CS348n: Neural Representations and Generative Models for 3D Geometry

Leonidas Guibas Computer Science Department Stanford University

01-12_POINT_CLOUD 1

In 3D, There is Representation Diversity

Sketch-

Extrude

Summer School on Geometry Processing

Summer Geometry Initiative

Home About Geometry Processing 2021 Fellows How to Apply Activities and Schedule Organization and Sponsors Contact

SGI 2022

The Summer Geometry Initiative (SGI) is a six-week paid summer research program introducing undergraduate and graduate students to the field of **geometry processing**. Geometry processing has a long history of breakthrough developments that have guided design of 3D tools for computer vision, additive manufacturing, scientific computing, and other disciplines. Algorithms for geometry processing combine ideas from disciplines including differential geometry, topology, physical simulation, statistics, and optimization.

In the first week of SGI, participants will attend hands-on tutorials introducing the theory and practice of geometry processing; no background or previous experience is necessary. During the remaining weeks, participants will work in teams on research projects led by faculty and research scientists in this discipline, while attending talks and other sessions led by visiting researchers.

SGI will be held remotely (online) in 2022, but participants are expected to be engaged full-time. No prior research experience or coursework in geometry processing is necessary to participate in SGI; students who have excelled in the math, science, and/or computing programs available to them are strongly encouraged to apply.

Massachusetts Institute of Technology Cambridge MA 02139-4307 Accessibility Login using Touchstone

|**||i**ī

Prof Justin Solomon, MIT

https://sgi.mit.edu/

Next week

- Mon, Jan 17, MLK holiday
- Wed, Jan 19, Zoom class
- Fri, Jan 21, 1:00-3:00 pm, in person extended office hours

Last Time: Volumetric Representations

Volumetric Representation: 3D Geometry

Image Credits: Scannet

Volumetric Representation

Resolution $N = O(N^3)$

3D Voxel CNNs: Classification

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao, **"3D ShapeNets: A Deep Representation for Volumetric Shape Modeling",** *CVPR2015*

3D Voxel CNNs: Reconstruction

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction **Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, Silvio Savarese** *ECCV 2016*

3D Voxel CNNs: Reconstruction

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction **Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, Silvio Savarese** *ECCV 2016*

3D Voxel CNNs: Reconstruction

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction **Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, Silvio Savarese** *ECCV 2016*

3D Voxel CNNs: Generation

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling Jiajun Wu*, Chengkai Zhang*, Tianfan Xue, William T. Freeman, and Joshua B. Tenenbaum NeurIPS2016

Hierarchical Volumetric Representation

Image Credits: Wikipedia

Hier 3D Voxel NN: Generation

Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox

"Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs" ICCV, 2017

3D Sparse ConvNets

Submanifold Sparse Convolution (SSC)

 carefully engineered that no computational overhead at the empty cells, using a *hash-table* and a *rule-book*

only computed when the kernel *center* is over an *occupied* cell

3D Semantic Segmentation with Submanifold Sparse Convolutional Networks *Benjamin* Graham, Martin Engelcke, Laurens van der Maaten, CVPR, 2018

VoTr: Voxel Transformer

using efficient Sparse Operations for Querying, Retrieval, Convolution, Multiplication, etc.

Voxel Transformer for 3D Object Detection Jiageng Mao, Yujing Xue, Minzhe Niu, Haoyue Bai, Jiashi Feng, ICCV, 2021

Point Clouds

3D Point Clouds from Many Sensors

Lidar point clouds (LizardTech)

Structure from motion (Microsoft)

18

3D Point Cloud Data

Close to raw sensor data

- Representationally simple
- Irregular neighborhoods
- Variable density

Deep Nets for PCs: PointNet and PointNet++

. . .

Object Classification

Object Part Segmentation

Semantic Scene Parsing

End-to-end learning for irregular point data **Unified** framework for various tasks

Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. (CVPR'17)

The model has to respect key desiderata for point clouds:

Point Permutation Invariance

Point cloud is a set of unordered points

Spatial Transformation Invariance

Point cloud rigid motions should not alter classification results

Sampling Invariance

Output a function of the underlying geometry and not the sampling

Permutation Invariance: Symmetric Functions

$$f(x_1, x_2, \dots, x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, \dots, x_{\pi_n}), x_i \in \mathbb{R}^D$$

Examples:

$$f(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}$$
$$f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$$

How can we construct a universal family of symmetric functions by neural networks?

