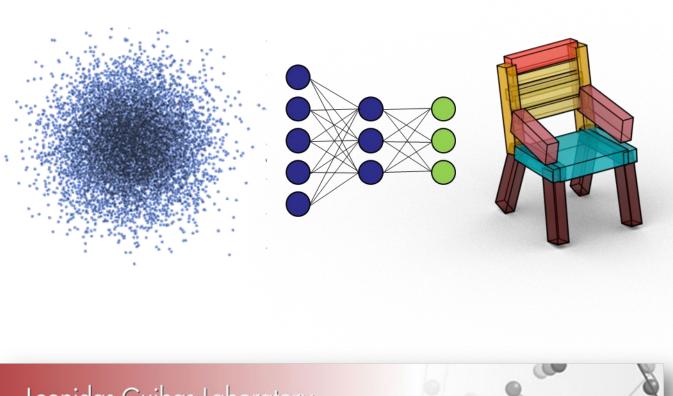
CS348n: Neural Representations and Generative Models for 3D Geometry

Geometric Computing



Leonidas Guibas Computer Science Department Stanford University

01-19_GEN_MODELS 1

Leonidas Guibas Laboratory

Tidbits

- The class will continue in Zoom format next week.
- Extended office hours this Friday (Jan 21): 1:30-3:00 pm. Can be in person. Please send e-mail to request a time slot.
- Please ask Kaichun for Google Cloud for Education coupons.

Homework 1

due, Wed, Jan 26, 2022

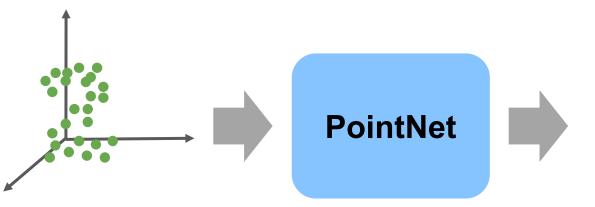
Homework Policies

- Can work in groups of up to 3 students single shared writeup and code submission OK.
- Writeup must be in digital form, typeset (LaTeX or Word), and submitted through Gradescope.
- Two "grace class periods" for late homeworks after that, 20% penalty per period.
- Respect the honor code: all submitted work must be your own and properly reference materials used.

Last Time: Deep Learning on Point Clouds (PCs)

Deep Nets for PCs: PointNet and PointNet++

. . .



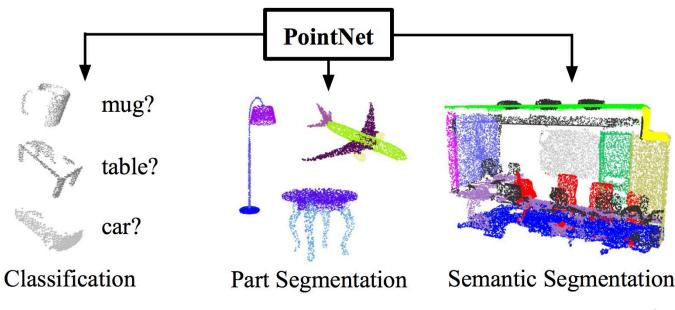
Object Classification

Object Part Segmentation

Semantic Scene Parsing

End-to-end learning for irregular point data **Unified** framework for various tasks

Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. (CVPR'17)



The model has to respect key desiderata for point clouds:

