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In 3D, There is Representation Diversity
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These are irregular 
representations – and the ones 

most commonly used in 3D apps

Multiple View ImagesPoint Cloud Mesh Voxels

…

RGB(D)

Constructive Solid
Geometry (CSG)Sketch-

Extrude
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Summer School on Geometry Processing

Prof Justin Solomon, MIT

https://sgi.mit.edu/



• Mon, Jan 17, MLK holiday

• Wed, Jan 19, Zoom class

• Fri, Jan 21, 1:00-3:00 pm, in person extended office hours
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Next week



Last Time: Volumetric 
Representations
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Volumetric Representation: 3D Geometry

Image Credits: Scannet
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Volumetric Representation

Resolution: 32 64 128
Occupancy:

Resolution N O(N^3)
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3D Voxel CNNs: Classification

Z. Wu, S. Song, A. 

Khosla, F. Yu, L. Zhang, 

X. Tang and J. Xiao, 

“3D ShapeNets: A 

Deep Representation 

for Volumetric Shape 

Modeling”, 

CVPR2015
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3D Voxel CNNs: Reconstruction

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction
Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, Silvio Savarese
ECCV 2016
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3D Voxel CNNs: Reconstruction

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction
Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, Silvio Savarese
ECCV 2016
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3D Voxel CNNs: Reconstruction

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction
Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, Silvio Savarese
ECCV 2016
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3D Voxel CNNs: Generation

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Jiajun Wu*, Chengkai Zhang*, Tianfan Xue, William T. Freeman, and Joshua B. Tenenbaum
NeurIPS2016
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Hierarchical Volumetric Representation

Octree 3D KD-Tree
Image Credits: Wikipedia
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Hier 3D Voxel NN: Generation

Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox
“Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs”
ICCV, 2017
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3D Sparse ConvNets
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3D Semantic Segmentation with Submanifold Sparse Convolutional Networks
Benjamin Graham, Martin Engelcke, Laurens van der Maaten, CVPR, 2018

Submanifold Sparse Convolution (SSC)

carefully engineered that no 
computational overhead at the 
empty cells, using a hash-table
and a rule-book

only computed when the 
kernel center is over an 
occupied cell



VoTr: Voxel Transformer
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Voxel Transformer for 3D Object Detection
Jiageng Mao, Yujing Xue, Minzhe Niu, Haoyue Bai, Jiashi Feng, ICCV, 2021

using efficient Sparse Operations for Querying, Retrieval, Convolution, Multiplication, etc.



Point Clouds
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3D Point Clouds from Many Sensors

1
8

Lidar point clouds (LizardTech) Structure from motion (Microsoft)

Depth camera (Intel, Microsoft, Google)



• Close to raw sensor data

• Representationally simple

• Irregular neighborhoods

• Variable density
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3D Point Cloud Data

Point Cloud

LiDAR

Depth Sensor
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Deep Nets for PCs: PointNet and PointNet++

Object Classification

Object Part Segmentation

Semantic Scene Parsing

...

PointNet

End-to-end learning for irregular point data 

Unified framework for various tasks

Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas. 
PointNet: Deep Learning on Point Sets for 3D 
Classification and Segmentation. (CVPR’17)
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Invariances

Point Permutation Invariance

Point cloud is a set of unordered points

Spatial Transformation Invariance
Point cloud rigid motions should not alter classification results

The model has to respect key desiderata for point clouds:

Sampling Invariance
Output a function of the underlying geometry and not the sampling
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Permutation Invariance: Symmetric Functions

Examples:

…
How can we construct a universal family of 
symmetric functions by neural networks? 
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Construct Symmetric Functions by Neural Networks

(1,2,3)

(1,1,1)

(2,3,2)

(2,3,4)

…

Simplest form: directly aggregate all points with a symmetric operator
Just discovers simple extreme/aggregate properties of the geometry.

(2,3,4)

=
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Construct Symmetric Functions by Neural Networks

(1,2,3)

(1,1,1)

(2,3,2)

(2,3,4)

… …

Embed points in a high-dim space before aggregation.
Aggregation in the (redundant) high-dim space encodes more interesting 
properties of the geometry.

lifting map
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Construct Symmetric Functions by Neural Networks

is symmetric if      is symmetric

(1,2,3)

(1,1,1)

(2,3,2)

(2,3,4)

… …

PointNet (vanilla)

lifts points to a
high-dimensional space
h
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Symmetric Functions: Polynomials

• In fact, any symmetric polynomial in the     can be expressed 
as a polynomial in sums of the form

and can be computed by 
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What Symmetric Functions Can Be Constructed By PointNet?

