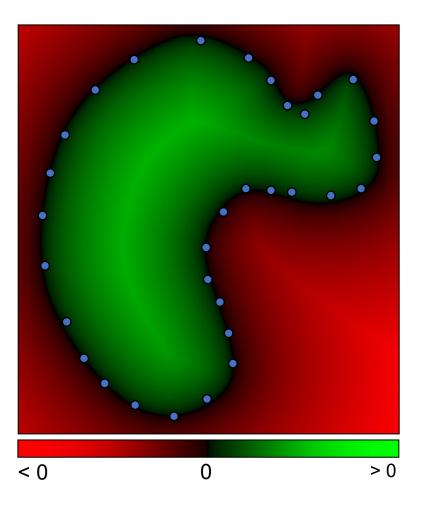
Representation Conversion: Points --> Implicit

Given a point cloud

• Define a function $f: R^3 \rightarrow R$

with value > 0 outside the shape and < 0 inside

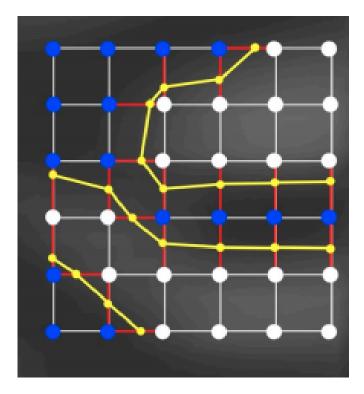
Example: signed distance function (SDF) to the shape surface



Representation Conversion: Implicit --> Mesh

Given a function: f(x)

- $f(\mathbf{x}) < 0$ inside
- $f(\mathbf{x}) > 0$ outside
- 1. Discretize space.
- 2. Evaluate f(x) on a grid.
- 3. Classify grid points (+/-)
- 4. Classify grid edges
- 5. Compute intersections
- 6. Connect intersections

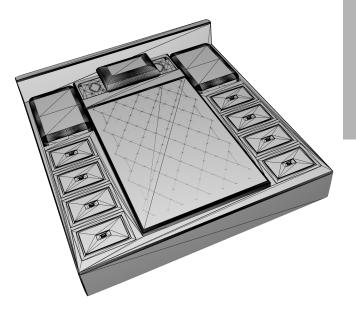


Marching Squares (2D) Marching Cubes (3D)

Representation Conversion: Mesh --> Points

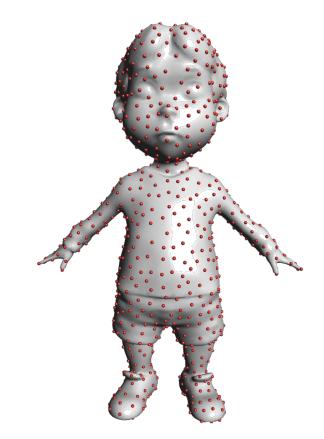
Furthest Point Sampling (FPS)

- Points are simple but expressive!
 - Few points can suffice
- Flexible, unstructured, few constraints
- Also: ML applications!



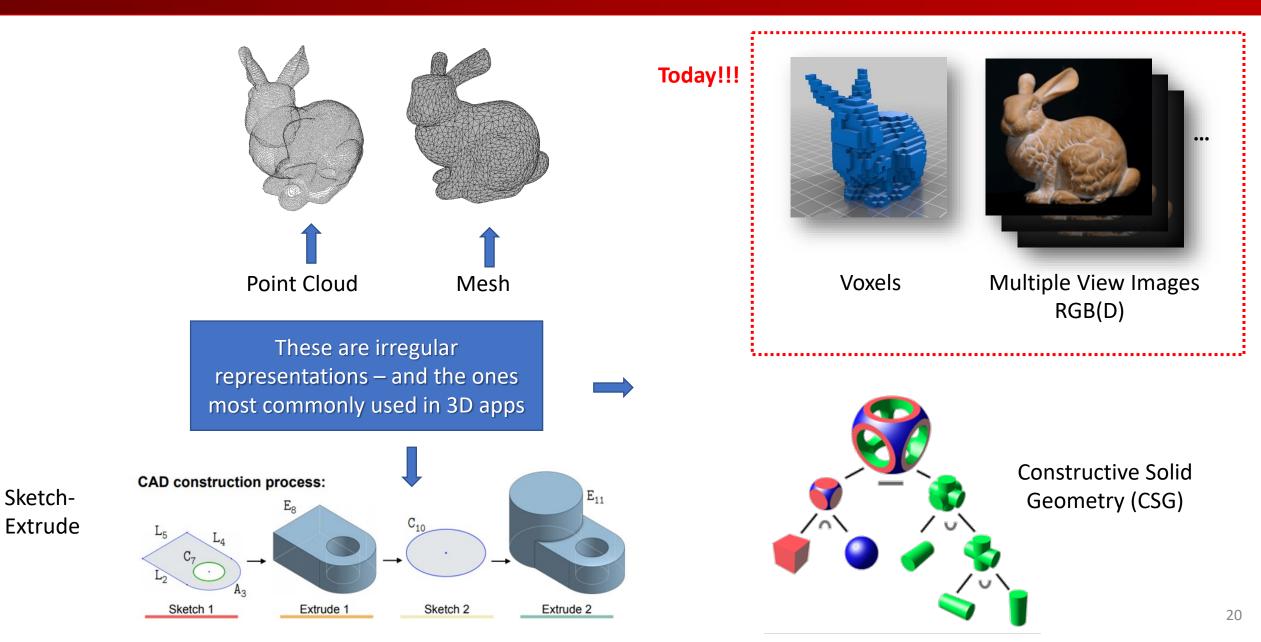


CAD meshes: many components bad triangles connectivity problems



the problem: sampling the mesh

Today: DL / NNs for Images and 3D Voxel Data



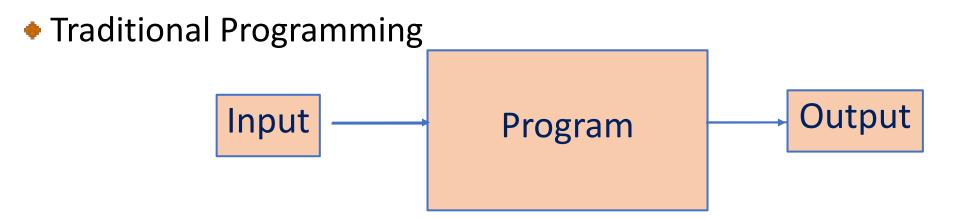
Brief Review: ML, DL, Deep Nets, CNNs, Transformers

(get prepared with DL and NN basics)

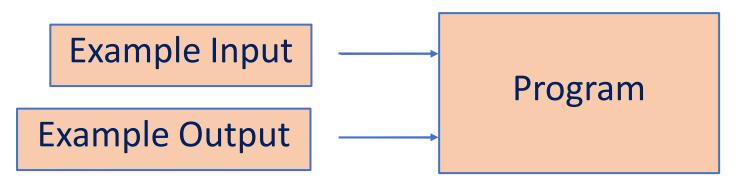
Machine Learning

Traditional Programming

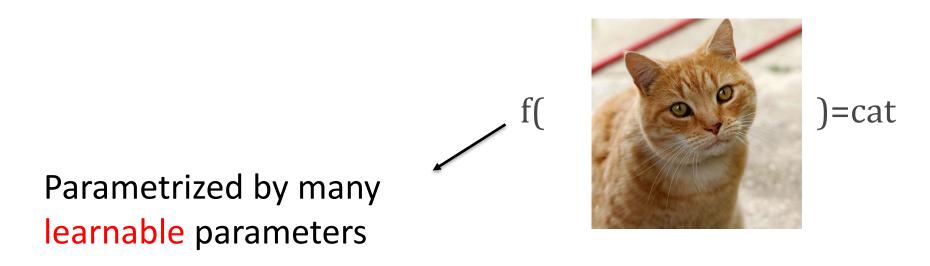
Machine Learning



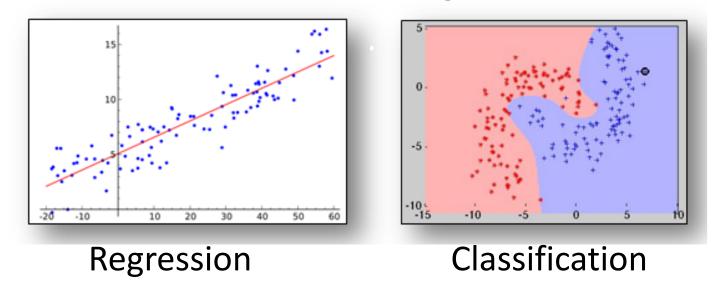
Machine Learning



Machine Learning



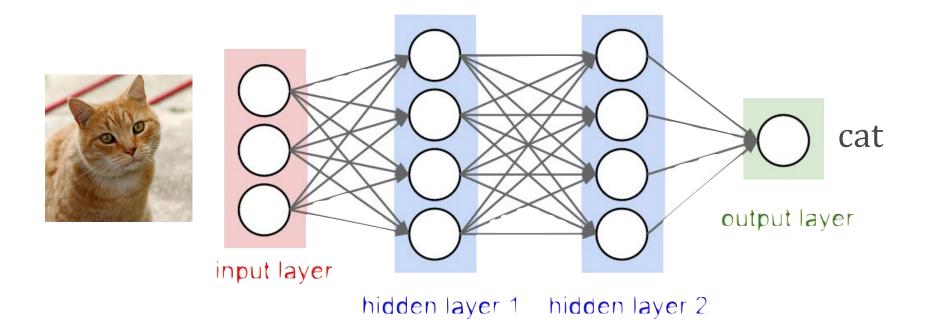
Model Fitting



Deep Learning

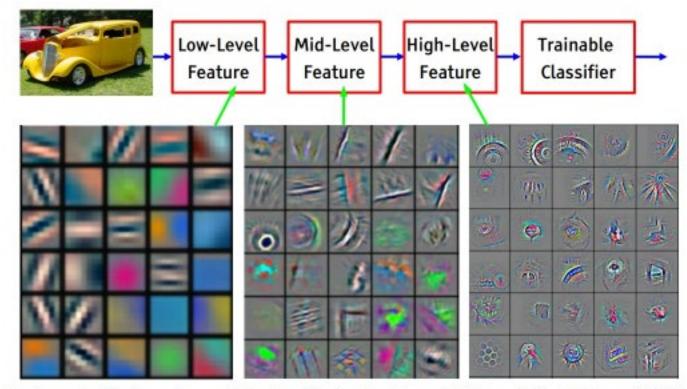
 Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction.

Deep Learning by Y. LeCun et al. Nature 2015



Neural Networks as Feature Extractors

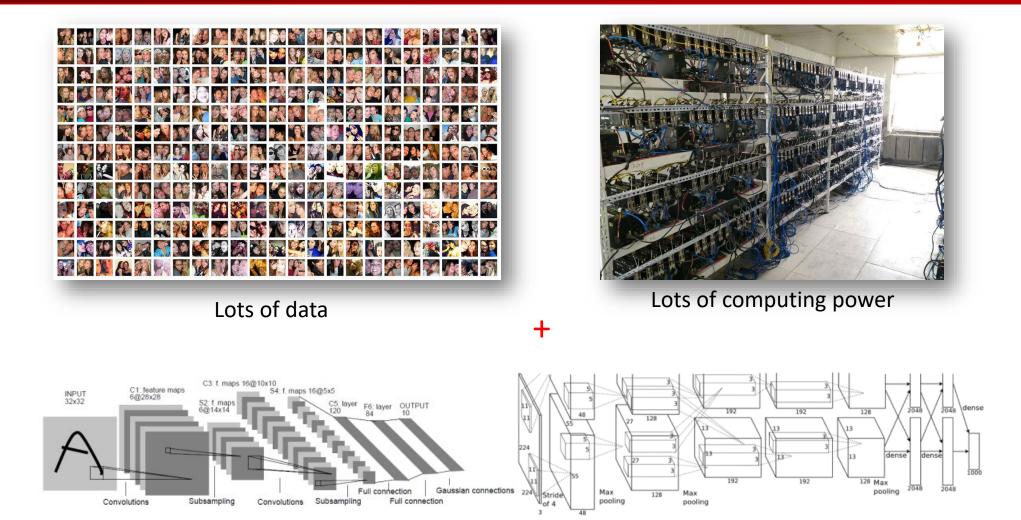
Neural networks extract powerful features from data



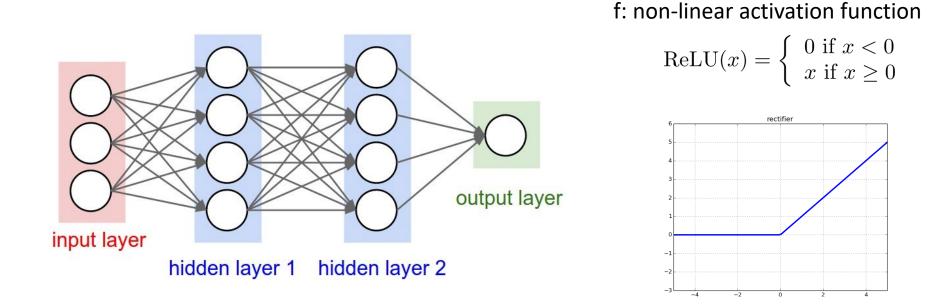
Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Image Credits: Yan LeCun