Point Permutation Invariance

Point cloud is a set of unordered points

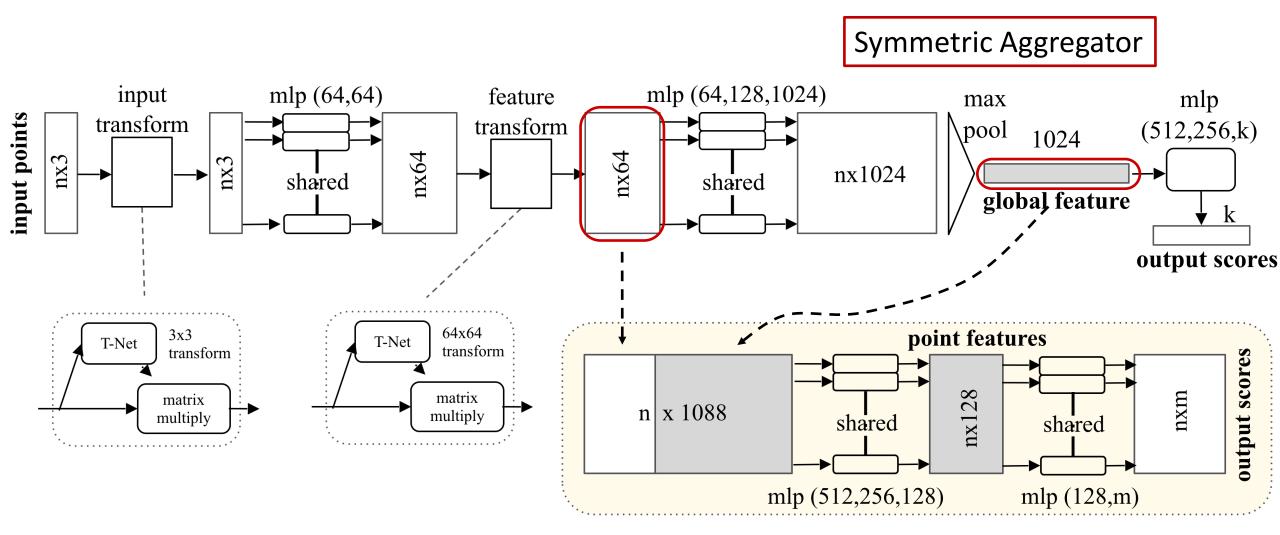
Spatial Transformation Invariance

Point cloud rigid motions should not alter classification results

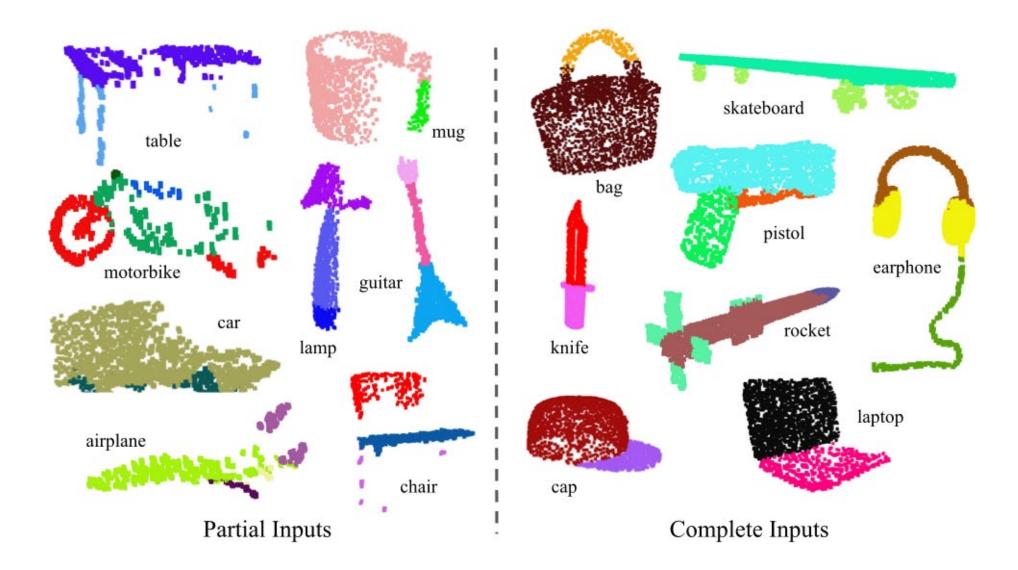
Sampling Invariance

Output a function of the underlying geometry and not the sampling

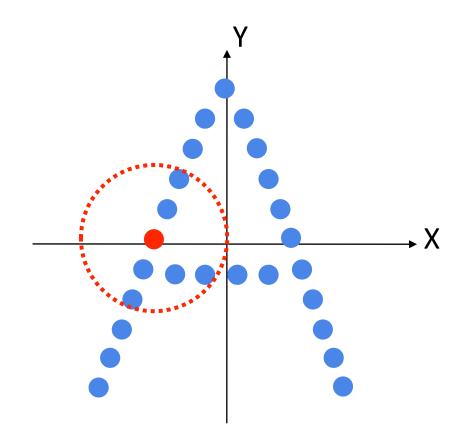
PointNet for Classification and Segmentation



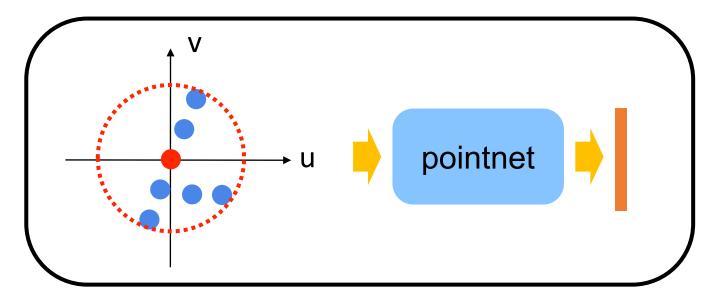
Results on Object Part Segmentation



PointNet++: Hierarchical Point Feature Learning



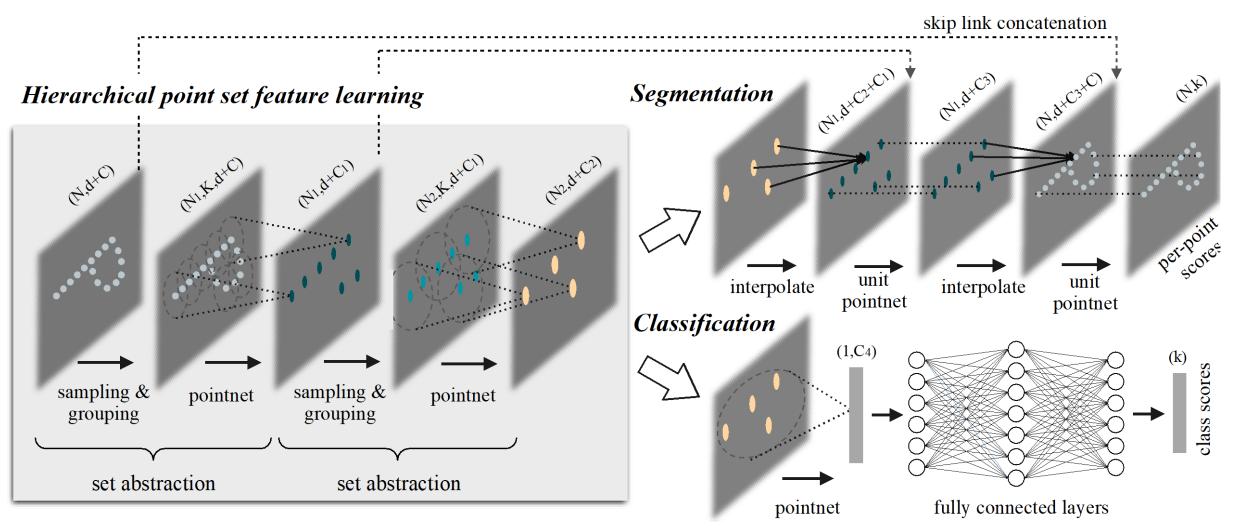
Apply pointnet at a local region



N points in (X,Y)

k points in local coordinates (u,v)