PointNet 
(vanilla)

Symmetric functions
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PointNet as a Universal Approximation to Set Functions

PointNet (vanilla)
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Invariances

Point Permutation Invariance

Point cloud is a set of unordered points

Spatial Transformation Invariance
Point cloud rigid motions should not alter classification results

The model has to respect key desiderata for point clouds:

Sampling Invariance
Output a function of the underlying geometry and not the sampling
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Input Alignment by Transformer Network

T-Net

Transform

transform
params

n 
 x

 3

n 
 x

 3 rest of the 
network…

input
point cloud

transformed 
point cloud

Idea: Data dependent transformation for automatic alignment
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Input Alignment by Transformer Network

Matrix
Mult.

transform
matrix: 3x3

input
point cloud

transformed 
point cloud

n 
 x

 3

n 
 x

 3 rest of the 
network…

Idea: Data dependent transformation for automatic alignment

T-Net

The transformation is just matrix multiplication!
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Embedding Space Alignment

point 
embeddings:

NxK

first few layers of 
the network



T-Net
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Embedding Space Alignment

Matrix 
Mult.

transform
params: KxK

point 
embeddings:

NxK

transformed 
embeddings:

NxK

rest of the 
network…

first few layers of 
the network



T-Net
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Matrix 
Mult.

transform
params: KxK

point 
embeddings:

NxK

transformed 
embeddings:

NxK

rest of the 
network…

first few layers of 
the network

Regularization loss:
Transform matrix close to orthogonal:

Embedding Space Alignment
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PointNet Classification Network
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PointNet Classification Network



37

PointNet Classification Network
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PointNet Classification Network



39

PointNet Classification Network
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PointNet Classification Network
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PointNet Classification Network
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Extension to PointNet Segmentation Network

local embedding global feature
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local embedding global feature

Extension to PointNet Segmentation Network
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Extension to PointNet Segmentation Network
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Extension to PointNet Segmentation Network
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Results on Object Classification

dataset: ModelNet40; metric: 40-class classification accuracy (%)

3D CNNs
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Results on Object Part Segmentation
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Results on Semantic Scene Parsing

dataset: Stanford 2D-3D-S (Matterport scans)
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PointNet is Light-Weight and Fast

Space Cost (#params)

100M

10M

1M
MVCNN

[Su et al. 2015]
Subvolume
[Qi et al. 2016]

PointNet
[Qi et al. 2017]

multi-view

volumetric

point cloud
Saves 80% memory
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PointNet is Light-Weight and Fast

Computation Cost (FLOPs/sample)

100B

1B

1M
MVCNN

[Su et al. 2015]
Subvolume
[Qi et al. 2016]

PointNet
[Qi et al. 2017]

multi-view

volumetric

point cloud Saves 88% FLOPs

100M

10M

10B

A promising architecture for 
portable devices! 
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PointNet is Robust to Data Corruption

Why is PointNet so robust to 
missing data?

dataset: ModelNet40; metric: 40-class classification accuracy (%)

Less than 2% accuracy drop with 50% 
missing data
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Visualizing Global Point Cloud Features

Original Shape



Learning Interesting Points

Pointnet learns optimization criteria, which in turn pick interesting points
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Visualizing Global Point Cloud Features

Original Shape

Critical Points

PointNet learns to pick perceptually interesting points
A semantic core-set …



From PointNet to 
PointNet++
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Limitations of PointNet

3D CNN [Wu et al.2015]

Hierarchical feature learning
multiple levels of abstraction

Global feature learning
either one point, or all points

v.s.

PointNet (vanilla) [Qi et al.2017]

max 
pooling
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v.s.

3D CNN [Wu et al.2015]

Hierarchical feature learning
multiple levels of abstraction

PointNet (vanilla) [Qi et al.2017]

Global feature learning
either one point or all points

max 
poolingNo local context

Limited local invariance

Limitations of PointNet
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PointNet++

Basic idea: Recursively apply pointnet at local regions.