Deep Learning: Powered By

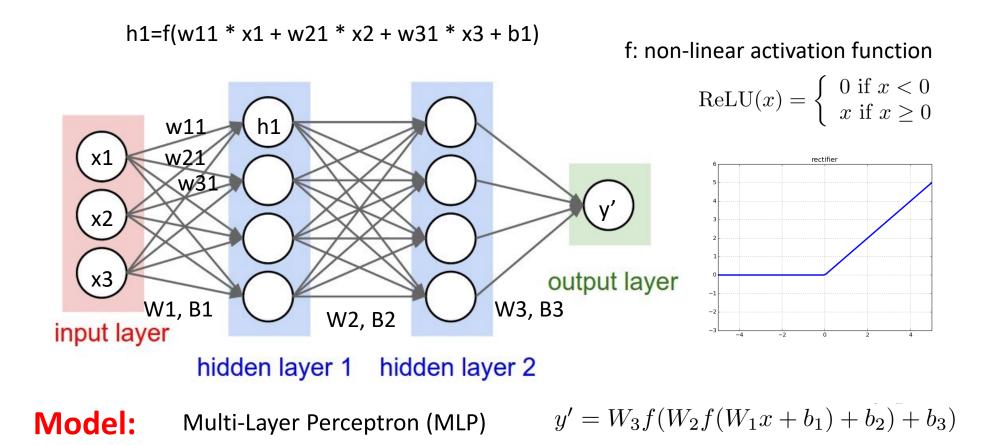


Powerful Neural Network Architectures



Model: Multi-Layer Perceptron (MLP)

 $y' = W_3 f(W_2 f(W_1 x + b_1) + b_2) + b_3)$

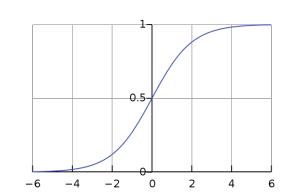


f: non-linear activation function

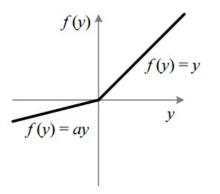
 $\operatorname{ReLU}(x) = \begin{cases} 0 \text{ if } x < 0 \\ x \text{ if } x \ge 0 \end{cases}$

Sigmoid Function

$$S(x) = rac{1}{1+e^{-x}} = rac{e^x}{e^x+1}.$$

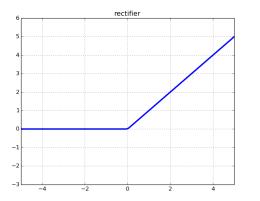


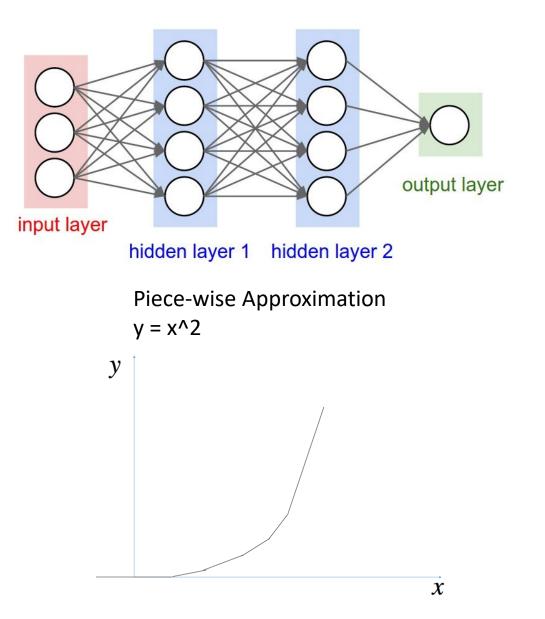
Leaky ReLu



f: non-linear activation function

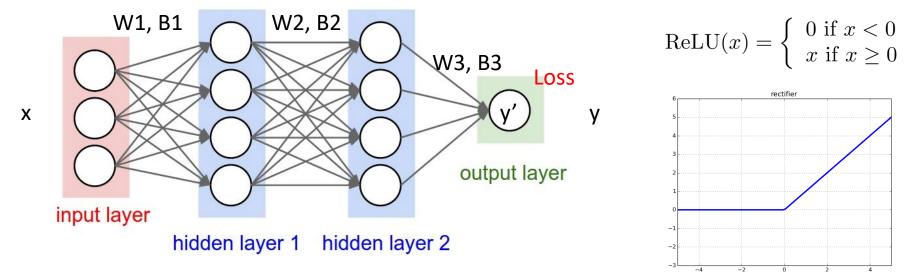
 $\operatorname{ReLU}(x) = \begin{cases} 0 \text{ if } x < 0\\ x \text{ if } x \ge 0 \end{cases}$





W = {W1, W2, W3, B1, B2, B3}

f: non-linear activation function



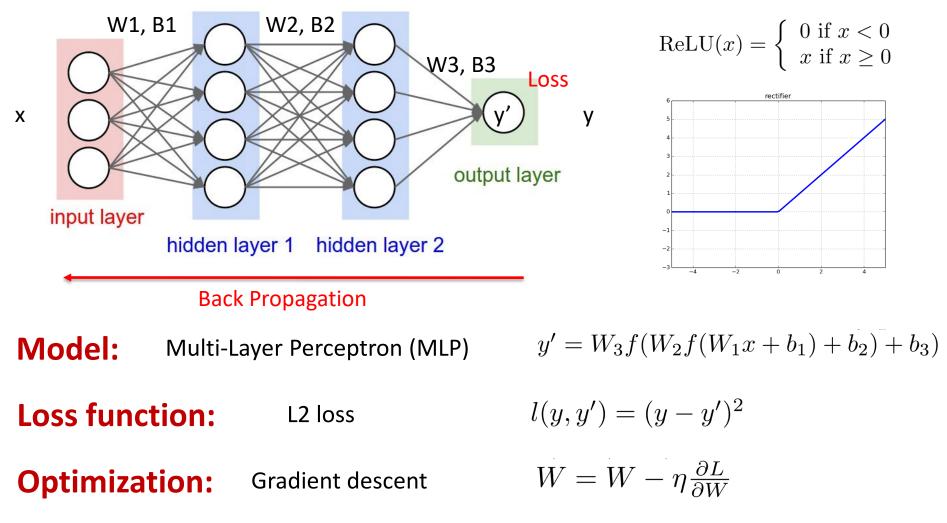
Model:Multi-Layer Perceptron (MLP)Loss function:L2 loss

 $y' = W_3 f(W_2 f(W_1 x + b_1) + b_2) + b_3)$

$$l(y, y') = (y - y')^2$$

W = {W1, W2, W3, B1, B2, B3}

f: non-linear activation function



A three-layer network approximates any continuous function

Let $\varphi(\cdot)$ be a nonconstant, bounded, and monotonically-increasing continuous function. Let I_m denote the *m*dimensional unit hypercube $[0,1]^m$. The space of continuous functions on I_m is denoted by $C(I_m)$. Then, given any function $f \in C(I_m)$ and $\varepsilon > 0$, there exists an integer N, real constants $v_i, b_i \in \mathbb{R}$ and real vectors $w_i \in \mathbb{R}^m$, where $i = 1, \dots, N$, such that we may define:

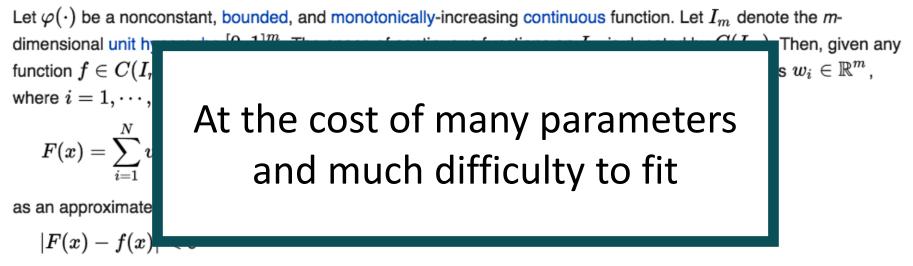
$$F(x) = \sum_{i=1}^N v_i arphi \left(w_i^T x + b_i
ight)$$

as an approximate realization of the function f where f is independent of φ ; that is,

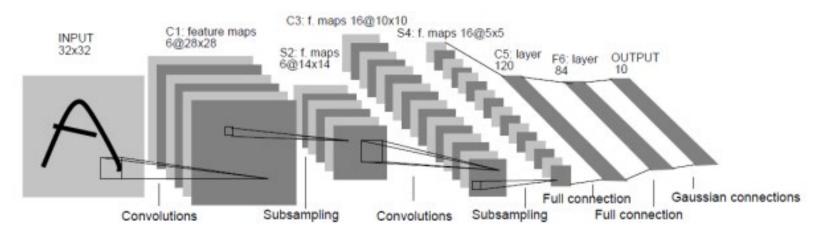
$$|F(x)-f(x)|$$

for all $x \in I_m$. In other words, functions of the form F(x) are dense in $C(I_m)$.

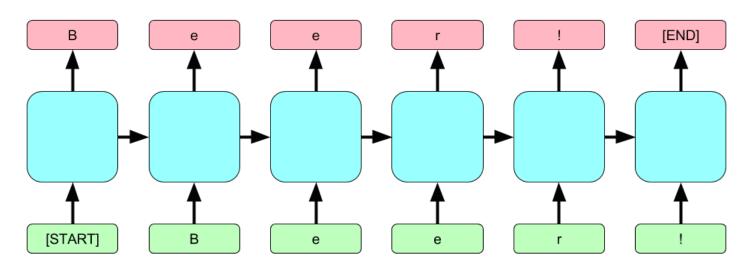
A three-layer network approximates any continuous function

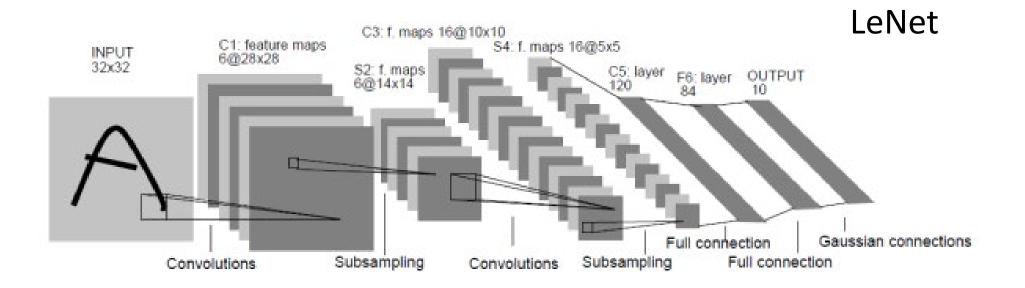


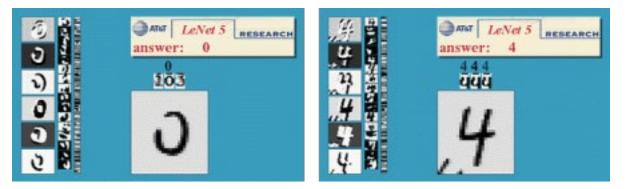
for all $x \in I_m$. In other words, functions of the form F(x) are dense in $C(I_m)$.



CNN







One of the first successful applications of CNN.

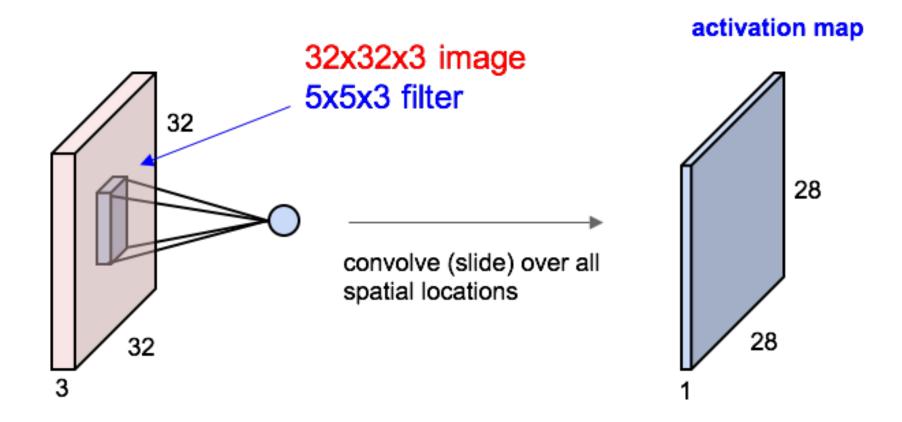


Image Credits: Andrej Karpathy

Filters are doing pattern matching

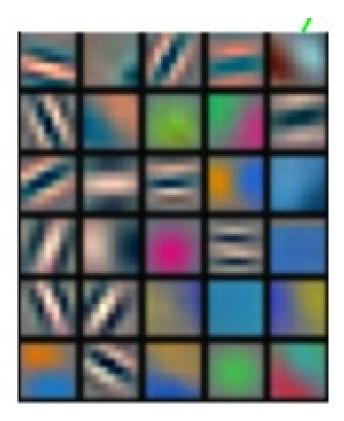
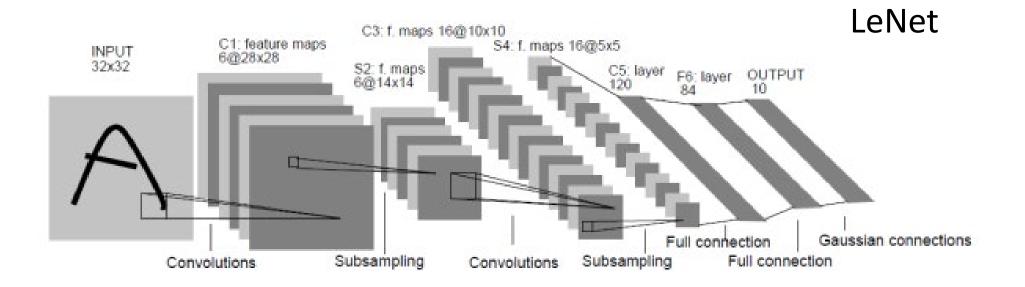


Image Credits: Yan LeCun



One of the first successful applications of CNN.