PointNet++ for Classification and Segmentation

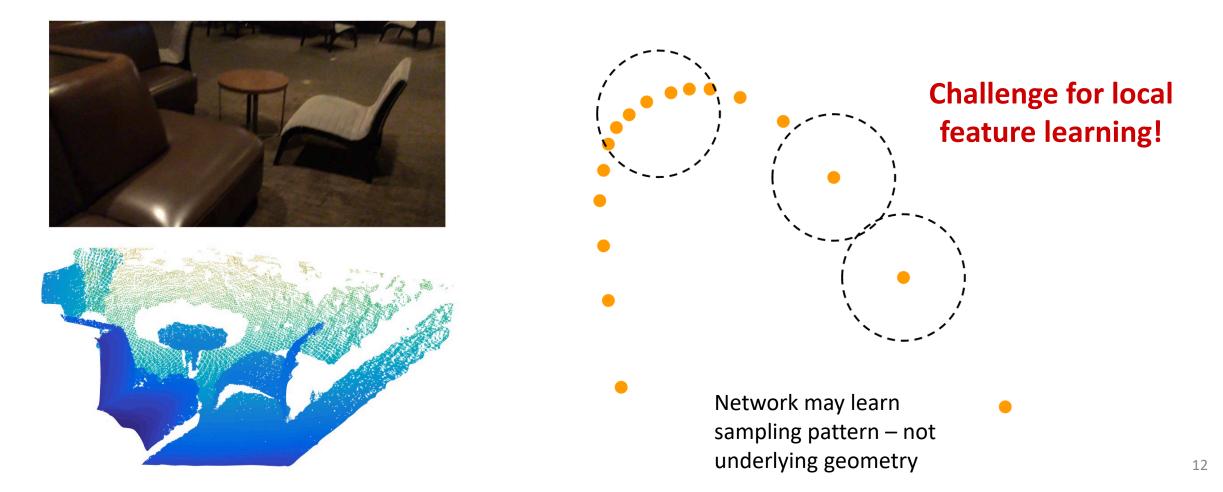


Aggregation pattern is only a function of the spatial locations of the points

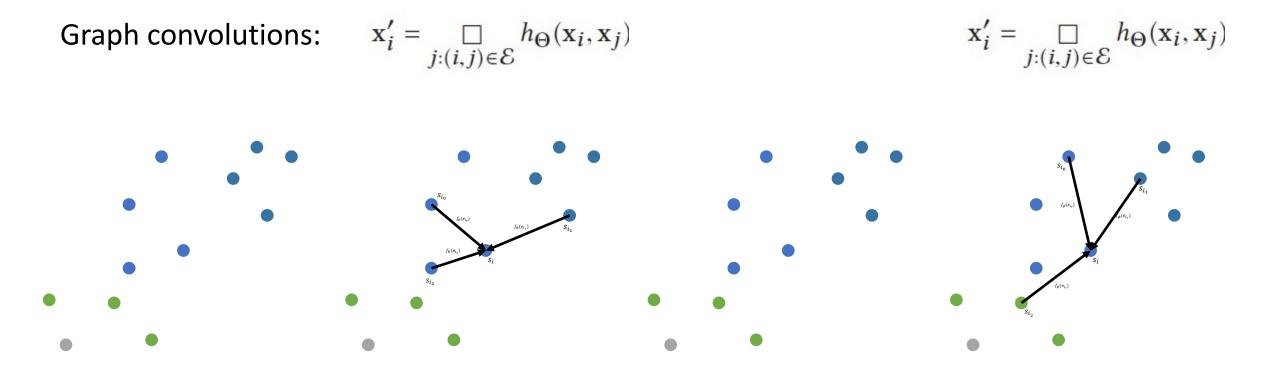
Non-uniform Sampling Density in Point Clouds

Density variation is a common issue in 3D point cloud processing

- perspective effect, radial density variation, motion etc.



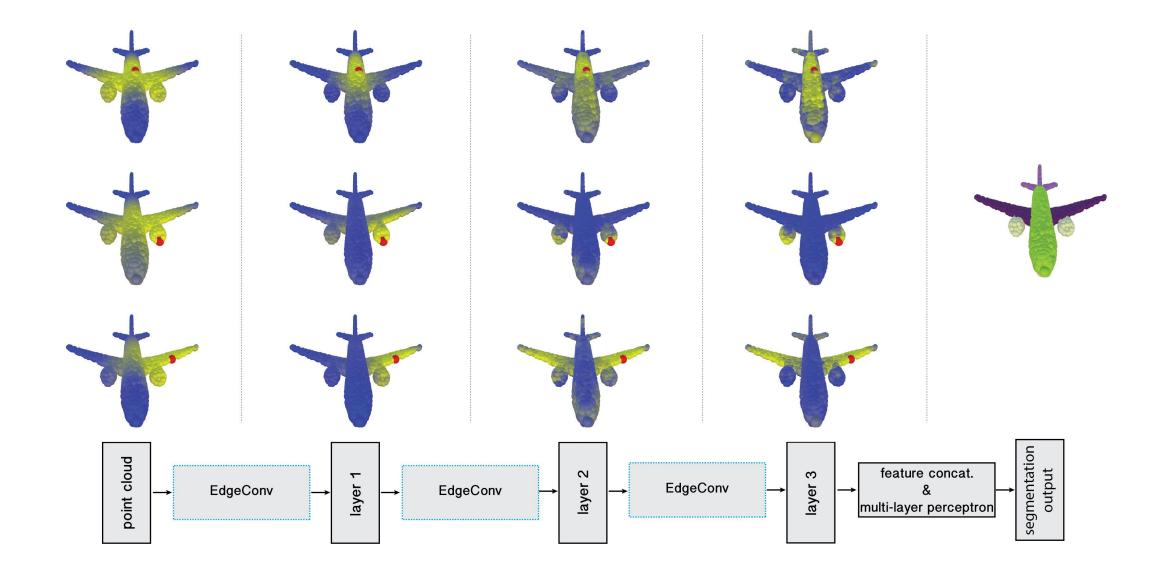
Dynamic Graph CNN: EdgeConv



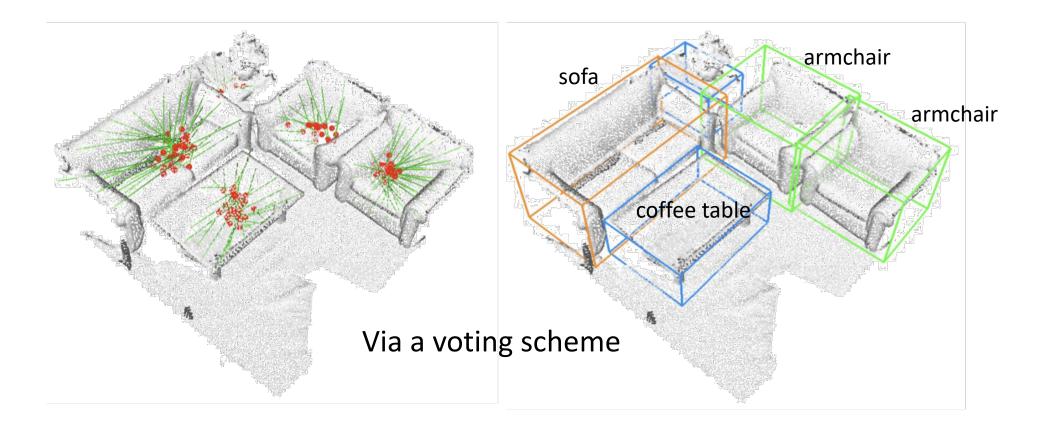
DGCNN alternates feature learning (EdgeConvs) and graph reconstruction (neighbor computation)

[Wang et al., TOG 2019]