✓ Hierarchical feature learning
✓ Local translation invariance
✓ Permutation invariance

Charles R. Qi, Li Yi, Hao Su, Leonidas Guibas. PointNet++: Deep 
Hierarchical Feature Learning on Point Sets in a Metric Space 
(NIPS’17)
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Hierarchical Point Feature Learning

X

Y

N points in (X,Y)
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X

Y

N points in (X,Y)

Hierarchical Point Feature Learning
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X

Y

u

v

N points in (X,Y) k points in local 
coordinates (u,v)

Hierarchical Point Feature Learning
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Hierarchical Point Feature Learning

N points in (X,Y)

X

Y

u

v

pointnet

k points in local 
coordinates (u,v)

Apply pointnet at a local region
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N points in (X,Y)

X

Y

X

Y

points in (X,Y, F)

Euclidean space high-dim feature space

Hierarchical Point Feature Learning
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N points in (X,Y)

X

Y

X

Y

points in (X,Y, F)

Hierarchical Point Feature Learning
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N points in (X,Y)

X

Y

X

Y

points in (X,Y, F)

Hierarchical Point Feature Learning
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N points in (X,Y)

X

Y

X

Y

N1 points in (X,Y, F)

Set Abstraction: farthest point sampling + grouping + pointnet

Hierarchical Point Feature Learning



67

PointNet++ for Classification and Segmentation

Caveat: Shouldn’t feature dimensions from the lower layers affect connectivity at the higher layers? 
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PointNet++ for Classification and Segmentation
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“Up-convolution” through 3D 
interpolation and/or pointnet.

PointNet++ for Classification and Segmentation
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Non-uniform Sampling Density in Point Clouds

Density variation is a common issue in 3D point cloud processing
- perspective effect, radial density variation, motion etc.

Challenge for local 
feature learning!

Network may learn
sampling pattern – not
underlying geometry
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Density Variation Affects Hierarchy 

Small kernels suffer from varying densities!
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Robust Learning Under Varying Sampling Density

concat

(a)
Multi-scale grouping (MSG)

(b)

concat

Multi-res grouping (MRG)

During Training: input point dropout with random dropout ratio
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MRG
MSG

Original

Robust Learning Under Varying Sampling Density
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PointNet++ Results: Scene Parsing

dataset: ScanNet; metric: per-point semantic classification accuracy (%)

0.6

0.65

0.7

0.75

0.8

0.85

PointNet PointNet++ PointNet++ (MSG)PointNet
[Qi et al. 2017]

PointNet++ PointNet++ 
(MSG w. DP)

Robust layers for non-uniform densities (MSG) help a lot.

72.7%

80.4%on partial scans



Graph Structures on Points:
DGCNN

76



Point Clouds and Graphs

[Qi et al., CVPR 2017]
[Kipf et al., CVPR 2017]

GNN

Graph Neural Networks

MLP

MLP

MLP

MLP

(1, 2, 3)

(2, 1, 2)

(3, 1, 2)

(1, 1, 2)

max MLP

PointNet family



Bridging the Two …. DGCNN

[Dynamic Graph CNN for Learning on Point Clouds
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon, TOG 2019]

Graph Neural Networks

MLP

MLP

MLP

MLP

max MLP

PointNet family

(1, 2, 3)

(2, 1, 2)

(3, 1, 2)

(1, 1, 2)

GNN

Dynamic Graph Convolutional Neural Networks
(DGCNN)



[Wang et al., TOG 2019]

𝒮𝒮 = {(𝑥𝑥0, 𝑦𝑦0, 𝑧𝑧0), … , (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖), … , (𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛, 𝑧𝑧𝑛𝑛)}

DGCNN



[Wang et al., TOG 2019]

Each point (e.g., 𝑠𝑠𝑖𝑖) is connected to its k nearest neighbors

𝑠𝑠𝑖𝑖

𝑠𝑠𝑖𝑖0 𝑠𝑠𝑖𝑖1

𝑠𝑠𝑖𝑖2

DGCNN



[Wang et al., TOG 2019]