ImageNet Challenge

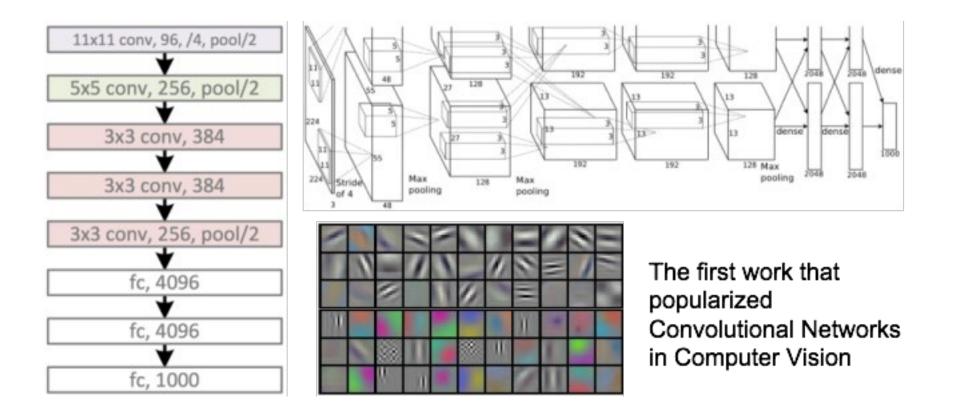
ImageNet Dataset

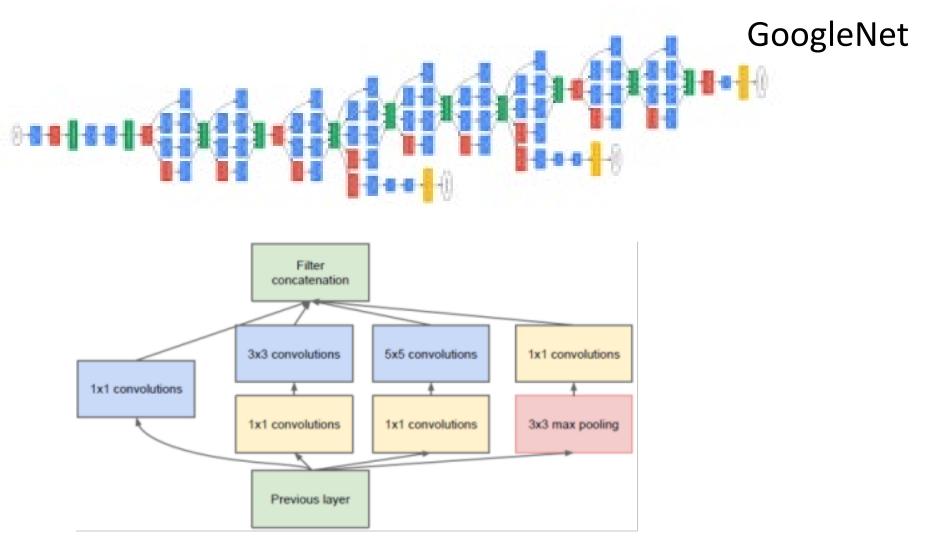
IM GENET

Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang et al. "Imagenet large scale visual recognition challenge." International Journal of Computer Vision 115, no. 3 (2015): 211-252. [web]

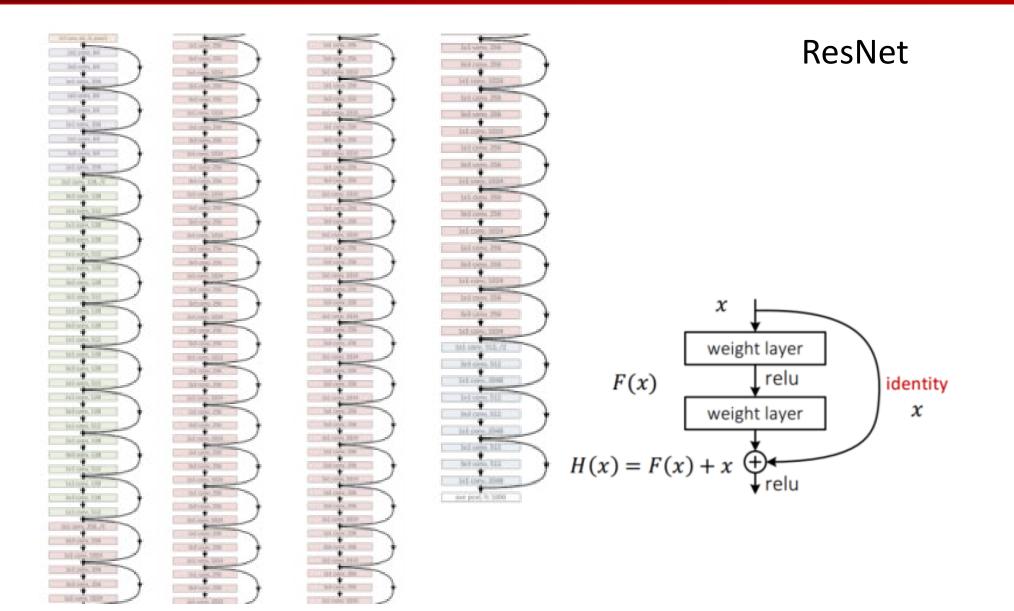
3

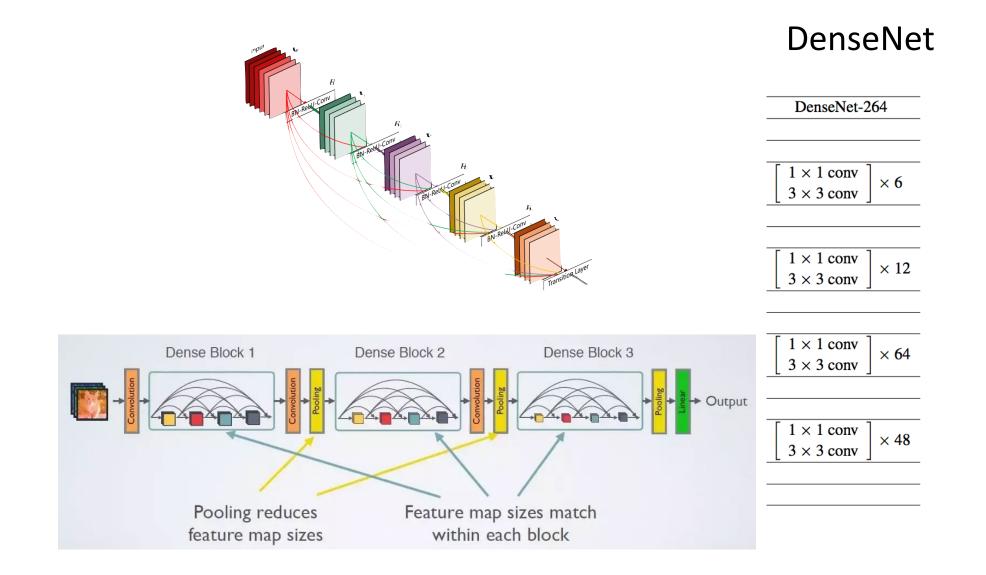
AlexNet

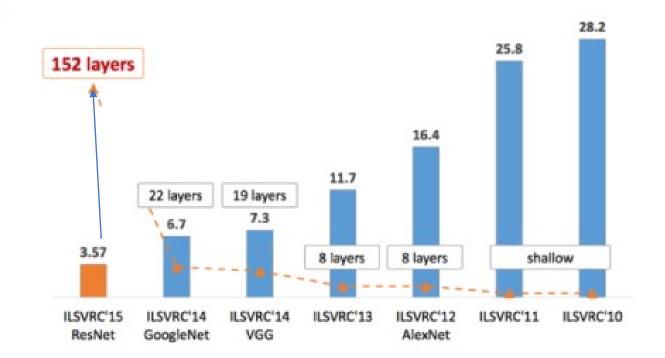




An Inception Module: a new building block..

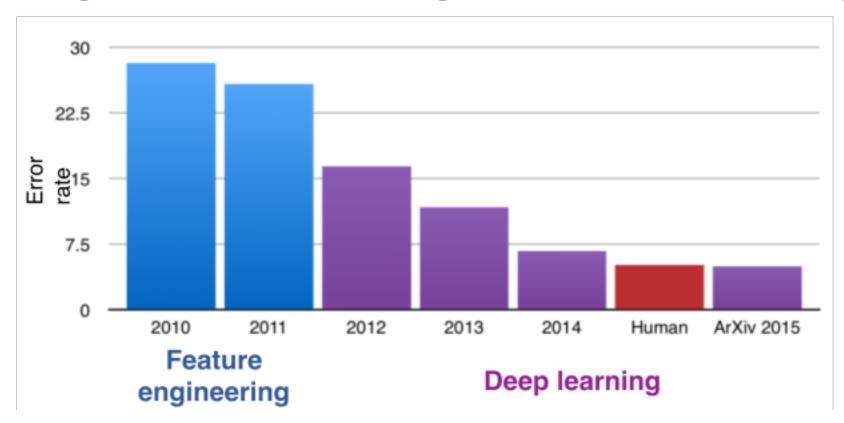






Classification Error: the lower, the better

ImageNet 1000 class image classification accuracy



Transformers

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com

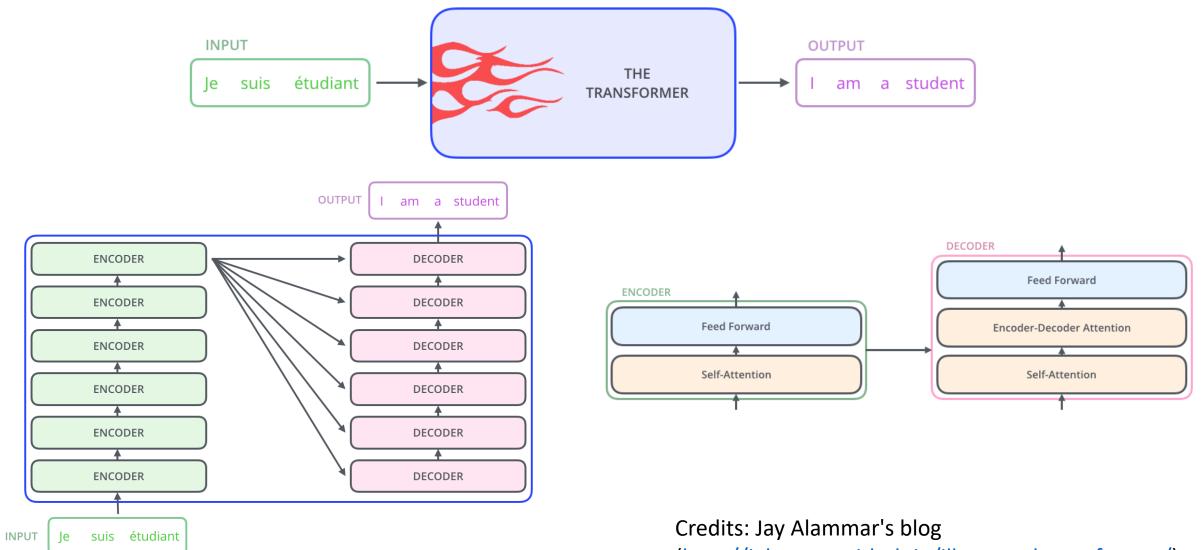
Niki Parmar* Google Research n nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez^{*†} University of Toronto aidan@cs.toronto.edu

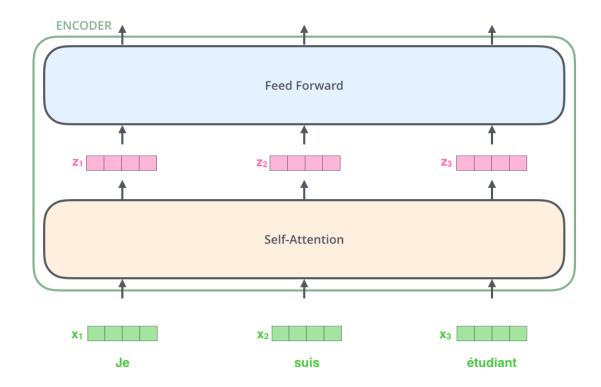
Illia Polosukhin^{* ‡} illia.polosukhin@gmail.com

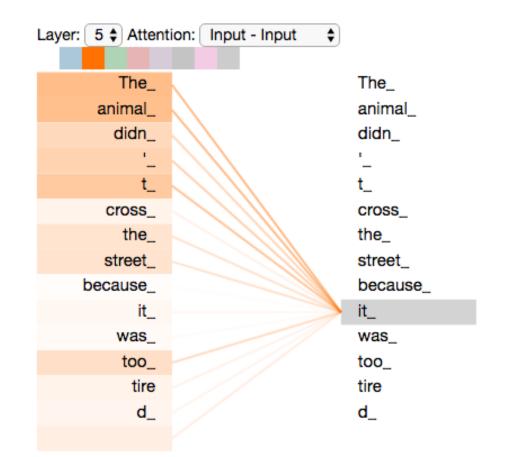
Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Transformers