Construct Symmetric Functions by Neural Networks

Simplest form: directly aggregate all points with a symmetric operator gJust discovers simple extreme/aggregate properties of the geometry.

Construct Symmetric Functions by Neural Networks

Embed points in a high-dim space before aggregation.

Aggregation in the (redundant) high-dim space encodes more interesting properties of the geometry.

Construct Symmetric Functions by Neural Networks

 $f(x_1, x_2, \dots, x_n) = \gamma \circ g(h(x_1), \dots, h(x_n))$ is symmetric if g is symmetric

Symmetric Functions: Polynomials

$$2\sum_{i \neq j} x_i x_j = (\sum_i x_i)^2 - \sum_i x_i^2 \qquad \sum_{i \neq j} (x_i - x_j)^2 = 3\sum_i x_i^2 - (\sum_i x_i)^2$$

 In fact, any symmetric polynomial in the x_i can be expressed as a polynomial in sums of the form

$$\sum_{i} x_{i}^{k}$$

and can be computed by

$$f(x_1, x_2, \dots, x_n) = \gamma \circ g(h(x_1), \dots, h(x_n))$$

What Symmetric Functions Can Be Constructed By PointNet?

Symmetric functions

PointNet (vanilla)

The model has to respect key desiderata for point clouds:

Point Permutation Invariance

Point cloud is a set of unordered points

Spatial Transformation Invariance

Point cloud rigid motions should not alter classification results

Sampling Invariance

Output a function of the underlying geometry and not the sampling

Input Alignment by Transformer Network

Idea: Data dependent transformation for automatic alignment

Idea: Data dependent transformation for automatic alignment The transformation is just matrix multiplication!

Embedding Space Alignment

first few layers of the network

> point embeddings: **NxK**

Embedding Space Alignment

Embedding Space Alignment

PointNet Classification Network

oints	
d	
lt	
ld	

nx3

PointNet Classification Network

matrix multiply

Results on Object Classification

dataset: ModelNet40; metric: 40-class classification accuracy (%)

Results on Object Part Segmentation

Results on Semantic Scene Parsing

Input

dataset: Stanford 2D-3D-S (Matterport scans)

PointNet is Light-Weight and Fast

PointNet is Light-Weight and Fast

Computation Cost (FLOPs/sample)

PointNet is Robust to Data Corruption

dataset: ModelNet40; metric: 40-class classification accuracy (%)

Visualizing Global Point Cloud Features

Original Shape

Learning Interesting Points

Pointnet learns optimization criteria, which in turn pick interesting points

Visualizing Global Point Cloud Features

Original Shape

Critical Points

PointNet *learns to pick perceptually interesting points* A semantic *core-set* ... From PointNet to PointNet++

Limitations of PointNet

Hierarchical feature learning multiple levels of abstraction

V.S.

Global feature learning either one point, or all points

PointNet (vanilla) [Qi et al.2017]

3D CNN [Wu et al.2015]

Limitations of PointNet

Hierarchical feature learning multiple levels of abstraction

Global feature learning either one point or all points

PointNet (vanilla) [Qi et al.2017]

PointNet++

Basic idea: Recursively apply pointnet at local regions.

✓ Hierarchical feature learning
✓ Local translation invariance
✓ Permutation invariance

Charles R. Qi, Li Yi, Hao Su, Leonidas Guibas. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space (NIPS'17)

N points in (X,Y)

N points in (X,Y)

N points in (X,Y)

k points in local coordinates (u,v)

Apply pointnet at a local region

N points in (X,Y)

k points in local coordinates (u,v)

Set Abstraction: farthest point sampling + grouping + pointnet

PointNet++ for Classification and Segmentation

Hierarchical point set feature learning

Caveat: Shouldn't feature dimensions from the lower layers affect connectivity at the higher layers?