Edge features are defined by concatenating features of points

𝑠𝑠𝑖𝑖

𝑠𝑠𝑖𝑖0 𝑠𝑠𝑖𝑖1

𝑠𝑠𝑖𝑖2

𝑒𝑒𝑖𝑖0 = 𝑠𝑠𝑖𝑖0||𝑠𝑠𝑖𝑖

𝑒𝑒𝑖𝑖1 = 𝑠𝑠𝑖𝑖1||𝑠𝑠𝑖𝑖
𝑒𝑒𝑖𝑖2 = 𝑠𝑠𝑖𝑖2||𝑠𝑠𝑖𝑖

DGCNN



[Wang et al., TOG 2019]

A shared MLP further lifts edge features into high dimensional space

𝑠𝑠𝑖𝑖

𝑠𝑠𝑖𝑖0 𝑠𝑠𝑖𝑖1

𝑠𝑠𝑖𝑖2

𝑓𝑓𝜃𝜃(𝑒𝑒𝑖𝑖0)

𝑓𝑓𝜃𝜃(𝑒𝑒𝑖𝑖1)
𝑓𝑓𝜃𝜃(𝑒𝑒𝑖𝑖2)

DGCNN



[Wang et al., TOG 2019]

Features are pooled by a symmetric function
𝑓𝑓𝑖𝑖 = max(𝑓𝑓𝜃𝜃(𝑒𝑒𝑖𝑖0),𝑓𝑓𝜃𝜃(𝑒𝑒𝑖𝑖1),𝑓𝑓𝜃𝜃(𝑒𝑒𝑖𝑖2))

𝑠𝑠𝑖𝑖

𝑠𝑠𝑖𝑖0 𝑠𝑠𝑖𝑖1

𝑠𝑠𝑖𝑖2

𝑓𝑓𝜃𝜃(𝑒𝑒𝑖𝑖0)

𝑓𝑓𝜃𝜃(𝑒𝑒𝑖𝑖1)
𝑓𝑓𝜃𝜃(𝑒𝑒𝑖𝑖2)

𝑓𝑓𝑖𝑖

DGCNN – the EdgeConv Operation



𝑠𝑠𝑖𝑖

[Wang et al., TOG 2019]

Then, a new kNN graph is reconstructed based on features.

𝑠𝑠𝑖𝑖0

𝑠𝑠𝑖𝑖1

𝑠𝑠𝑖𝑖2

DGCNN



[Wang et al., TOG 2019]

DGCNN alternates feature learning (EdgeConvs) and graph reconstruction

𝑠𝑠𝑖𝑖

𝑠𝑠𝑖𝑖0

𝑠𝑠𝑖𝑖1

𝑠𝑠𝑖𝑖2

𝑓𝑓𝜃𝜃(𝑒𝑒𝑖𝑖0)

𝑓𝑓𝜃𝜃(𝑒𝑒𝑖𝑖1)

𝑓𝑓𝜃𝜃(𝑒𝑒𝑖𝑖2)

𝑠𝑠𝑖𝑖

𝑠𝑠𝑖𝑖0

𝑠𝑠𝑖𝑖1

𝑠𝑠𝑖𝑖2

𝑓𝑓𝜙𝜙(𝑒𝑒𝑖𝑖0)

𝑓𝑓𝜙𝜙(𝑒𝑒𝑖𝑖1)

𝑓𝑓𝜙𝜙(𝑒𝑒𝑖𝑖2)

DGCNN – Alternating Processing
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EdgeConv Operation

● weighted sum

● global only

● local only

● global + local

edge features: 

● general
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Key EdgeConv Properties

● Easily implement and integrates into existing deep learning-based 
algorithm by switching the MLP component to EdgeConv

● EdgeConv is differentiable, which is an important property in ML and DL 
(convex optimization problem)

● Extract local features without destroying the permutation invariance

● Dynamic Graph CNN => update the graph after each layer of network, i.e. 
recompute the k-nearest neighbors in the new feature space (and also 
recompute the edge features)
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DGCNN Architecture

DGCNN



[Wang et al., TOG 2019]

DGCNN achieves superior performance on shape classification tasks while maintaining simplicity!  

DGCNN Results
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From Geometry to Semantics
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Object Detection in
Point Clouds,

Indoors

92



Point Cloud Object Amodal Bounding Box Detection

Via a voting scheme

93

• Charles R. Qi, Or Litany, Kaiming He, Leonidas J. Guibas.  Deep Hough Voting for 3D Object Detection in Point Clouds. ICCV  2019.