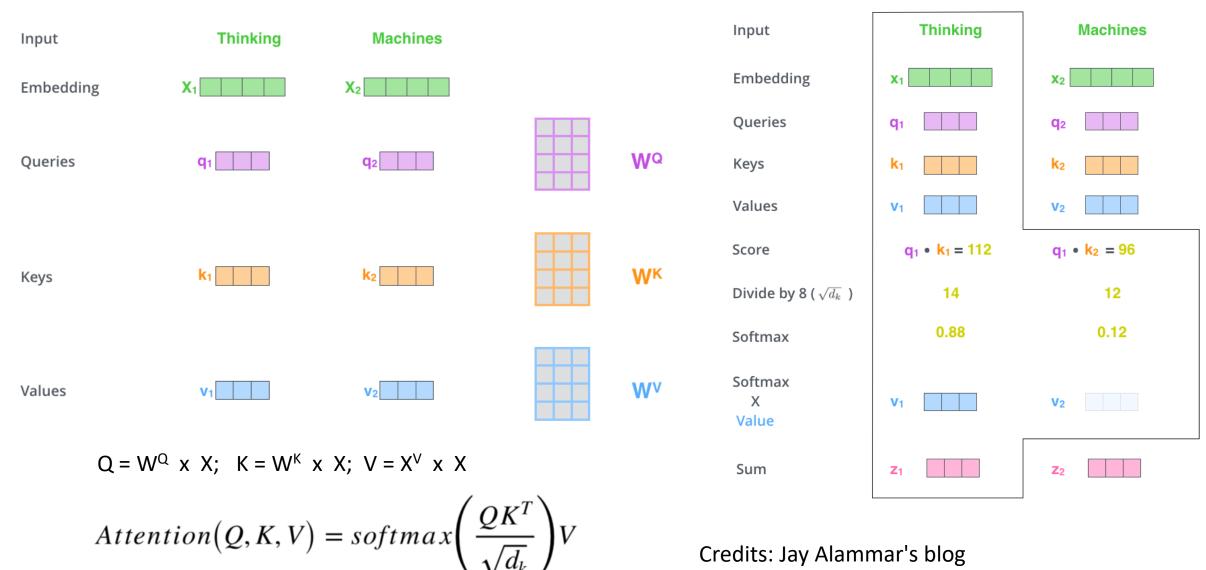
Transformers for NLP: Attention Mechanism





Credits: Jay Alammar's blog

A Closer Look at Self-Attention



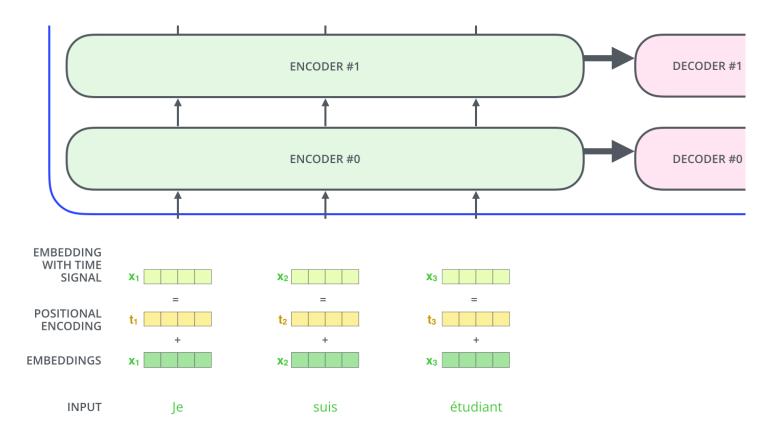
Credits: Jay Alammar's blog

Multi-head Attentions

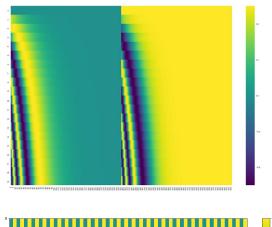


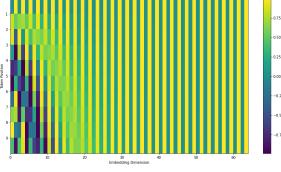
Credits: Jay Alammar's blog

Positional Encoding



0, 1, 2, 3,



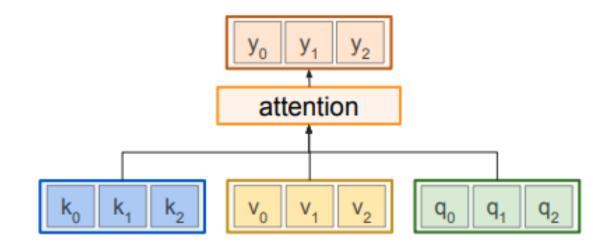


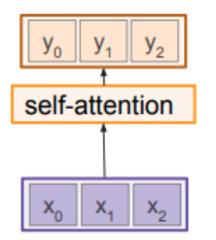
etc.

Read this blog for more details -->

Credits: Jay Alammar's blog

General Attention Layers v.s. Self-Attention

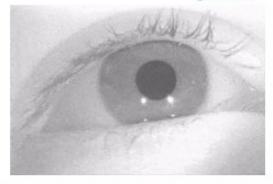




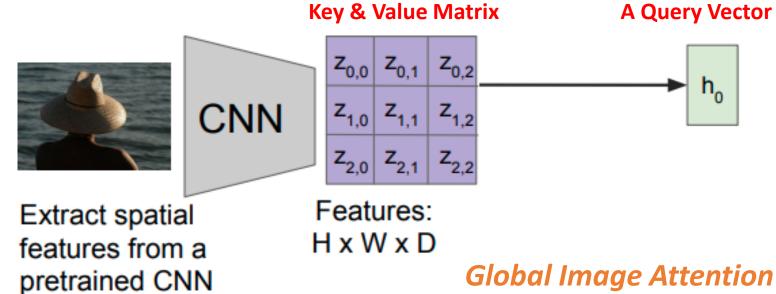
For example, this can be useful in decoding time, by feeding in the decoding features as queries.

Attention idea: New context vector at every time step.

Each context vector will attend to different image regions



Attention Saccades in humans



A Query Vector

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

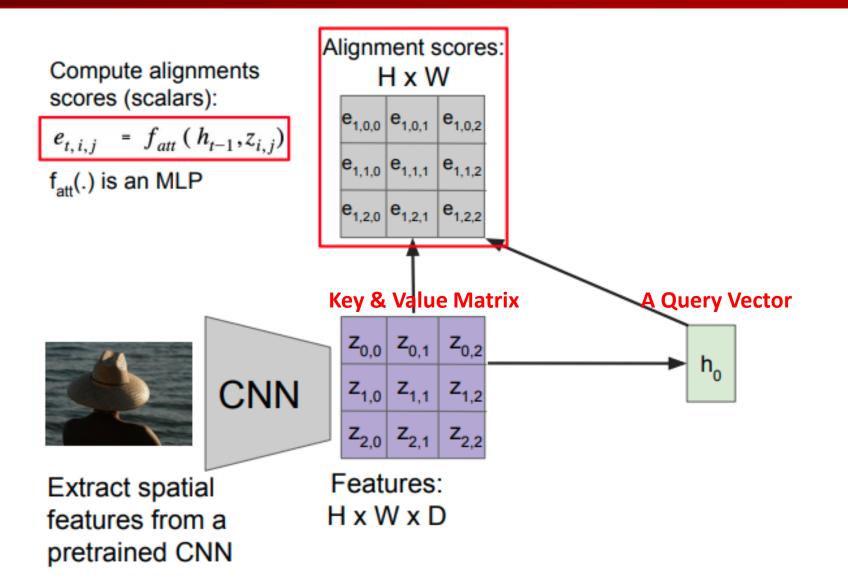
A little girl sitting on a bed with a teddy bear.

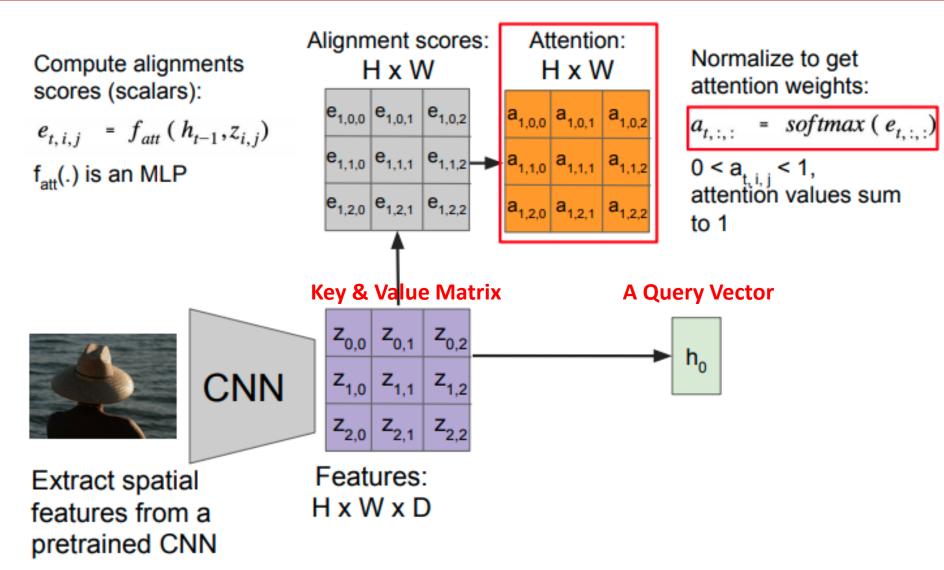
A group of people sitting on a boat in the water.

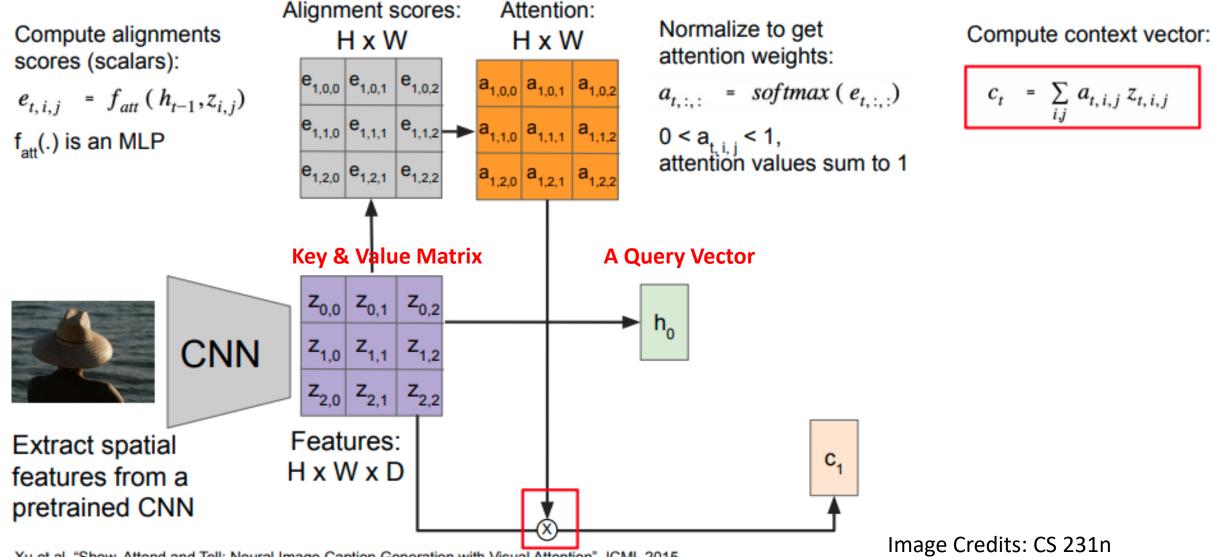
Image Credits: CS 231n

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015

aif source







Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015

Visual Transformer (ViT)

Published as a conference paper at ICLR 2021

AN IMAGE IS WORTH 16x16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy^{*,†}, Lucas Beyer^{*}, Alexander Kolesnikov^{*}, Dirk Weissenborn^{*}, Xiaohua Zhai^{*}, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby^{*,†} ^{*}equal technical contribution, [†]equal advising Google Research, Brain Team {adosovitskiy, neilhoulsby}@google.com

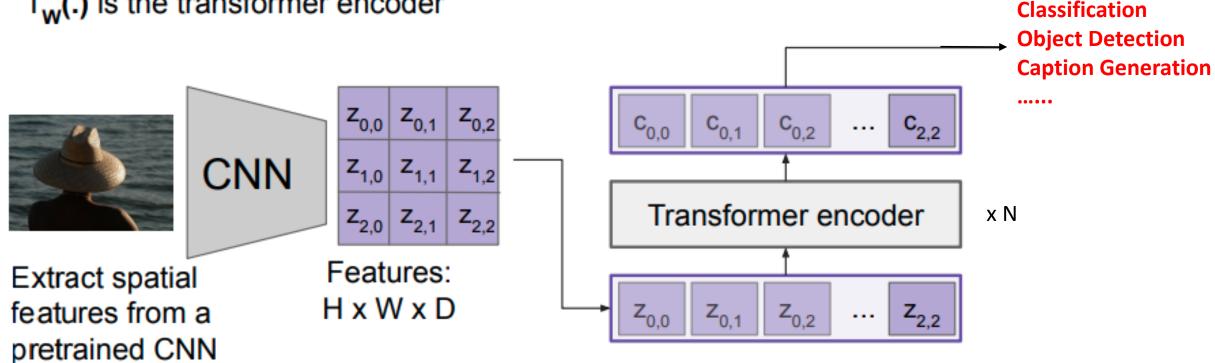
End-to-End Object Detection with Transformers

Nicolas Carion^{*}, Francisco Massa^{*}, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko

Facebook AI

Visual Transformer (ViT)

Encoder: $c = T_w(z)$ where z is spatial CNN features $T_w(.)$ is the transformer encoder The general attention layer is a new type of layer (like Convolutional layer) that can be used to design new neural network architectures.