PointNet++ for Classification and Segmentation

Hierarchical point set feature learning

(k)

fully connected layers

class scores

PointNet++ for Classification and Segmentation

Non-uniform Sampling Density in Point Clouds

Density variation is a common issue in 3D point cloud processing

- perspective effect, radial density variation, motion etc.

Density Variation Affects Hierarchy

Small kernels suffer from varying densities!

Robust Learning Under Varying Sampling Density

During Training: input point dropout with random dropout ratio
Robust Learning Under Varying Sampling Density

- PointNet vanilla
- PointNet++
- PointNet++ (MSG w. DP)
- PointNet++ (MRG w. DP)

PointNet++ Results: Scene Parsing

Robust layers for non-uniform densities (MSG) help a lot.

dataset: ScanNet; metric: per-point semantic classification accuracy (%)

Graph Structures on Points: DGCNN

Point Clouds and Graphs

PointNet family

Graph Neural Networks

[Qi et al., CVPR 2017] [Kipf et al., CVPR 2017]

Bridging the Two DGCNN

[Dynamic Graph CNN for Learning on Point Clouds Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon, TOG 2019]

Each point (e.g., s_i) is connected to its k nearest neighbors

Edge features are defined by concatenating features of points

A shared MLP further lifts edge features into high dimensional space

DGCNN – the EdgeConv Operation

Then, a new kNN graph is reconstructed based on features.

DGCNN – Alternating Processing

DGCNN alternates feature learning (EdgeConvs) and graph reconstruction

edge features: $\boldsymbol{e}_{ij} = h_{\Theta}(\mathbf{x}_i, \mathbf{x}_j)$

• general
$$\mathbf{x}'_i = \prod_{j:(i,j)\in\mathcal{E}} h_{\Theta}(\mathbf{x}_i, \mathbf{x}_j).$$
 (1)

• weighted sum
$$x'_{im} = \sum_{j:(i,j)\in\mathcal{E}} \theta_m \cdot \mathbf{x}_j.$$
 (2)

- global only $h_{\Theta}(\mathbf{x}_i, \mathbf{x}_j) = h_{\Theta}(\mathbf{x}_i),$ (3)
- local only $h_{\Theta}(\mathbf{x}_i, \mathbf{x}_j) = h_{\Theta}(\mathbf{x}_j \mathbf{x}_i).$ (6)
- global + local $h_{\Theta}(\mathbf{x}_i, \mathbf{x}_j) = \bar{h}_{\Theta}(\mathbf{x}_i, \mathbf{x}_j \mathbf{x}_i).$ (7)

Key EdgeConv Properties

- Easily implement and integrates into existing deep learning-based algorithm by switching the MLP component to EdgeConv
- EdgeConv is differentiable, which is an important property in ML and DL (convex optimization problem)
- Extract local features without destroying the permutation invariance
- Dynamic Graph CNN => update the graph after each layer of network, i.e. recompute the k-nearest neighbors in the new feature space (and also recompute the edge features)

DGCNN Architecture

DGCNN Results

	Mean Class Accuracy	Overall Accuracy
3DShapeNets [Wu et al. 2015]	77.3	84.7
VoxNet [Maturana and Scherer 2015]	83.0	85.9
Subvolume [Qi et al. 2016]	86.0	89.2
VRN (single view) [Brock et al. 2016]	88.98	-
VRN (multiple views) [Brock et al. 2016]	91.33	-
ECC [Simonovsky and Komodakis 2017]	83.2	87.4
PointNet [Qi et al. 2017b]	86.0	89.2
PointNet++ [Qi et al. 2017c]	-	90.7
Kd-net [Klokov and Lempitsky 2017]	-	90.6
PointCNN [Li et al. 2018a]	88.1	92.2
PCNN [Atzmon et al. 2018]	-	92.3
Ours (baseline)	88.9	91.7
Ours	90.2	92.9
Ours (2048 points)	90.7	93.5

	Model size(MB)	Тіме(мѕ)	Accuracy(%)
POINTNET (BASELINE) [QI ET AL. 2017B]	9.4	6.8	87.1
PointNet [Qi et al. 2017b]	40	16.6	89.2
PointNet++ [Qi et al. 2017c]	12	163.2	90.7
PCNN [Atzmon et al. 2018]	94	117.0	92.3
Ours (Baseline)	11	19.7	91.7
Ours	21	27.2	92.9

Table 3. Complexity, forward time, and accuracy of different models

Table 2. Classification results on ModelNet40.