From Geometry to Semantics

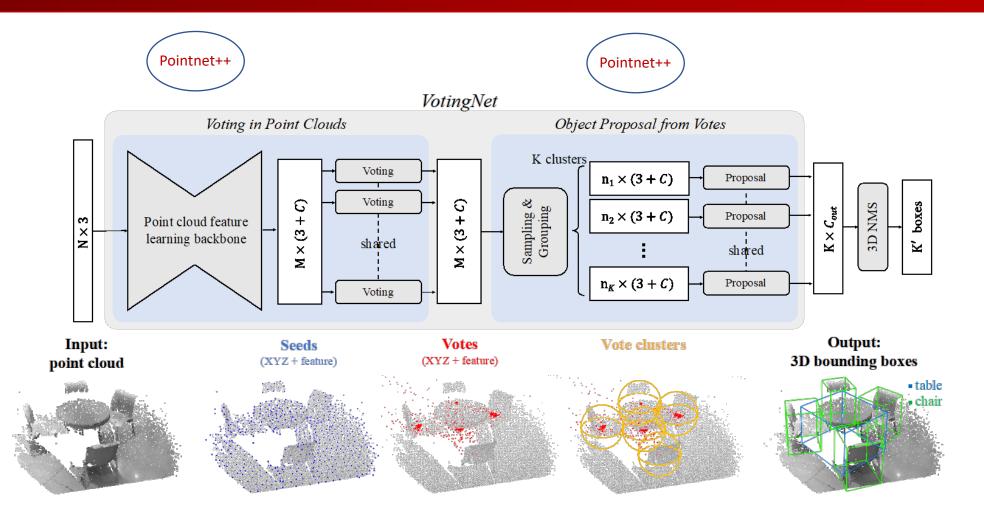


Point Cloud Object Amodal Bounding Box Detection

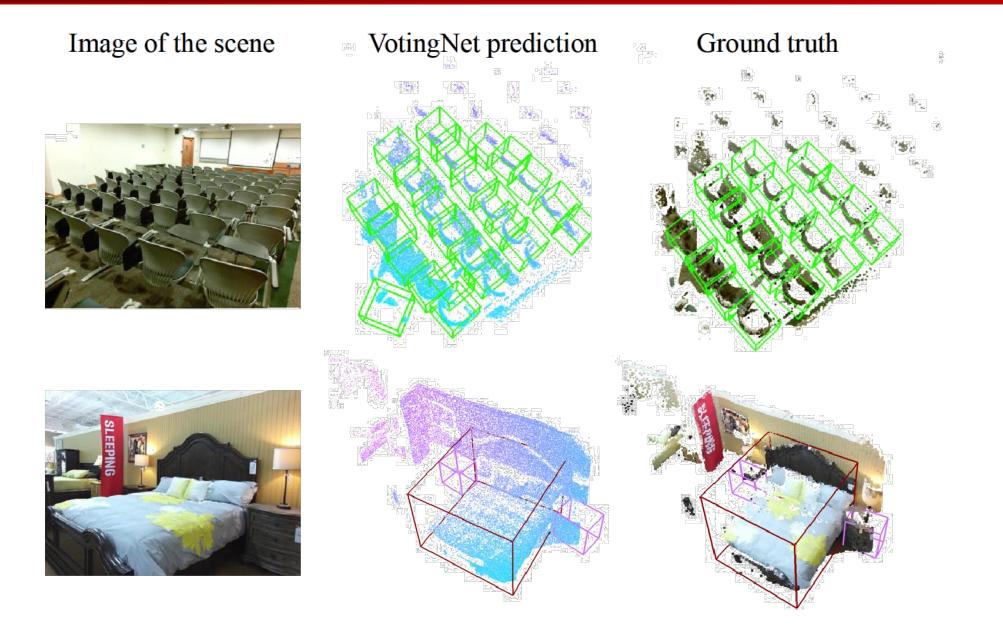


- Charles R. Qi, Or Litany, Kaiming He, Leonidas J. Guibas. *Deep Hough Voting for 3D Object Detection in Point Clouds*. ICCV 2019.
- Charles R. Qi, Xinlei Chen, Or Litany, Leonidas J. Guibas. *ImVoteNet: Boosting 3D Object Detection in Point Clouds with Image Votes*. CVPR 2020.