Flattened into tokens, but with positional encodings

Image Credits: CS 231n

Useful Courses

CS 231n: <u>http://cs231n.stanford.edu/</u>

- Deep Learning for Visual Data
- CS 224n: <u>http://cs224n.stanford.edu/</u>
 - Deep Learning for Language / Sequential Data
- CS 234: <u>http://cs234.stanford.edu/</u>
 - Reinforcement Learning

Programming Neural Networks

- TensorFlow, Python, Google
 - https://www.tensorflow.org/
- PyTorch, Python, Facebook
 - https://pytorch.org/
- Caffe, Berkeley
 - http://caffe.berkeleyvision.org/

Programming Neural Networks

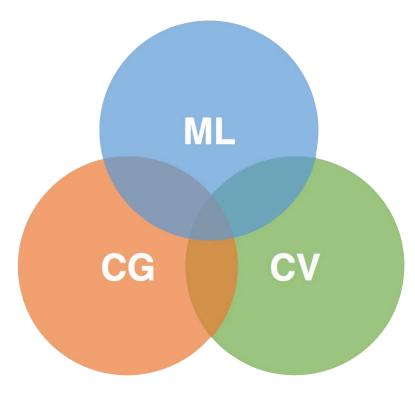
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

3D Deep Learning

(let's do DL / train NNs over 3D data)

3D Deep Learning

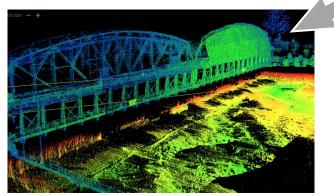
- A field with very short history starting from 2015 (approx.)
- But very active due to huge industry interests!



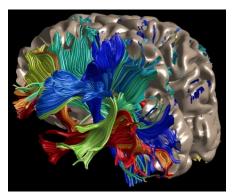
3D Applications

Robotics

Augmented Reality



Autonomous driving



Medical Image Processing

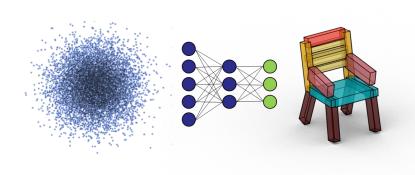
3D Shape Understanding and Analysis

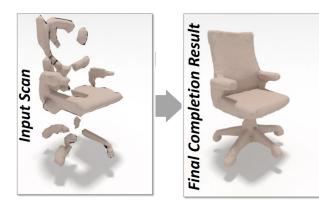
Classification

Parsing (segmentation)

Correspondence

3D Shape Generation and Synthesis



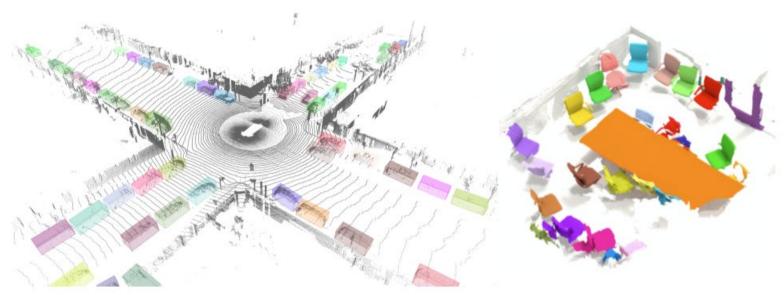


Shape generation

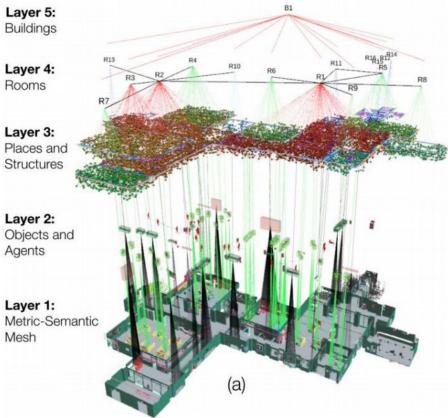
Monocular 3D reconstruction

Shape completion

3D Scene Understanding and Analysis

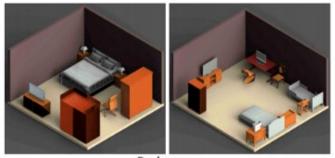


Object Detection / Scene Segmentation

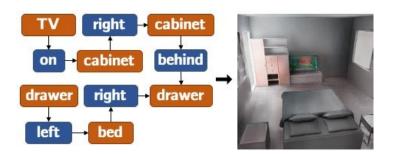


Scene Structure Parsing

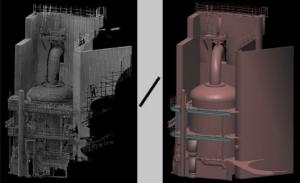
3D Scene Generation and Synthesis



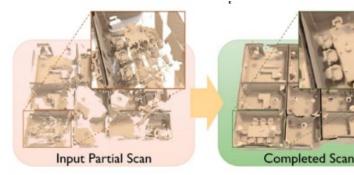
Bedrooms



Scene Generation

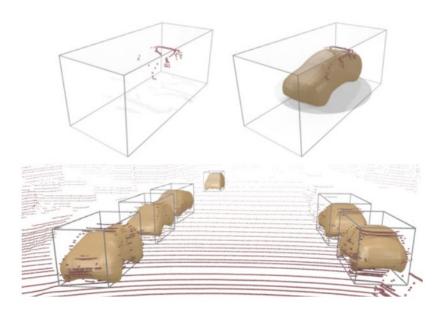


Scene Reconstruction



Scene Completion

Autonomous Driving Applications



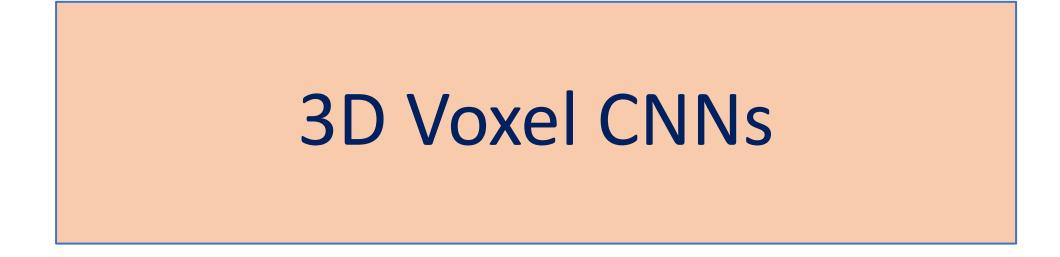
Robotics Applications

Robot Grasping Affordance Map

Human Interaction Affordance Map

3D Deep Learning Tasks

Metaverse Applications



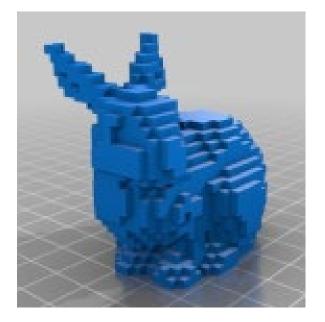
(DL / NNs over the simplest / most regular 3D representation)

Volumetric Representation: 2D Images

Images: canonical representation with regular data structure

	1	44	33	12	20	23	35	14
	51	16	40	32	46	48	28	17
	29	60	3	63	49	55	36	7
	52	22	26	41	38	10	61	53
	2	24	19	11	34	43	5	8
	57	9	37	42	25	21	27	18
	30	56	50	64	4	59	6	13
	58	47	45	31	39	15	62	54

Volumetric Representation: 3D Geometry



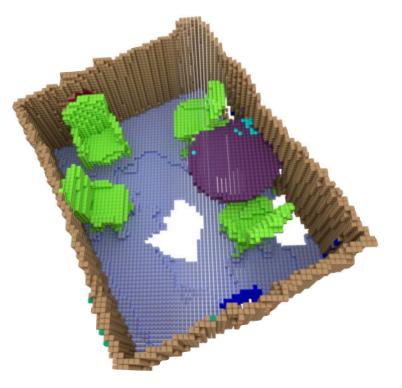
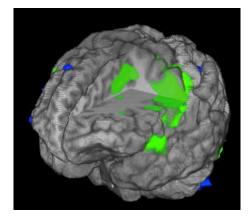
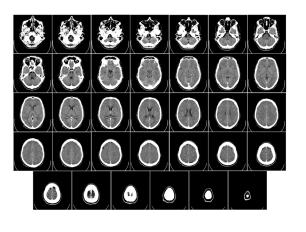


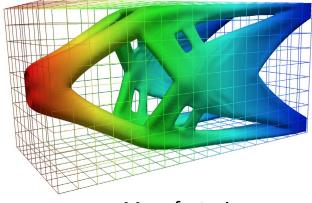
Image Credits: Scannet

Volumetric Representation: Applications

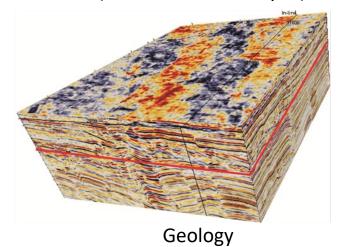


fMRI

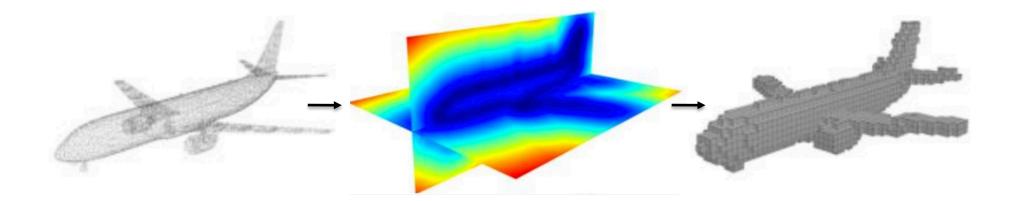


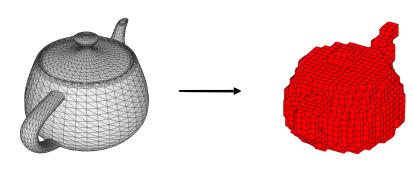


Manufacturing (finite-element analysis)



Volumetric Representation: Conversions

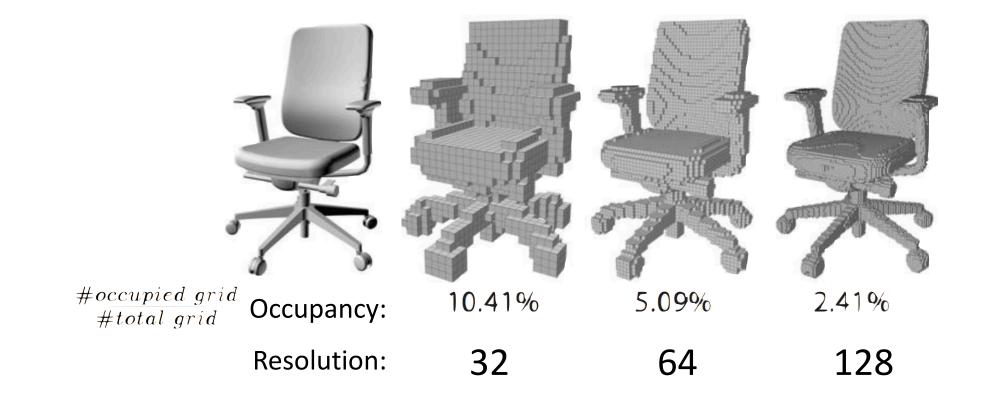




Polygon Mesh

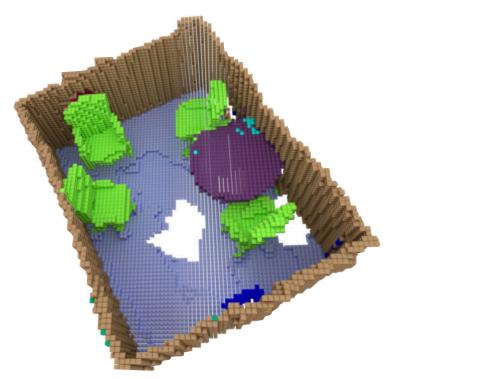
Occupancy Grid 30x30x30

Volumetric Representation



Resolution N $O(N^3)$

Volumetric Representation

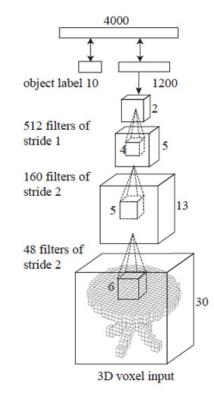


< 1%

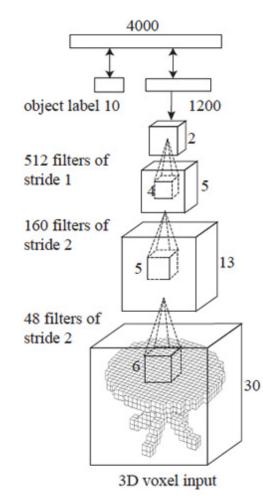
Image Credits: Scannet

Voxel CNNs for 3D Data Understanding

- Classification (Recognition)
- Reconstruction (Generation)

