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• The class will continue in Zoom format next week.

• Extended office hours this Friday (Jan 21): 1:30-3:00 pm. Can be in 
person. Please send e-mail to request a time slot.

• Please ask Kaichun for Google Cloud for Education coupons.
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Tidbits



Homework 1

due, Wed, Jan 26, 2022
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• Can work in groups of up to 3 students – single shared writeup and 
code submission OK.

• Writeup must be in digital form, typeset (LaTeX or Word), and 
submitted through Gradescope.

• Two “grace class periods” for late homeworks – after that, 20% 
penalty per period.

• Respect the honor code: all submitted work must be your own and 
properly reference materials used.
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Homework Policies



Last Time: Deep Learning on 
Point Clouds (PCs)

5



6

Deep Nets for PCs: PointNet and PointNet++

Object Classification

Object Part Segmentation

Semantic Scene Parsing

...

PointNet

End-to-end learning for irregular point data 

Unified framework for various tasks

Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas. 
PointNet: Deep Learning on Point Sets for 3D 
Classification and Segmentation. (CVPR’17)



7

Invariances

Point Permutation Invariance

Point cloud is a set of unordered points

Spatial Transformation Invariance
Point cloud rigid motions should not alter classification results

The model has to respect key desiderata for point clouds:

Sampling Invariance
Output a function of the underlying geometry and not the sampling
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PointNet for Classification and Segmentation

Symmetric Aggregator
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Results on Object Part Segmentation
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PointNet++: Hierarchical Point Feature Learning

N points in (X,Y)

X

Y

u

v

pointnet

k points in local 
coordinates (u,v)

Apply pointnet at a local region
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PointNet++ for Classification and Segmentation

Aggregation pattern is only a function of
the spatial locations of the points
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Non-uniform Sampling Density in Point Clouds

Density variation is a common issue in 3D point cloud processing
- perspective effect, radial density variation, motion etc.

Challenge for local 
feature learning!

Network may learn
sampling pattern – not
underlying geometry



[Wang et al., TOG 2019]

DGCNN alternates feature learning (EdgeConvs) and graph reconstruction (neighbor computation)
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From Geometry to Semantics



Point Cloud Object Amodal Bounding Box Detection

Via a voting scheme
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• Charles R. Qi, Or Litany, Kaiming He, Leonidas J. Guibas.  Deep Hough Voting for 3D Object Detection in Point Clouds. ICCV  2019.

• Charles R. Qi, Xinlei Chen, Or Litany, Leonidas J. Guibas. ImVoteNet: Boosting 3D Object Detection in Point Clouds with Image Votes. CVPR 
2020.

armchair

armchair
sofa

coffee table



VoteNet – A Two-Stage Approach
Pointnet++ Pointnet++
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VoteNet Results on SUN RGB-D
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Basic idea: ImVoteNet

C. Qi, X. Chen, O. Litany, L.J. Guibas CVPR 2020
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ImVoteNet Architecture
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Point Cloud Synthesis from a Single Image

Input Reconstructed 3D point cloud
[H. Su, H. Fan, LG, 2017]



sample

Loss
on

sets

Deep network

Prediction
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End-to-End Learning



Common Distance Metrics

Worst case: Hausdorff distance (HD)

Average case: Chamfer distance (CD)

Optimal case: Earth Mover’s distance (EMD)



Two-Branch Architecture

conv

... 

Deconv
branch

FC
branch

Capture smooth structures

Capture intricate 
structures

Nx3

Mx3

…

…

…

(M+N)x3

Set union by array concatenation



From Real Images

input

Out of training categories

observed view 90∘ input observed view 90∘



• Directly learning scene flow in 3D point clouds, with 3D deep learning 
architectures.

FlowNet3D
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point cloud 1: N1x3
point cloud 2: N2x3 scene flow: N1x3

Xingyu Liu, Charles R. Qi, Leonidas Guibas. Learning Scene Flow in 3D Point Clouds, (CVPR 2019).

FlowNet3D



FlowNet3D

27Composed of many many mini-pointnet++ modules … Pointnet++
set conv = set abstraction



Training on Synthetic Data
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FlyingThings3D [Mayer et al. 2016] 
dataset from MPI

Random ShapeNet objects

Very challenging dataset with 
strong occlusions and large motions.



KITTI Results



Generative Models: 
Autoencoders and

Variational Autoencoders
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• Autoencoder:

• Variational autoencoder (VAE): an autoencoder whose encoding 
distribution is regularized during training in order to ensure that its 
latent space has good properties, allowing us to generate new data

• Related to variational inference in Statistics
31

Deep Generative Models: VAEs

Use as generative model
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Dimensionality Reduction



• Build new features that are linear combinations of old features
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Detour: Principal Components Analysis (PCA)



• For centred data, minimizing the reconstruction error is equivalent to 
maximizing the variance of the projected data.

𝑟𝑟2 + 𝑣𝑣2 = 𝑑𝑑2

Reconstruction Error and Variance
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NB, projections of
centered data are
centered

CS233 material …
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Eigen-analysis of the Data Covariance Matrix



The General PCA Problem
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Autoencoder: Use Neural Nets for E and D

Use more powerful encoders
and decoders
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Autoencoder vs PCA
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Don’t Overencode!