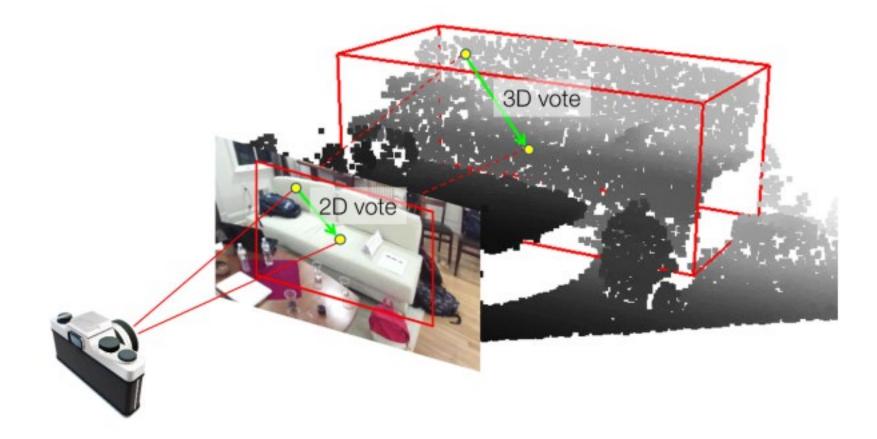
VoteNet – A Two-Stage Approach



VoteNet Results on SUN RGB-D

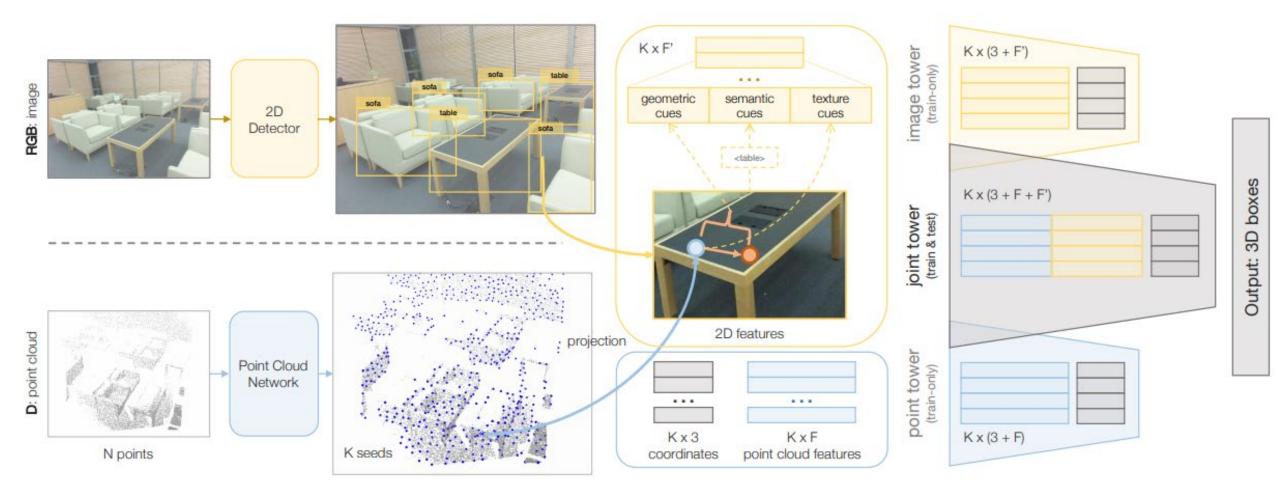


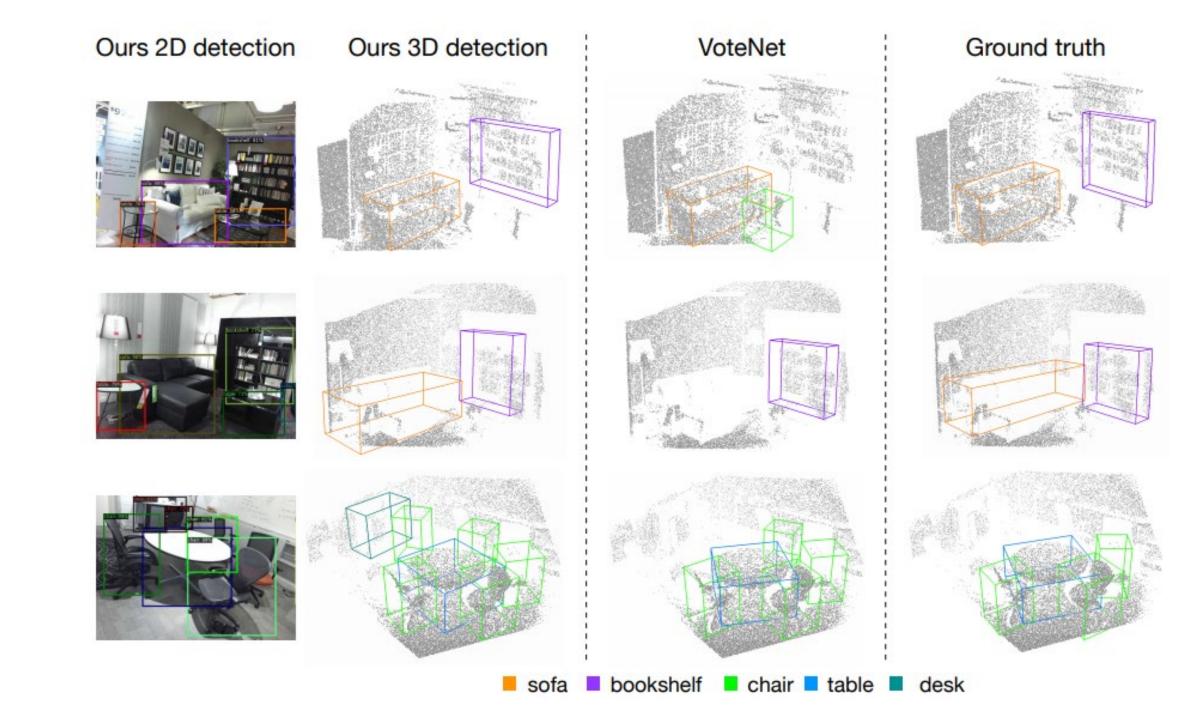
Basic idea: *ImVoteNet*



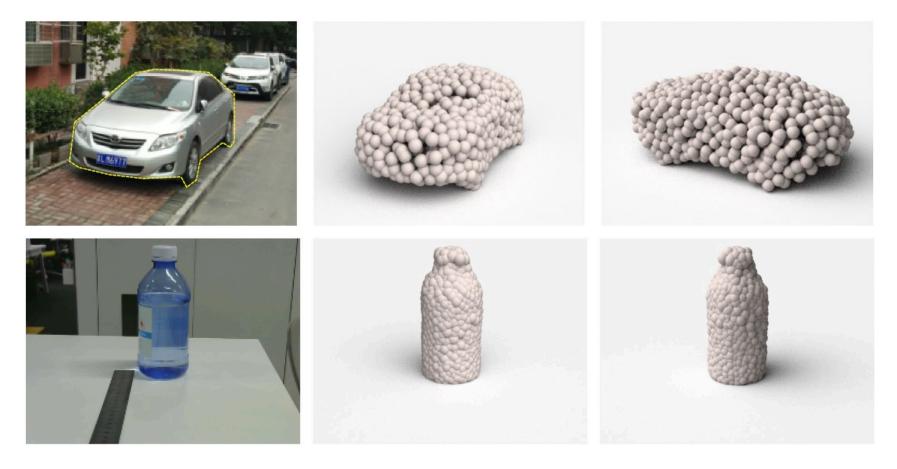
C. Qi, X. Chen, O. Litany, L.J. Guibas CVPR 2020

ImVoteNet Architecture





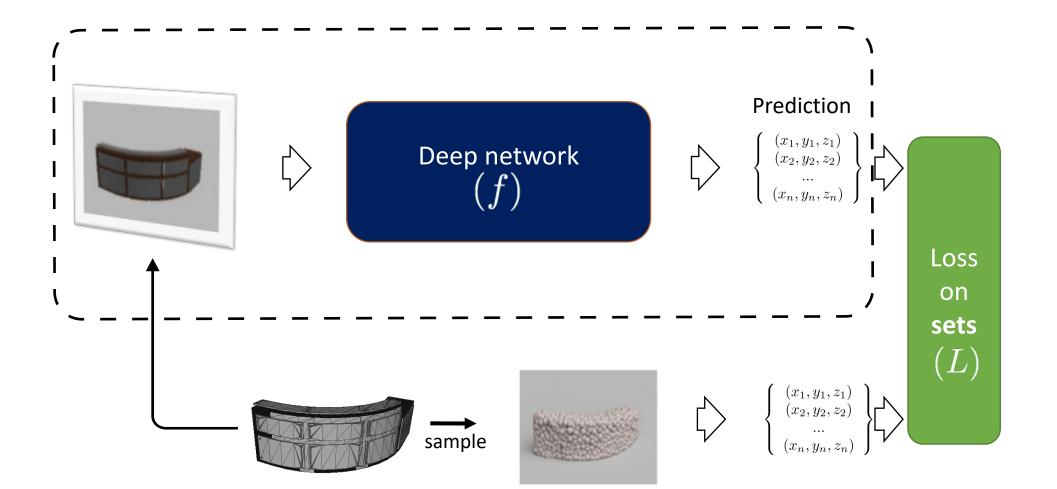
Point Cloud Synthesis from a Single Image



Input Reconstructed 3D point cloud

[H. Su, H. Fan, LG, 2017]

End-to-End Learning

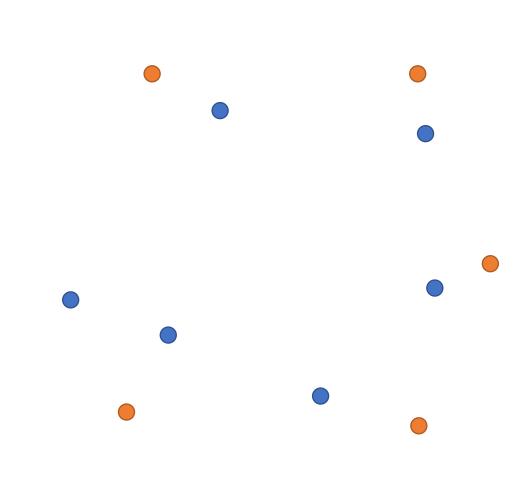


Common Distance Metrics

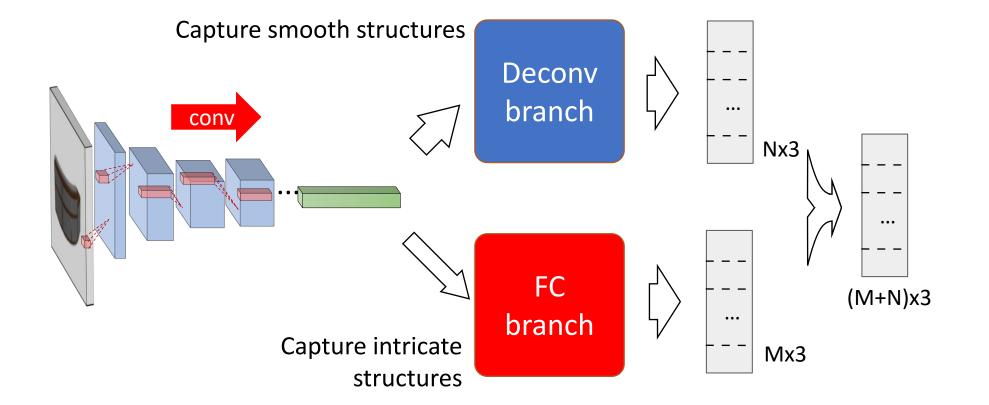
Worst case: Hausdorff distance (HD)