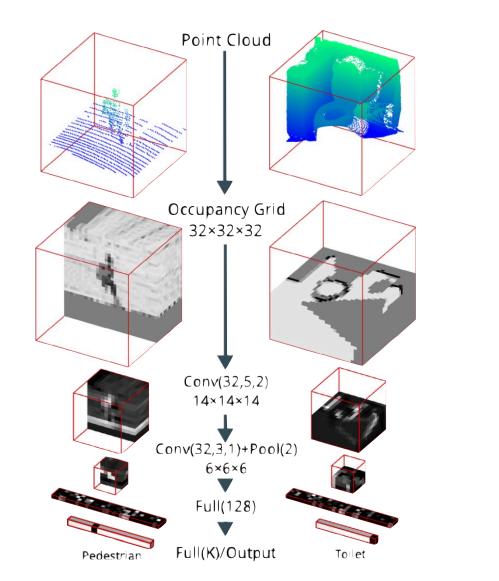


3D Voxel CNNs: Classification



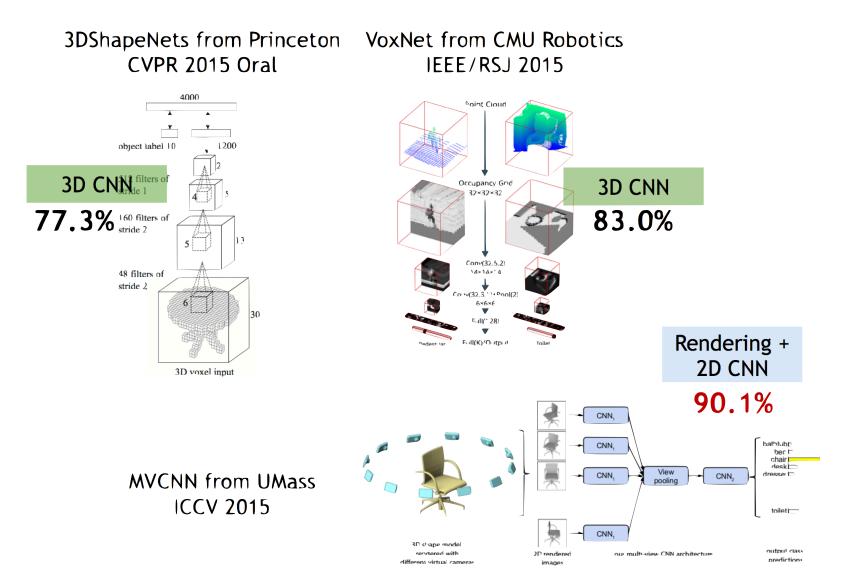
Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao, **"3D ShapeNets: A Deep Representation for Volumetric Shape Modeling",** *CVPR2015*

3D Voxel CNNs: Classification

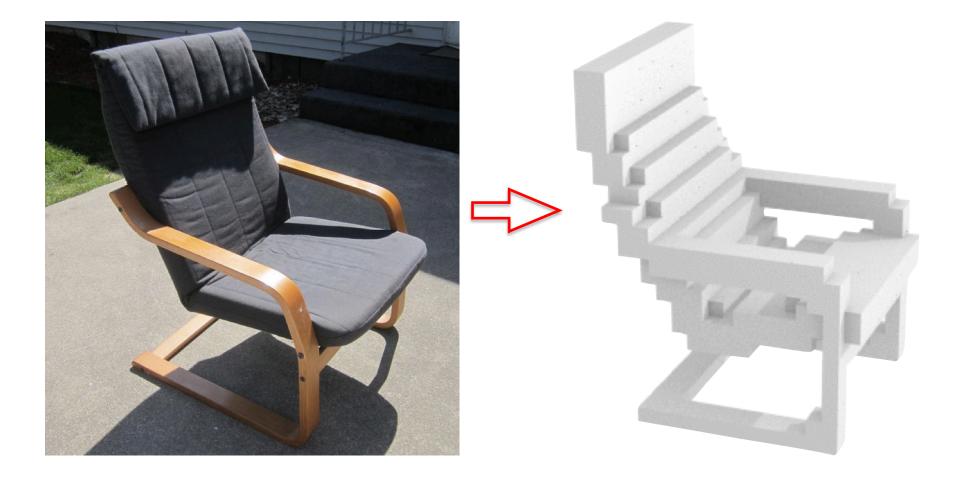


Daniel Maturana and Sebastian Scherer, "VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition", IROS2015

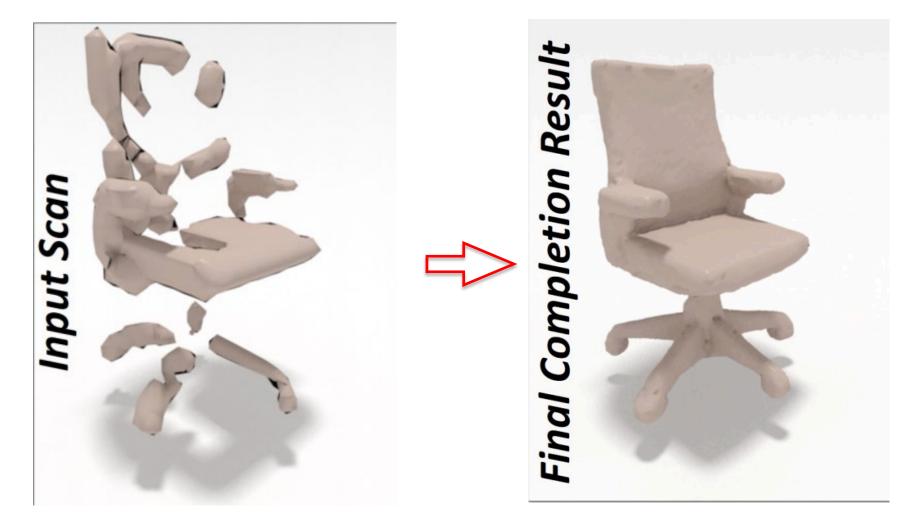
3D Voxel CNNs: Classification



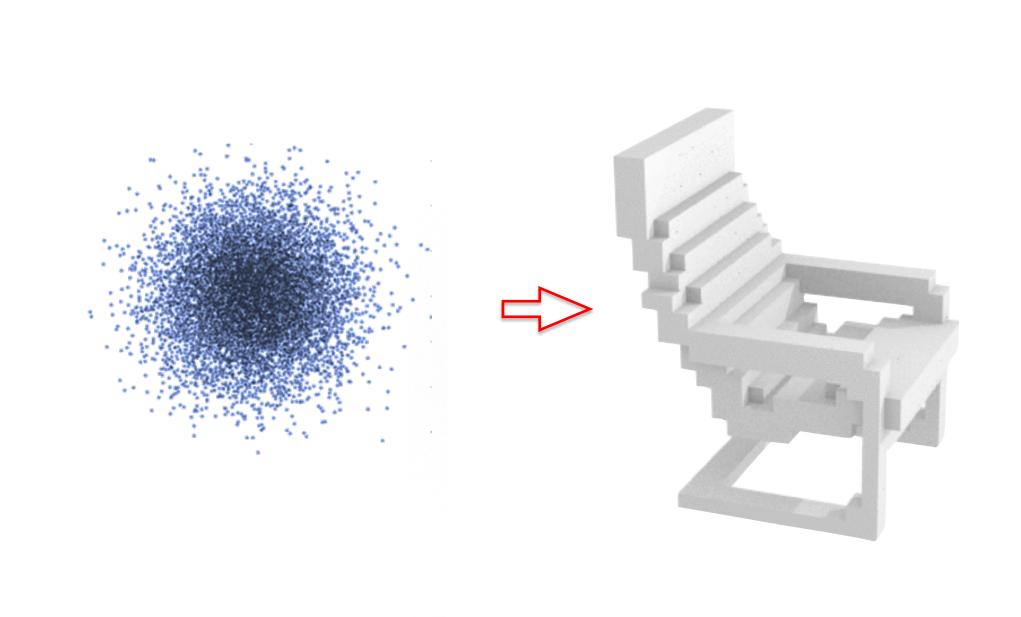
84

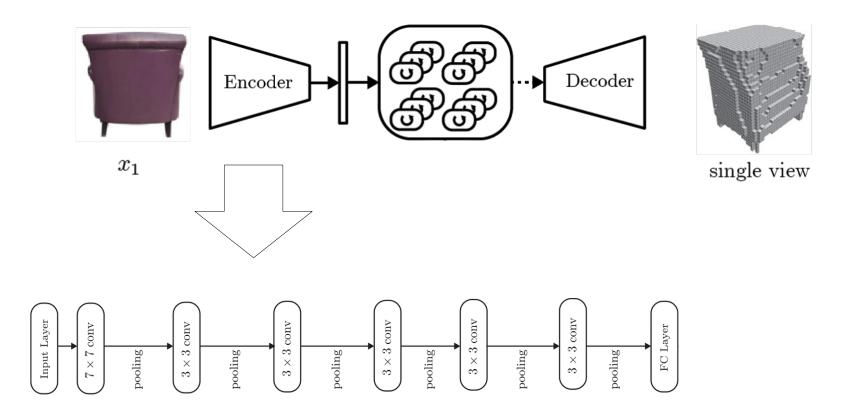


3D Voxel CNNs: Completion

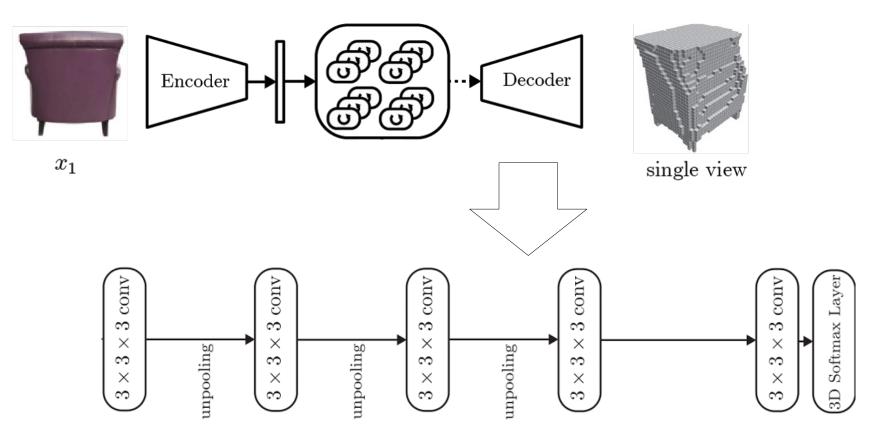


3D Voxel CNNs: Generation





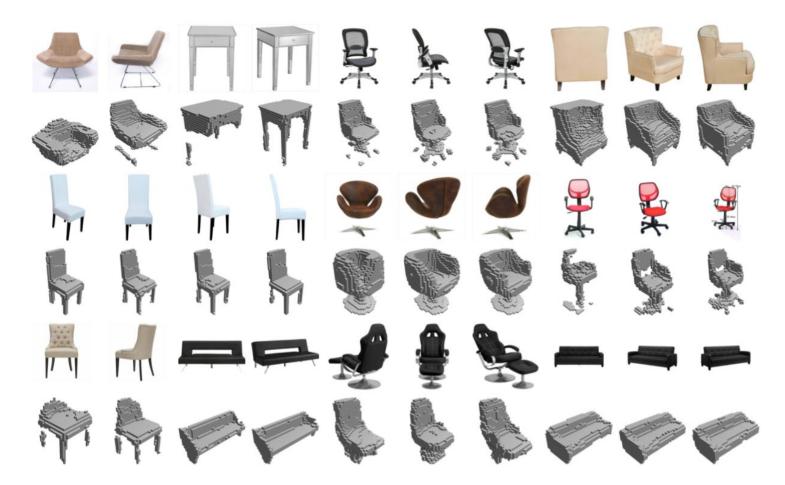
3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction **Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, Silvio Savarese** *ECCV 2016*



3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction **Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, Silvio Savarese** *ECCV 2016*



3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction **Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, Silvio Savarese** *ECCV 2016*



3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, Silvio Savarese ECCV 2016

3D Voxel CNNs: Completion

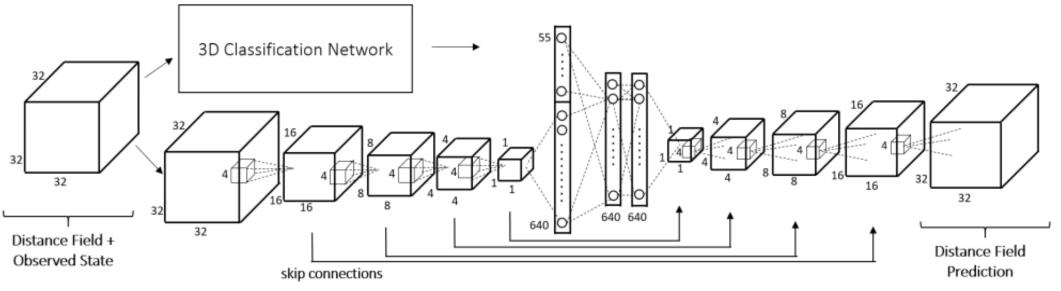
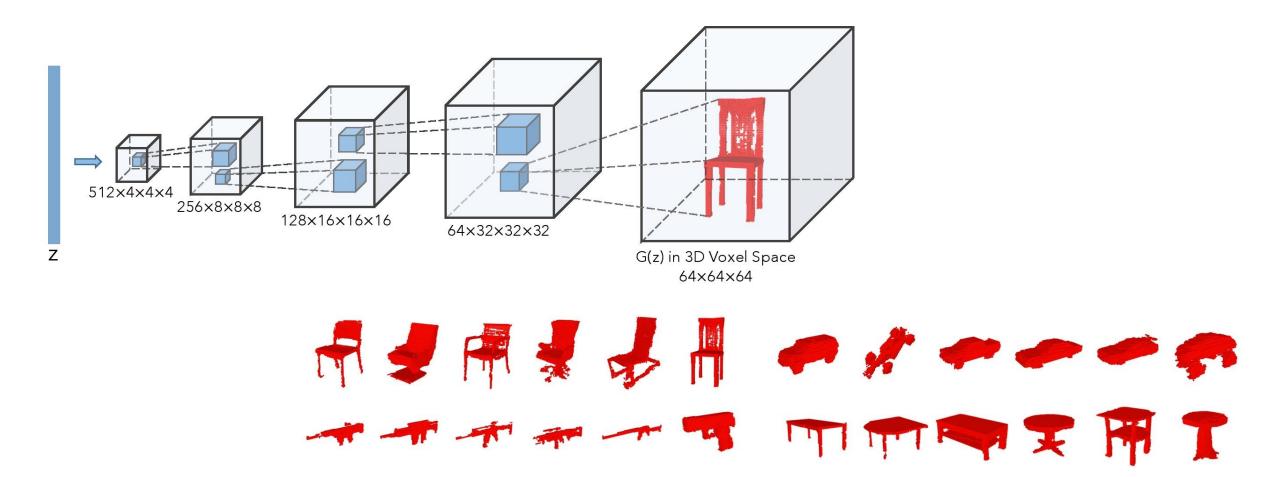


Figure 1: Network architecture of our 3D Encoder-Predictor Network.



Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis Angela Dai, Charles R. Qi, Matthias Niessner CVPR2017

3D Voxel CNNs: Generation



Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling Jiajun Wu*, Chengkai Zhang*, Tianfan Xue, William T. Freeman, and Joshua B. Tenenbaum NeurIPS2016

Volumetric Representation

Pros

- Regular grids representation
- Intuitive extension of images
- Easy to input to Neural Nets
- Each grid can have many feature inputs

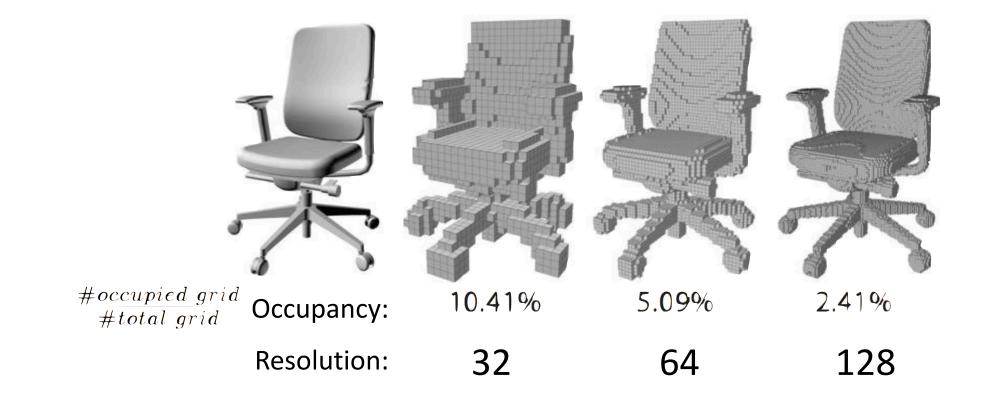
Cons

- Need to convert from point clouds scans
- Surface voxels? / solid voxels?
- Space / Time Complexities

Hierarchical 3D Voxel CNNs

(Use Hierarchical Architectures to Alleviate the Curse of Dimensionality)

3D Voxel Data: Curse of Dimensionality



Resolution N $O(N^3)$

Hierarchical Volumetric Representation

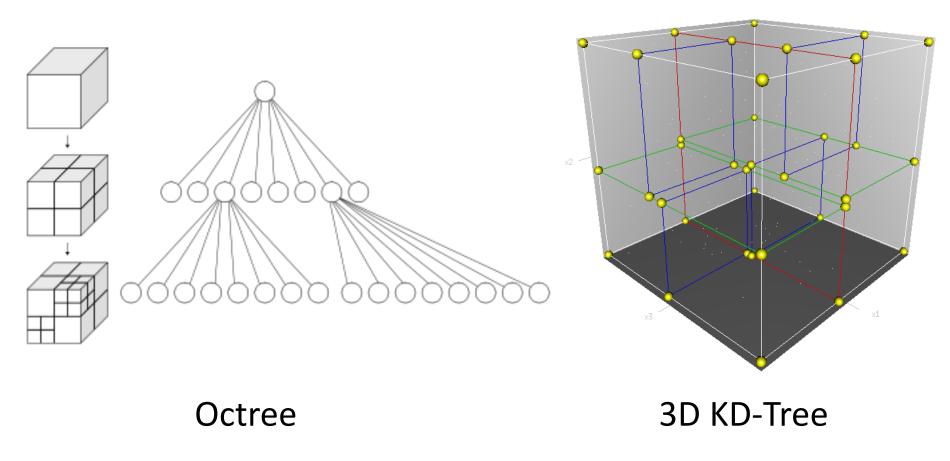
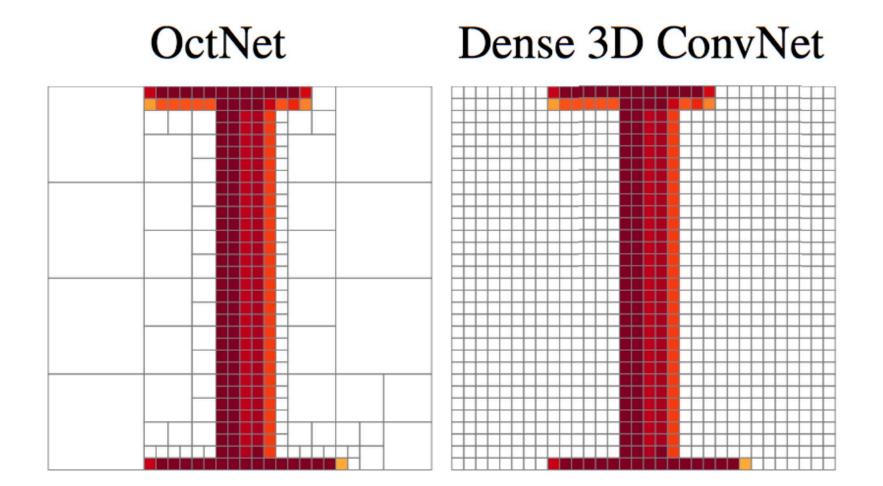


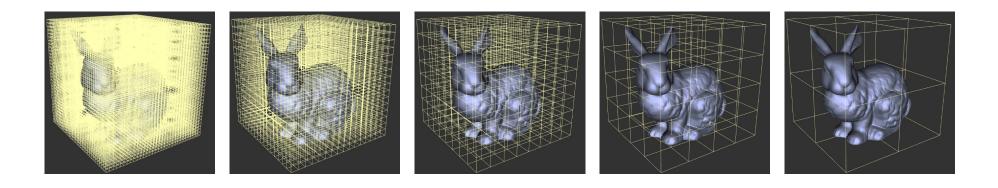
Image Credits: Wikipedia

Hierarchical Volumetric Representation



OctNet: Learning Deep 3D Representations at High Resolutions Gernot Riegler, Ali Osman Ulusoy, Andreas Geiger, CVPR 2017

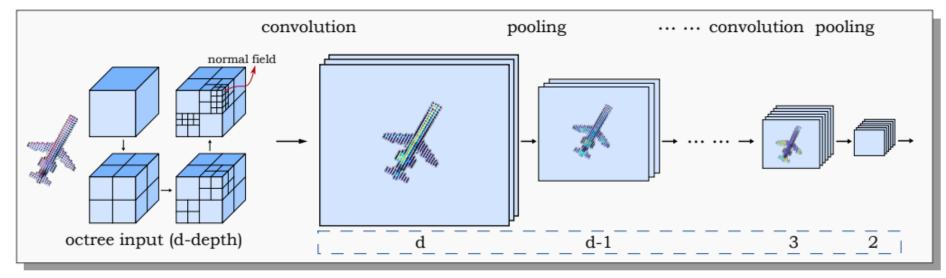
Hierarchical Volumetric Representation



Hier 3D Voxel NN: Recognition

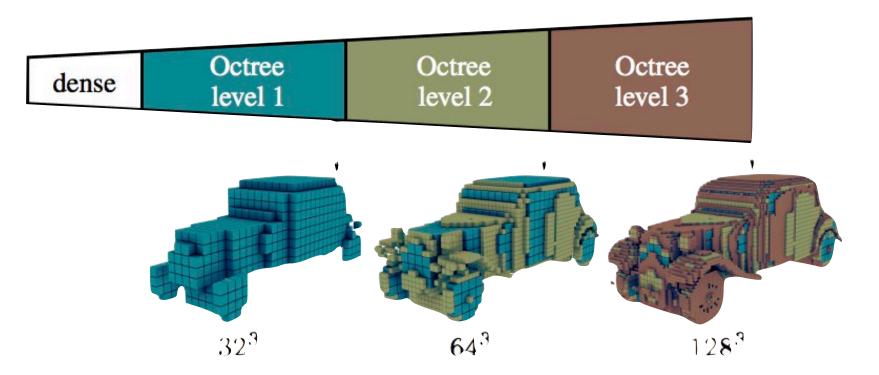
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

PENG-SHUAI WANG, Tsinghua University and Microsoft Research Asia YANG LIU, Microsoft Research Asia YU-XIAO GUO, University of Electronic Science and Technology of China and Microsoft Research Asia CHUN-YU SUN, Tsinghua University and Microsoft Research Asia XIN TONG, Microsoft Research Asia



Classification Accuracy: 89.9%

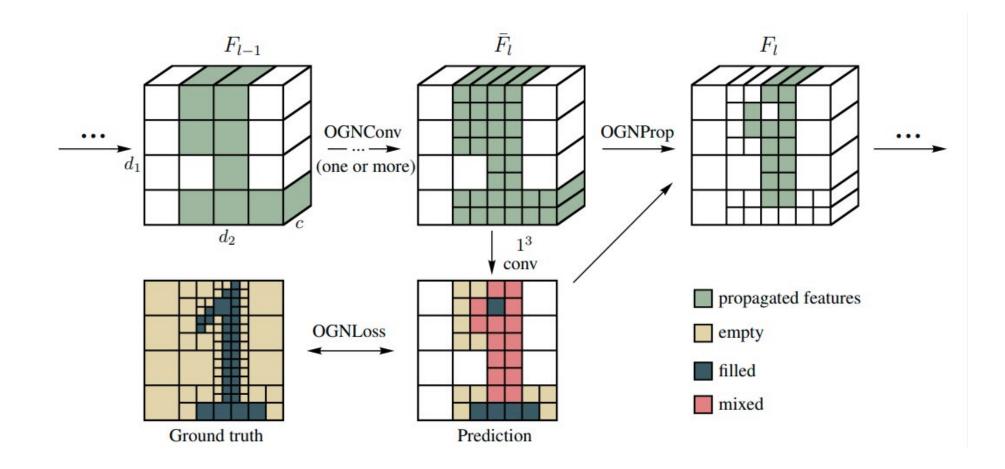
Hier 3D Voxel NN: Generation



Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox

"Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs" *ICCV, 2017*

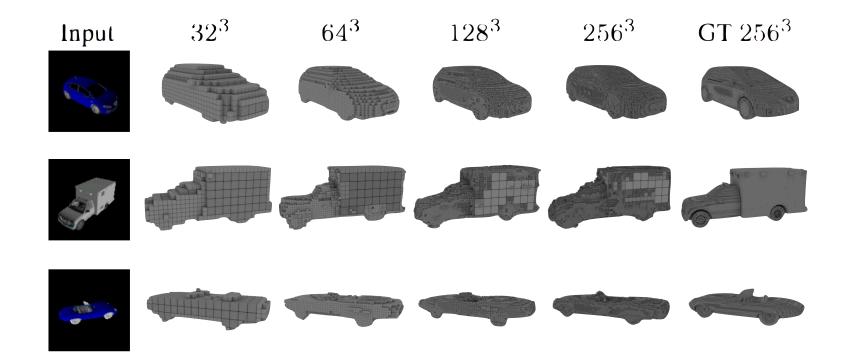
Hier 3D Voxel NN: Generation



Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox

"Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs" ICCV, 2017

Hier 3D Voxel NN: Generation



Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox

"Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs" ICCV, 2017

Hierarchical 3D Voxel NNs

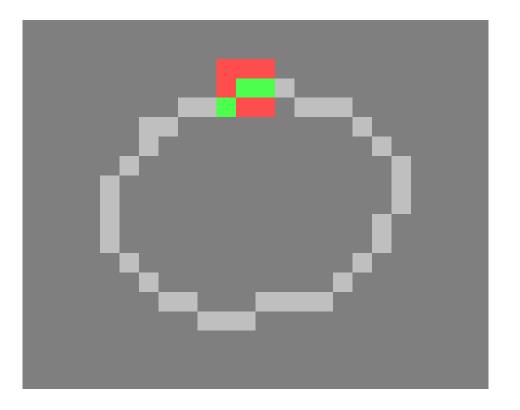
Pros

- Address the O(N^3) Storage / Computation Explosion
- Allow 3D CNNs to work with Larger N --> better performance