DGCNN achieves superior performance on shape classification tasks while maintaining simplicity!

From Geometry to Semantics

Fig. 4. Structure of the feature spaces produced at different stages of our shape classification neural network architecture, visualized as the distance between the red point to the rest of the points. For each set, Left: Euclidean distance in the input \mathbb{R}^3 space; Middle: Distance after the point cloud transform stage, amounting to a global transformation of the shape; Right: Distance in the feature space of the last layer. Observe how in the feature space of deeper layers semantically similar structures such as shelves of a bookshelf or legs of a table are brought close together, although they are distant in the original space.

Object Detection in Point Clouds, Indoors

Point Cloud Object Amodal Bounding Box Detection

- Charles R. Qi, Or Litany, Kaiming He, Leonidas J. Guibas. *Deep Hough Voting for 3D Object Detection in Point Clouds*. ICCV 2019.
- Charles R. Qi, Xinlei Chen, Or Litany, Leonidas J. Guibas. *ImVoteNet: Boosting 3D Object Detection in Point Clouds with Image Votes*. CVPR 2020.

Generalized Hough Transform

Deep Hough Voting – A Two-Stage Approach

VoteNet – A Two-Stage Approach

A capsule/transformer network in disguise ...

VoteNet Results on SUN RGB-D

VoteNet Results on ScanNet

VotingNet prediction

Ground truth

VoteNet Quantitative Results

average precision with 3D IoU threshold 0.25

		Input	bathtub	bed	bookshelf	chair	desk	dresser	nightstand	sofa	table	toilet	mAP
Deep sliding shapes DSS Clouds of oriented gradients COG 2D-d Frustum pointnet F-Po Votin	DSS [37]	Geo + RGB	44.2	78.8	11.9	61.2	20.5	6.4	15.4	53.5	50.3	78.9	42.1
	COG [33]	Geo + RGB	58.3	63.7	31.8	62.2	45.2	15.5	27.4	51.0	51.3	70.1	47.6
	2D-driven [17]	Geo + RGB	43.5	64.5	31.4	48.3	27.9	25.9	41.9	50.4	37.0	80.4	45.1
	F-PointNet [30]	Geo + RGB	43.3	81.1	33.3	64.2	24.7	32.0	58.1	61.1	51.1	90.9	54.0
	VotingNet (ours)	Geo only	74.4	83.0	28.8	75.3	22.0	29.8	62.2	64.0	47.3	90.1	57.7

SUN RGB-D

ScanNetV2

	Input	mAP@0.25	mAP@0.5
DSS [42, 12]	Geo + RGB	15.2	6.8
MRCNN 2D-3D [11, 12]	Geo + RGB	17.3	10.5
F-PointNet [34, 12]	Geo + RGB	19.8	10.8
GSPN [54]	Geo + RGB	30.6	17.7
3D-SIS [12]	Geo + 1 view	35.1	18.7
3D-SIS [12]	Geo + 3 views	36.6	19.0
3D-SIS [12]	Geo + 5 views	40.2	22.5
3D-SIS [12] VoteNet (ours)	Geo only Geo only	25.4 58.6	14.6 33.5

Modalities: Point Clouds Complement RGB Images

- + High resolution
- + Dense coverage
- Subject to many imaging artifacts

- + Absolute depth and scale
- - Sparse, low rez

3D Detection with Sparse Points

Application: 3D detection from monocular video, using sparse SLAM keypoints.

Picture: ORB-SLAM results

Points and Images: ImVoteNet

How to best combine geometry and appearance info?

ImVoteNet Architecture

Multiple 3D Geometry Representations

[Z. Zhang, B. Sun, H. Yang, Q. Huang.H3DNet: 3D Object Detection Using Hybrid Geometric Primitives.ECCV 2020]

Representations Best for Different Object Instances

Object Detection in Point Clouds, Outdoors

Frustum PointNets for 3D Object Detection

+ Leveraging mature 2D detectors for region proposal. greatly reducing 3D search space.
+ Solving 3D detection problem with 3D data and 3D deep learning.

Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, Leonidas Guibas. Frustum PointNets for 3D Object Detection from RGB-D Data (CVPR 2018)

Frustum-based 3D Object Detection: Challenges

- Occlusion and clutter is common in frustum point clouds
- Large range of point depths
Frustum PointNets

Use **PointNets** for **data-driven** object detection in frustums.

center

Frustum PointNets: Key to Success

Respect and exploit 3D

- Use each modality (image, points) for what it's best at using 3D representation and 3D deep learning for the 3D problem.
- **Canonicalize the problem** exploiting geometric transformations in point clouds.

KITTI Results: Quantitative

Leading performance on KITTI benchmark

KITTI Results: Quantitative

Leading performance on KITTI benchmark

Especially leading at smaller objects (pedestrians and cyclists) – hard to localize with 3D proposals only.

KITTI Results: Qualitative

Remarkable box estimation accuracy even with a dozen of points or with very partial point clouds. V3

KITTI Results: Qualitative

KITTI Results: Example

3D Motion in Point Clouds

Scene Flow [Vedula et al. 1999]

- Scene flow: 3D motion field of points
- Optical flow is its projection to 2D image plane.
- Low-level understanding of a dynamic environment

Our Approach: FlowNet3D

• Directly learning scene flow in 3D point clouds, with 3D deep learning architectures.

Xingyu Liu, Charles R. Qi, Leonidas Guibas. Learning Scene Flow in 3D Point Clouds, (CVPR 2019).

Deep Net Architecture

- How to learn point cloud features?
- Where in the network architecture to mix point features from consecutive frames?
- How to mix them?

Intermediate level

Middle-Level Mixing

Point Attributes

dist(g1, f),	Y1-X
dist(g2, f),	Y2-X
:	
dist(gi, f),	Yi-X
:	

Naive approach: concatenation

dist(g1, f), Y1-X dist(g2, f), Y2-X ...

A More Structured Approach

Let the network learn the distance function ...

FlowNet3D

Training on Synthetic Data

FlyingThings3D [Mayer et al. 2016] dataset from MPI

Random ShapeNet objects

Very challenging dataset with strong occlusions and large motions.

FlyingThings3D Results

KITTI Results

KITTI Results

Generalizing to KITTI: Quantitative

Point-Set Generation

Point Cloud Synthesis from a Single Image

Input Reconstructed 3D point cloud

[H. Su, H. Fan, LG, 2017]

End-to-End Learning

Synthesize for Learning

Distance Metrics Between Point Sets

Given two sets of points, measure their discrepancy

Worst case: Hausdorff distance (HD)

Average case: Chamfer distance (CD)

Optimal case: Earth Mover's distance (EMD)

Average all the nearest neighbor distance by nearest neighbors

Solves the optimal transportation (bipartite matching) problem!

Desired Properties of Distance Metrics

Geometric requirement

- Induces a nice shape space
- In other words, a good metric should reflect the natural shape differences

Computational requirement

• Defines a loss that is numerically easy to compute and optimize

End-to-End Learning

End-to-End Learning

Natural Statistics of Object Geometry

- Many local structures are common
 - e.g., planar patches, cylindrical patches
 - strong local correlation among point coordinates

Natural Statistics of Object Geometry

- Many local structures are common/shared
 - e.g., planar patches, cylindrical patches
 - strong local correlation among point coordinates
- But also some intricate local structures
 - some points have high variability neighborhoods

Two-Branch Architecture

Set union by array concatenation

Deconvolution Branch

- Deconvolution induces a smooth coordinate map
- Geometrically, learns a smooth parameterization
Fully Connected Branch

The Two Branches

blue: deconv branch - large, consistent, smooth structures
red: fully-connected branch - more intricate structures

Example Results

From Real Images

Conclusions: Real-World 3D Understanding

- Novel architectures for deep learning on point clouds PointNet and PointNet++, respecting invariances, light-weight and robust to data corruption, a unified framework for various tasks.
- Successful applications in 3D scene understanding.

That's All