Average case: Chamfer distance (CD)

Optimal case: Earth Mover's distance (EMD)

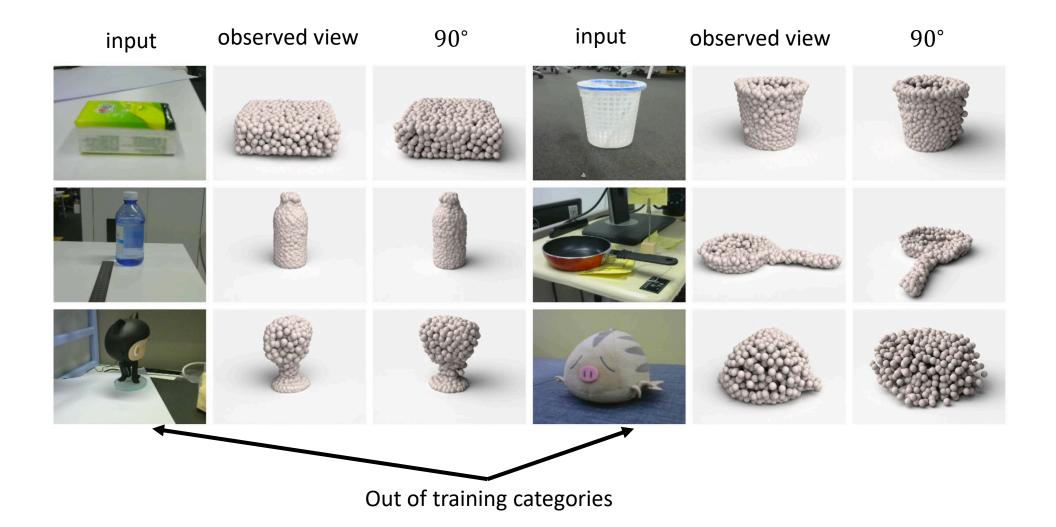


Two-Branch Architecture



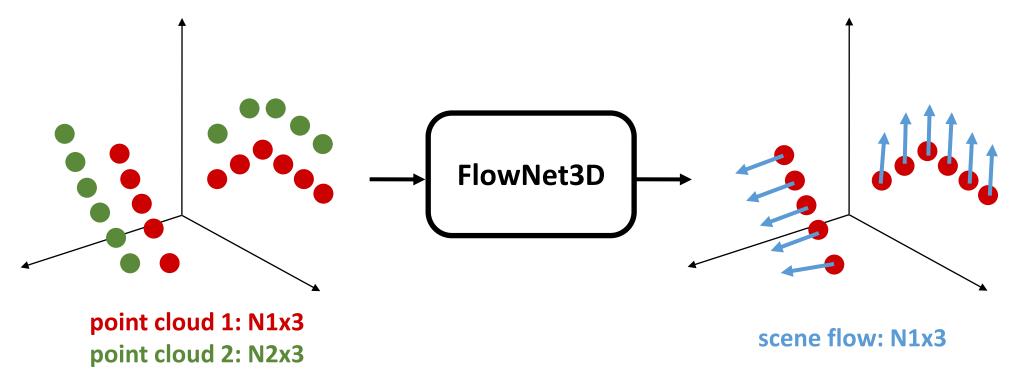
Set union by array concatenation

From Real Images



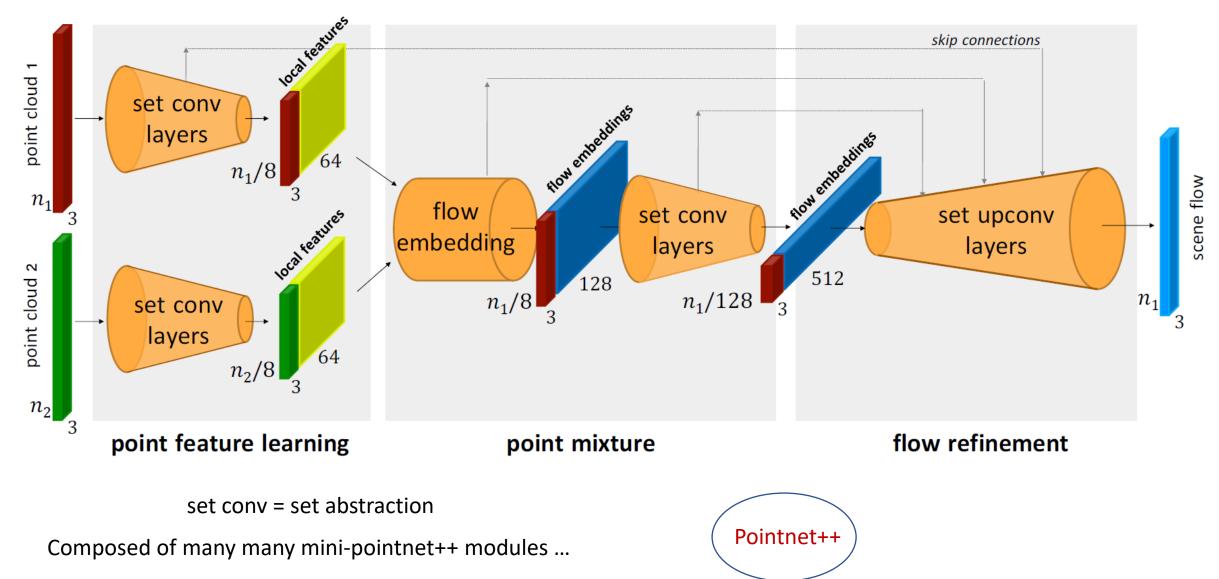
FlowNet3D

• Directly learning scene flow in 3D point clouds, with 3D deep learning architectures.



Xingyu Liu, Charles R. Qi, Leonidas Guibas. Learning Scene Flow in 3D Point Clouds, (CVPR 2019).