Cons

- Still have computations over empty voxels
- Not very flexible given the specific data structure (e.g. the octree)

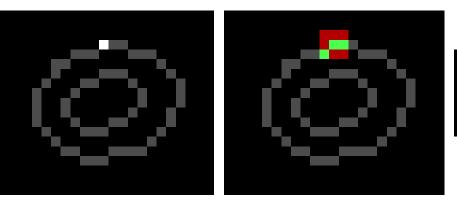
(Only Perform Convolution over Existing Voxels)



Submanifold Sparse Convolution (SSC)

 carefully engineered that no computational overhead at the empty cells, using a *hash-table* and a *rule-book*

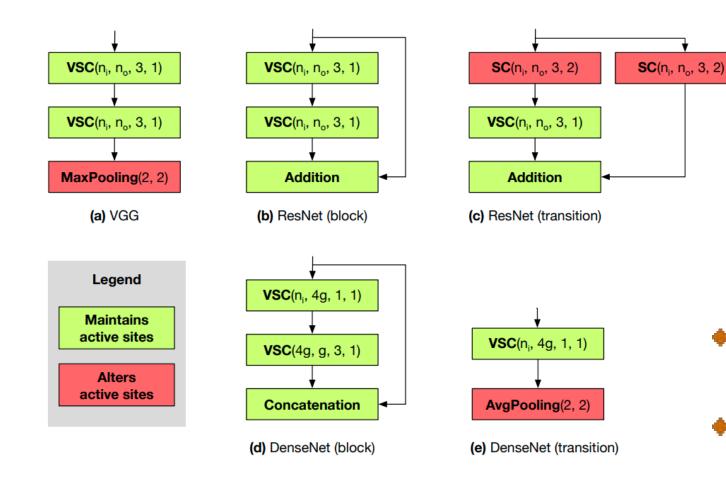
only computed when the kernel *center* is over an *occupied* cell



SSC with Stride 2 (Size 3)

SSC with Stride 1

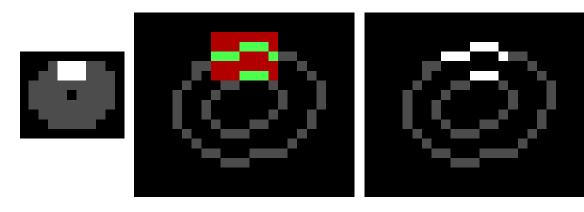
 (Size 3)
 perform strided convolutions, pooling operations, or regular sparse convolutions (i.e. perform convolution over regions containing at least one occupied cell) to correlate disconnected components



VSC: Submanifold Sparse Conv SC: Regular Sparse Conv

allow training 3D ConvNets as deep as the 3D counterparts!!!

 and, as we expect, deeper networks often work better

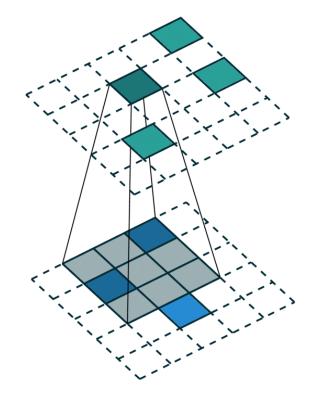


Deconvolution

 deconvolution layers can also be implemented for Sparse ConvNet Decoders, which allows us to train 3D-Sparse-UNet for per-voxel labeling tasks (e.g. semantic segmentation)

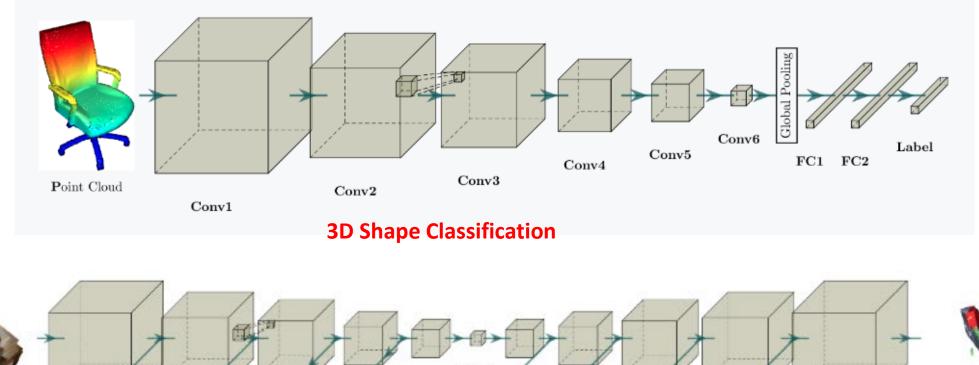
Minkowski Engine: A GenSparseConv System

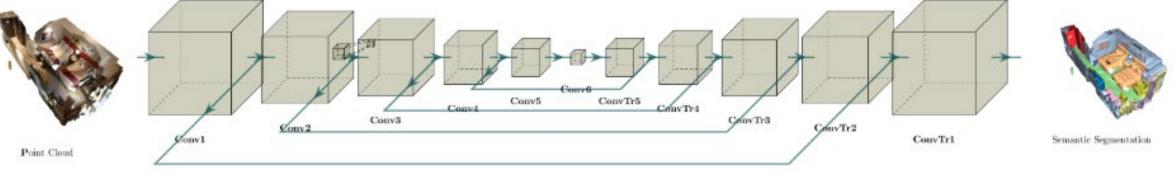
- Implement generalized sparse convolution
- Generalize to 4D and higher dimensional data
- Cover the previous work Submanifold Sparse
 Conv as a special case
- An open-source, well-engineered, welldocumented, auto-differentiation library



Sparse Convolution over Sparse Tensors

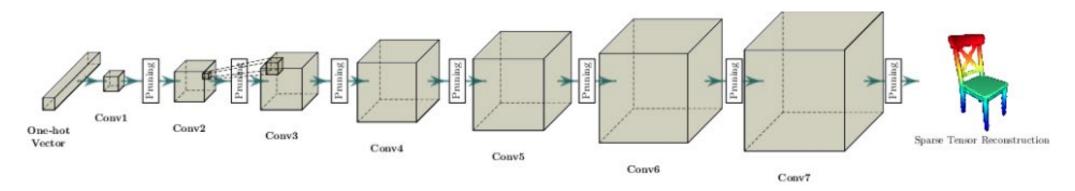
Minkowski Engine: Applications



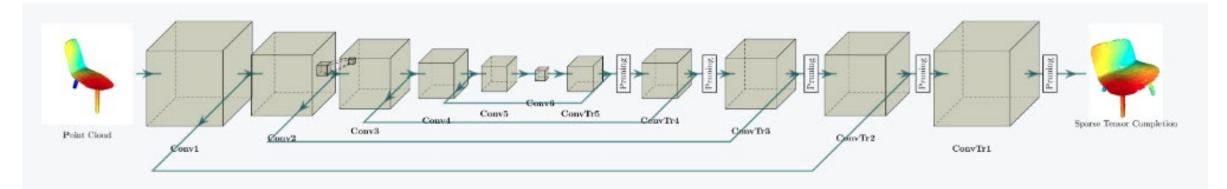


3D Scene Semantic Segmentation

Minkowski Engine: Applications

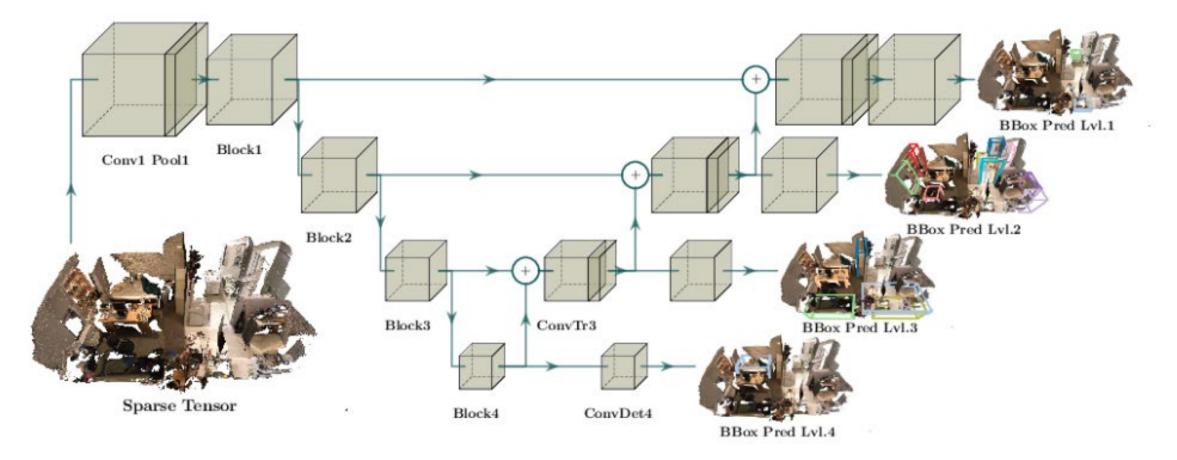


3D Shape Generation



3D Shape Completion

Minkowski Engine: Applications

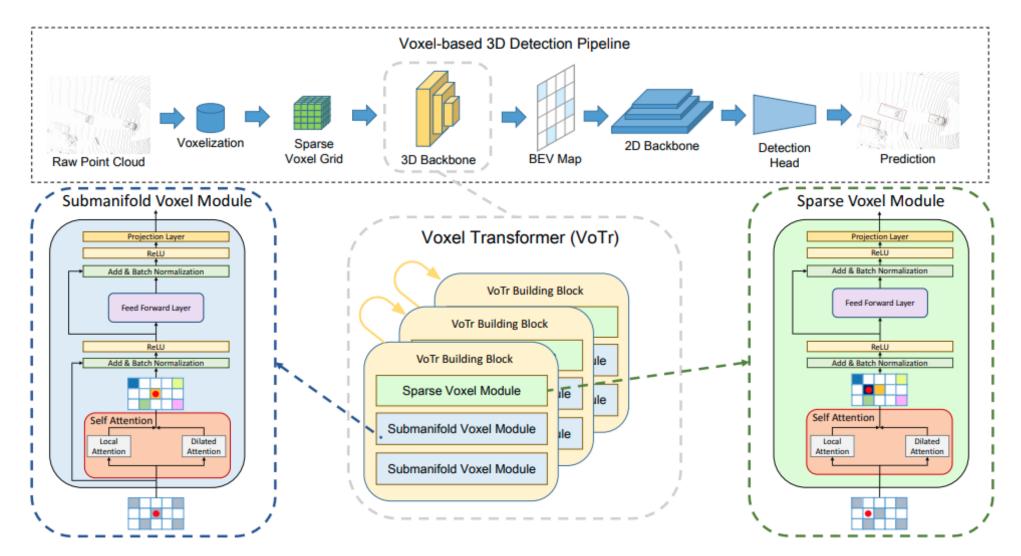


3D Scene Object Detection

3D Voxel Transformers

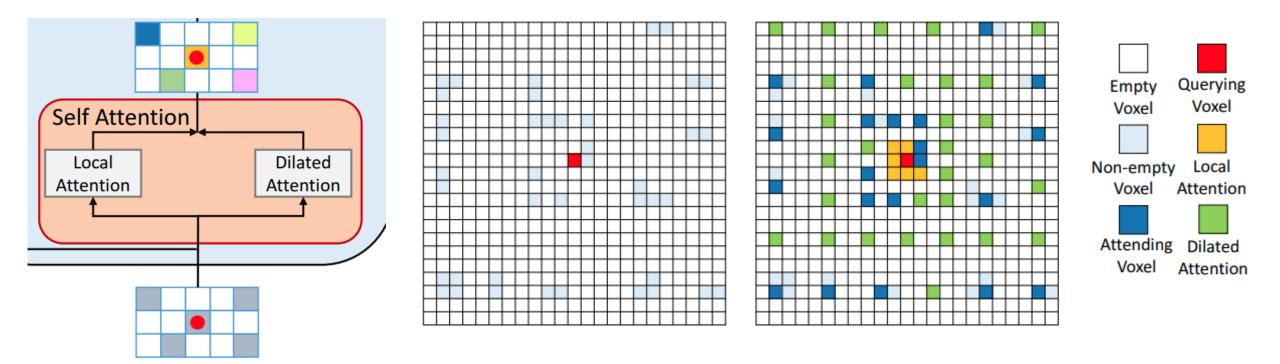
(Extend Visual Transformers to 3D Voxel Geometry)

VoTr: Voxel Transformer



Voxel Transformer for 3D Object Detection Jiageng Mao, Yujing Xue, Minzhe Niu, Haoyue Bai, Jiashi Feng, ICCV, 2021

VoTr: Voxel Transformer



using efficient Sparse Operations for Querying, Retrieval, Convolution, Multiplication, etc.

Voxel Transformer for 3D Object Detection Jiageng Mao, Yujing Xue, Minzhe Niu, Haoyue Bai, Jiashi Feng, ICCV, 2021

Summary

- Brief Review: ML, DL, Deep Nets, CNNs, Transformers
- 3D Deep Learning
- 3D Voxel CNNs
- Hierarchical and Sparse 3D Voxel CNNs
- 3D Voxel Transformers

That's All