• Charles R. Qi, Xinlei Chen, Or Litany, Leonidas J. Guibas. ImVoteNet: Boosting 3D Object Detection in Point Clouds with Image Votes. CVPR 
2020.

armchair

armchair
sofa

coffee table



Generalized Hough Transform

94



Deep Hough Voting – A Two-Stage Approach

Object center proposals
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VoteNet – A Two-Stage Approach
Pointnet++ Pointnet++

A capsule/transformer network in disguise …
96



VoteNet Results on SUN RGB-D
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VoteNet Results on ScanNet
VotingNet prediction Ground truth

98



VoteNet Quantitative Results

SUN RGB-D

ScanNetV2

Deep sliding shapes
Clouds of oriented gradients

Frustum pointnet

99

average precision with 3D IoU threshold 0.25
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Modalities: Point Clouds Complement RGB Images

● + High resolution
● + Dense coverage
● - Subject to many imaging 

artifacts

● + Absolute depth and scale
● - Sparse, low rez



3D Detection with Sparse Points

Application: 3D detection from monocular video, using sparse SLAM keypoints.

Picture: ORB-SLAM results
101



Points and Images: ImVoteNet

102
How to best combine geometry and appearance info?



ImVoteNet Architecture

103
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Multiple 3D Geometry Representations

[Z. Zhang, B. Sun, H. Yang, Q. Huang.
H3DNet: 3D Object Detection Using Hybrid Geometric Primitives.
ECCV  2020]

Box 
center

6 Face 
centers

12 Edge 
centers



Representations Best for Different Object Instances

Box 
center

6 Face 
centers

12 Edge 
centers



Object Detection in
Point Clouds, Outdoors

107
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Frustum PointNets for 3D Object Detection

Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, Leonidas Guibas. Frustum PointNets for 3D Object 
Detection from RGB-D Data (CVPR 2018)

+ Leveraging mature 2D detectors for region proposal. greatly reducing 3D search space.
+ Solving 3D detection problem with 3D data and 3D deep learning.
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Frustum-based 3D Object Detection: Challenges

• Occlusion and clutter is common in frustum point clouds
• Large range of point depths

Background
Clutter

Foreground
occluder



Use PointNets for data-driven object detection in frustums.

110

Frustum PointNets

• pose
• size
• center



• Use each modality (image, points) for what it’s best at —
using 3D representation and 3D deep learning for the 3D 
problem.

• Canonicalize the problem — exploiting geometric 
transformations in point clouds.

111

Frustum PointNets: Key to Success

Respect and exploit 3D
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KITTI Results: Quantitative

Leading performance on KITTI benchmark

60

63

66

69

72
70.39

65.11

62.35

Frustum
PointNets

VoxelNet
(Apple)

MV3D
(Baidu)

De
te

ct
io

n 
AP

 fo
r C

ar
s

VoxelNet: [Zhou et al. 2018]
MV3D: [Chen et al. 2017]
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KITTI Results: Quantitative

Leading performance on KITTI benchmark

Especially leading at smaller objects (pedestrians and cyclists) 
– hard to localize with 3D proposals only.

AVOD: [Ku et al. 2018]
VxNet: [Zhou et al. 2017]
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KITTI Results: Qualitative

Remarkable box estimation accuracy 
even with a dozen of points or with very 
partial point clouds.
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KITTI Results: Qualitative

occluding traffic sign..

Correct segmentation in point clouds 
with heavy occlusion.
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KITTI Results: Example






3D Motion in Point Clouds

117



● Scene flow: 3D motion field of points

● Optical flow is its projection to 2D image plane.

● Low-level understanding of a dynamic environment

118

Scene Flow [Vedula et al. 1999]



• Directly learning scene flow in 3D point clouds, with 3D deep learning 
architectures.

Our Approach: FlowNet3D

119

point cloud 1: N1x3
point cloud 2: N2x3 scene flow: N1x3

Xingyu Liu, Charles R. Qi, Leonidas Guibas. Learning Scene Flow in 3D Point Clouds, (CVPR 2019).

FlowNet3D



• How to learn point cloud features?

• Where in the network architecture to mix point features from consecutive frames?

• How to mix them?

Deep Net Architecture

120

Middle-level
deep mixture

Intermediate level



Middle-Level Mixing

121

frame 1

frame 2



Point Attributes

122

Y1, g1

X, fY2, g2

Yi, gi

...