FlowNet3D

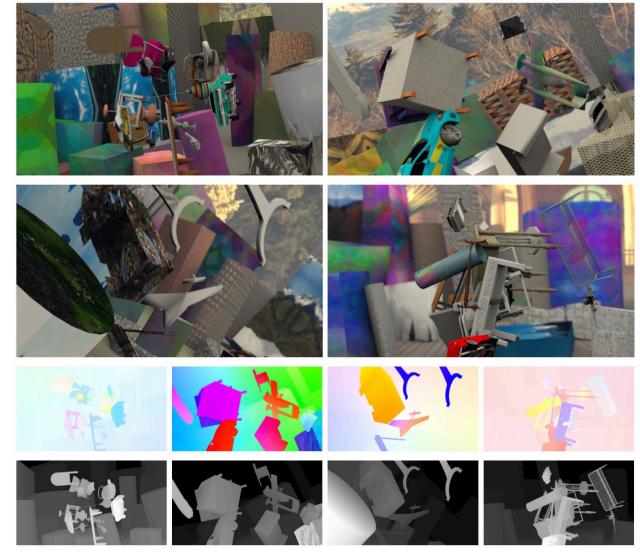


Training on Synthetic Data

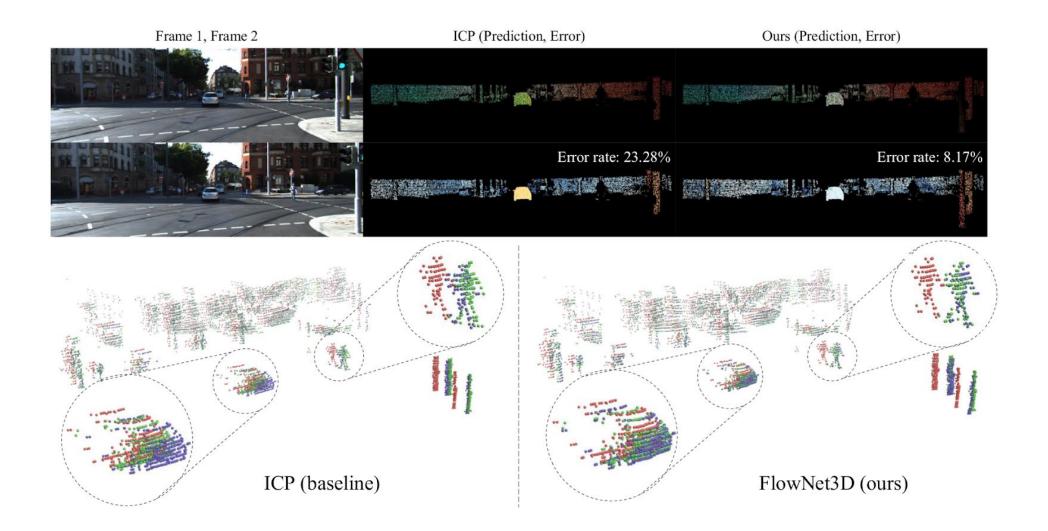
FlyingThings3D [Mayer et al. 2016] dataset from MPI

Random ShapeNet objects

Very challenging dataset with strong occlusions and large motions.

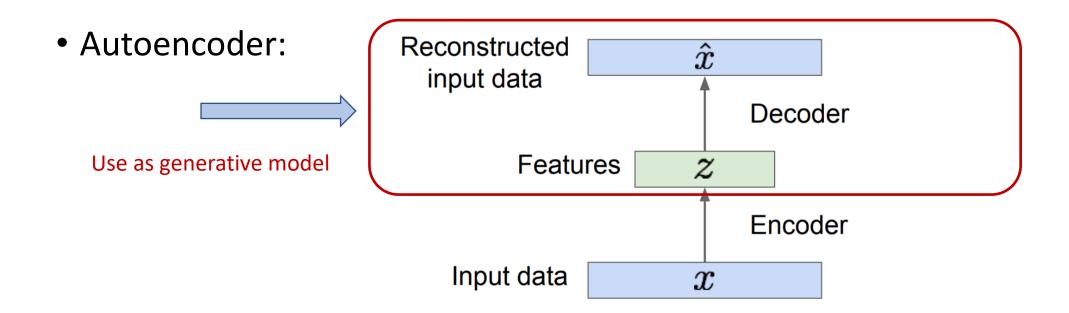


KITTI Results



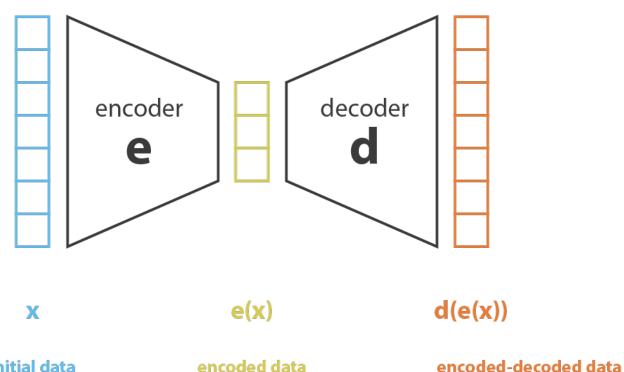
Generative Models: Autoencoders and Variational Autoencoders

Deep Generative Models: VAEs



- Variational autoencoder (VAE): an autoencoder whose encoding distribution is regularized during training in order to ensure that its latent space has good properties, allowing us to generate new data
- Related to variational inference in Statistics

Dimensionality Reduction



initial data in space Rⁿ encoded data in latent space R^m (with m<n) $\mathbf{x} = \mathbf{d}(\mathbf{e}(\mathbf{x}))$

lossless encoding no information is lost when reducing the number of dimensions

x ≠ d(e(x))

lossy encoding

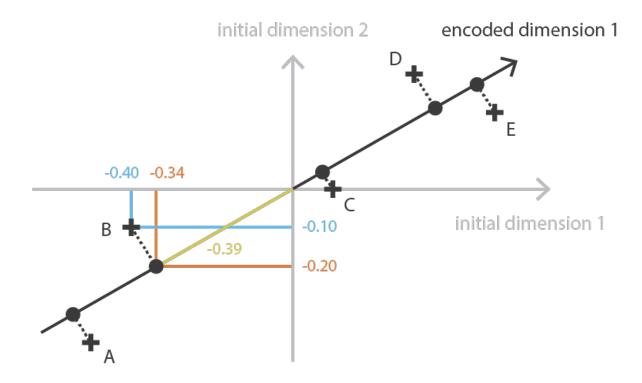
some information is lost when reducing the number of dimensions and can't be recovered later

$$(e^*, d^*) = \underset{(e,d)\in E\times D}{\operatorname{arg\,min}} \epsilon(x, d(e(x)))$$

back in the initial space Rⁿ

Detour: Principal Components Analysis (PCA)

• Build new features that are linear combinations of old features

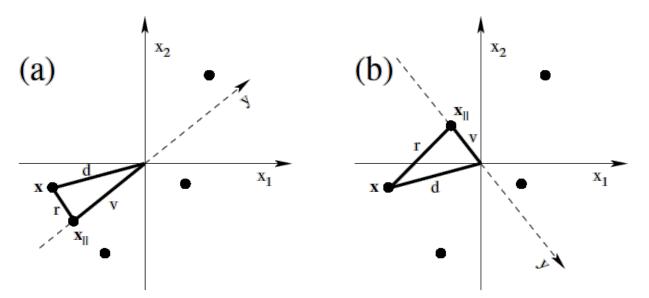


Point	Initial	Encoded	Decoded
А	(-0.50, -0.40)	-0.63	(-0.54, -0.33)
В	(-0.40, -0.10)	-0.39	(-0.34, -0.20)
С	(0.10, 0.00)	0.09	(0.07 0.04)
D	(0.30, 0.30)	0.41	(0.35, 0.21)
Е	(0.50, 0.20)	0.53	(0.46, 0.27)

····· information lost

Reconstruction Error and Variance

• For centred data, minimizing the reconstruction error is equivalent to maximizing the variance of the projected data.