We want to structure of latent space to reflect the structure of the data –
especially if we want to sample the latent space for generating new data
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Autoencoders for Content Generation?

Severe overfitting
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Autoencoders for Content Generation?

An autoencoder is solely trained to encode and decode with as small 
loss as possible, no matter how the latent space is organized



• A variational autoencoder is an autoencoder whose training is regularized
• to avoid overfitting and
• to ensure that the latent space has good properties that enable generative 

processes
• Instead of encoding an input as a single point, we encode it as a distribution over 

the latent space.
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Variational Autoencoder (VAE)
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Regularize the Distribution in Latent Space

Make the latent space distribution look like a simple Gaussian
Add a second loss measuring distribution distance (via the Kulback-Leibler divergence) 
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Continuity and Completeness in Latent Space
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The Effect of Regularization

Overfitting with “punctual” distributions
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The Effect of Regularization

Create smooth gradients over the information encoded in the latent space
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But at the Expense of Reconstruction Quality

(source: Wojciech Mormul on Github)
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Variational Inference I: Probabilistic Synthesis

by Bayes, but intractable

VI: Approximate a complex target distribution by a simpler parametric distribution
(e.g., a Gaussian) 

assume diagonal covariance

graphical model



49

Variational Inference II
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ELBO: Evidence Lower BOund

By Jensen’s inequality on a concave function (log)
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Variational Inference with NNs

Sample

Sampling is a problem w. back propagation
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The Reparametrization Trick

for Gaussians with diagonal covariance
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The Final VAE



54

MNIST Example

Class differentiation Sampling the likelihood



Generative Models: Deep 
Neural Implicits
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JJ (Jeong Joon) Park



Example
Student Presentation
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DeepSDF: Learning Continuous SDFs for 
Shape Representation

Jeong Joon Park1, Peter Florence2, Julian Straub3, 
Richard Newcombe3, Steven Lovegrove3

1 University of Washington, 2 MIT, 3 Facebook Reality Labs

CVPR 2019



58

Representation for 2D Deep Learning

ImageNet. 2012 Convolution Layer



Representation for 2D Deep Learning

CycleGAN, 2017Liu et al, 2018
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Representations for 3D Deep Learning

Wu et al. 2016 Qi et al. 2017 Groueix et al. 2018

Voxel Points Meshes



• Memory Intensive, Computationally Expensive (N^3)
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Voxel Representation
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Surface as Decision Boundary



66

Regression of Continuous SDF

NN
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Signed Distance Function
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Signed Distance Function
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Signed Distance Function



Discrete SDF



Continuous SDF



Universal Approximation Theorem



Implicit to Explicit



Implicit to Explicit – Discrete sampling



Lorensen et al., 1987

Marching Cubes



2. Raycasting



2. Raycasting



78

Coding Multiple Shapes
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Auto-Encoder

Auto-Encoder
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Auto-Decoder

Auto-Encoder Auto-Decoder

Backpropagate
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Auto-Decoder

GT

Backpropagate
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Benefits of Auto-Decoder

Benefits during Inference

1. Any Number of Observations – Partial

2. More Controlled Inference – e.g. Accuracy, Priors
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Auto-Decoder Training

GT

Backpropagate
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Auto-Decoder Training

GT

Backpropagate
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Latent Space of Shapes
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Auto-Decoder Inference

Test Shape
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Auto-Decoder Inference

Reconstruction

Test Shape
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Auto-Decoder Inference

Input

Reconstruction
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Alternative: Image to SDF

• Instead of conditioning on code,
predict to weights of the MLP itself

• Takes an image  outputs the weights
• The new network models the implicit field for the image

Littwin et al. 2019
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Alternative: Image to SDF

Littwin et al. 2019
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Adding Priors to Inference
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Adding Priors to Inference

SDF Regularization:

Normal Regularization:

(Matan et al. 2020)

Distribution Prior:



Auto-encoding
unknown shapes

Shape completion

Results



96

Results: Comparison with Octree-Based

Our 
Reconstruction

Octree Based
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Results: Comparisons with Mesh-Based

Ground Truth Our Reconstruction Atlasnet (25 Patches) Atlasnet (1 Patch)



98

Shape Completion
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Shape Completion
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Shape Completion
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Shape Completion



Zakharov et al. 2020

Merwe et al. 2020

Saito et al. 2019

Mildenhall et al. 2020
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DeepSDF Extensions: PiFU

Saito et al. 2019



• Coordinate-based modeling of RGB and Densities
Instead of SDFs
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DeepSDF Extensions: NeRF

Mildenhall et al. 2020
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DeepSDF Extensions: NeRF

Mildenhall et al. 2020
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DeepSDF Extensions: NeRF

Mildenhall et al. 2020






• A 3D GAN using DeepSDF + NeRF modeling
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DeepSDF Extension: StyleSDF

Or-El et al. 2021



DeepSDF Extension: StyleSDF



























• Speaker: Jeong Joon Park
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Thank you!
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That’s All
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