...

dist(g1, f),   Y1-X

dist(g2, f),   Y2-X

dist(gi, f),    Yi-X

...

...

dist(g1, f),   Y1-X dist(g2, f),   Y2-X ...

Naive approach: concatenation



A More Structured Approach

123

dist(gi, f),   Yi-X

dist(g1, f),   Y1-X

dist(g2, f),   Y2-X
...

MLP

MLP

MLP

shared

max pooling

f’

Y1, g1

X, fY2, g2

Yi, gi

...

...

dist(gi, f)

“Distance” functions:
Euclidean distance (scalar)
Cosine distance (scalar)
Element-wise product (vector)

Let the network learn the distance function …



FlowNet3D

124Composed of many many mini-pointnet++ modules … Pointnet++
set conv = set abstraction



Training on Synthetic Data

125

FlyingThings3D [Mayer et al. 2016] 
dataset from MPI

Random ShapeNet objects

Very challenging dataset with 
strong occlusions and large motions.



FlyingThings3D Results



KITTI Results



KITTI Results



Generalizing to KITTI: Quantitative

129

0.

0.125

0.25

0.375

0.5

0.625
3D End-Point-Error

LDOF
[Brox et al. 2011]

OSF
[Menze et al. 2015]

PRSM
[Vogel et al. 2015]

ICP
(global)

ICP
(segment)

FlowNet3D
(Ours)

Lower is better



Point-Set Generation



Point Cloud Synthesis from a Single Image

Input Reconstructed 3D point cloud
[H. Su, H. Fan, LG, 2017]



sample

Loss
on

sets

Deep network

Prediction

132

End-to-End Learning



Synthesize for Learning

Deep network

ShapeNet

Renderer



Distance Metrics Between Point Sets

Given two sets of points, measure their discrepancy



Common Distance Metrics

Worst case: Hausdorff distance (HD)

Average case: Chamfer distance (CD)

Optimal case: Earth Mover’s distance (EMD)



Common Distance Metrics

Worst case: Hausdorff distance (HD)

A single distant pair determines the distance.
In other words, not robust to outliers!



Common Distance Metrics

Worst case: Hausdorff distance (HD)

Average case: Chamfer distance (CD)

Average all the nearest neighbor distance by nearest neighbors



Common Distance Metrics

Worst case: Hausdorff distance (HD)

Average case: Chamfer distance (CD)

Optimal case: Earth Mover’s distance (EMD)

Solves the optimal transportation (bipartite matching) problem!



Desired Properties of Distance Metrics

Geometric requirement

• Induces a nice shape space

• In other words, a good metric should reflect the natural shape differences

Computational requirement

• Defines a loss that is numerically easy to compute and optimize



shape 
embedding

space 

sample
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• Many local structures are common
• e.g., planar patches, cylindrical patches
• strong local correlation among point coordinates

Natural Statistics of Object Geometry



• Many local structures are 
common/shared

• e.g., planar patches, cylindrical 
patches

• strong local correlation among 
point coordinates

• But also some intricate local 
structures

• some points have high variability 
neighborhoods

Natural Statistics of Object Geometry



Two-Branch Architecture

conv

... 

Deconv
branch

FC
branch

Capture smooth structures

Capture intricate 
structures

Nx3

Mx3

…

…

…

(M+N)x3

Set union by array concatenation



Deconvolution Branch

conv

... 

FC
branch

deconvv

Parametrization / coordinate map

Capture intricate 
structures

…
Nx3

• Deconvolution induces a smooth coordinate map
• Geometrically, learns a smooth parameterization



Fully Connected Branch

conv

... 

Deconv
branch

FC
branch

Capture smooth structures

Capture intricate structures

Nx3

Mx3

…

…



The Two Branches
blue: deconv branch – large, consistent, smooth structures

red: fully-connected branch – more intricate structures



Example Results

Same view New view

Good symmetry

Good detail



From Real Images

input

Out of training categories

observed view 90∘ input observed view 90∘
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Conclusions: Real-World 3D Understanding

• Novel architectures for deep learning on point clouds – PointNet
and PointNet++, respecting invariances, light-weight and robust to data 
corruption, a unified framework for various tasks.

• Successful applications in 3D scene understanding.

PointNet PointNet++

3D Object Detection

3D Reconstruction

3D Scene Flow Estimation



151

That’s All
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