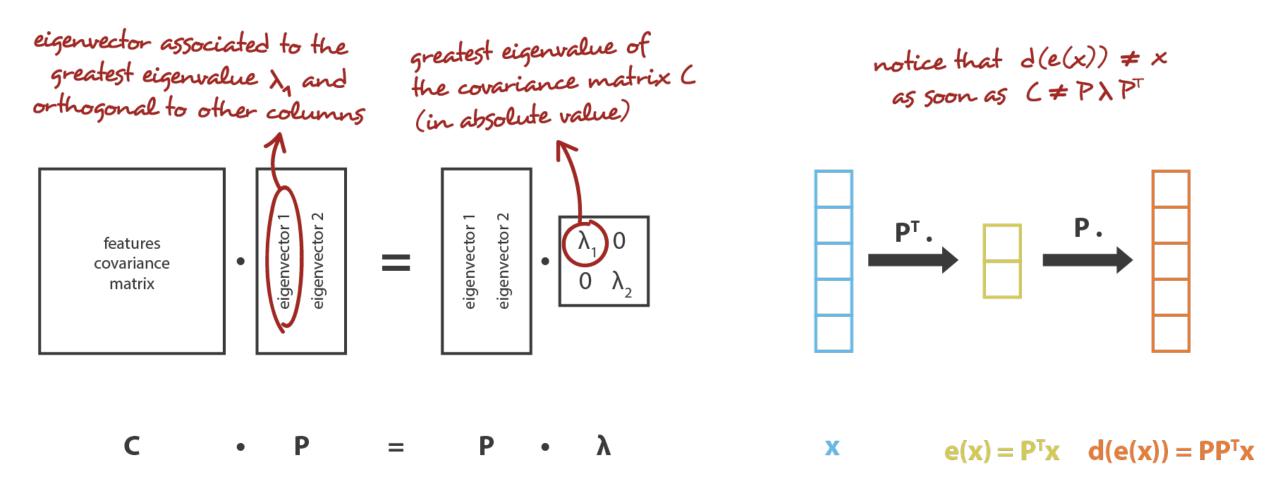


NB, projections of centered data are centered

$$r^2 + v^2 = d^2$$

CS233 material ...

Eigen-analysis of the Data Covariance Matrix

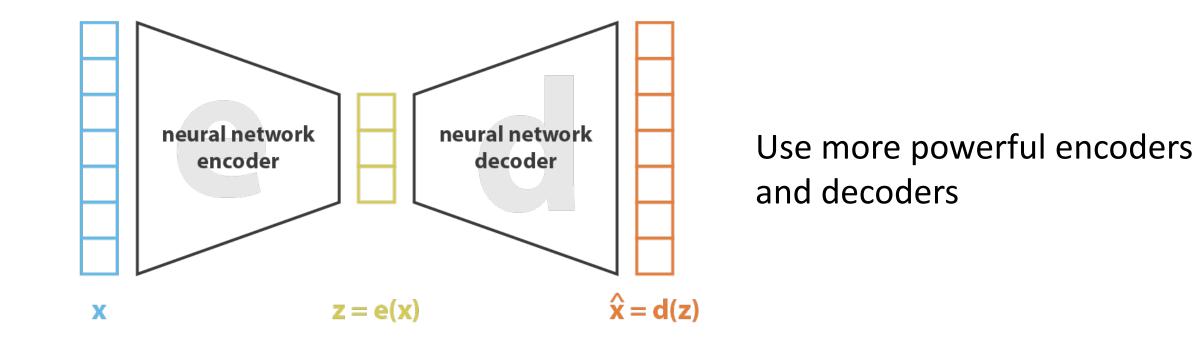


Principal Component Analysis (PCA): Given a set $\{\mathbf{x}^{\mu} : \mu = 1, ..., M\}$ of *I*-dimensional data points $\mathbf{x}^{\mu} = (x_{1}^{\mu}, x_{2}^{\mu}, ..., x_{I}^{\mu})^{T}$ with zero mean, $\langle \mathbf{x}^{\mu} \rangle_{\mu} = \mathbf{0}_{I}$, find an orthogonal matrix U with determinant $|\mathbf{U}| = +1$ generating the transformed data points $\mathbf{x}'^{\mu} := \mathbf{U}^{T} \mathbf{x}^{\mu}$ such that for any given dimensionality *P* the data projected onto the first *P* axes, $\mathbf{x}'^{\mu}_{\parallel} := (x'^{\mu}_{1}, x'^{\mu}_{2}, ..., x'^{\mu}_{P}, 0, ..., 0)^{T}$, have the smallest

reconstruction error
$$E := \langle \| \mathbf{x}'^{\mu} - \mathbf{x}'^{\mu}_{\parallel} \|^2 \rangle_{\mu}$$
 (8)

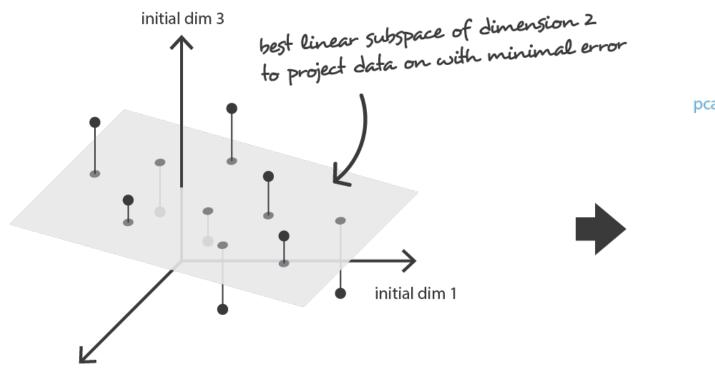
among all possible projections onto a P-dimensional subspace. The row vectors of matrix U define the new axes and are called the *principal components*.

Autoencoder: Use Neural Nets for E and D



$$|| \cos z = || x - \hat{x} ||^2 = || x - d(z) ||^2 = || x - d(e(x)) ||^2$$

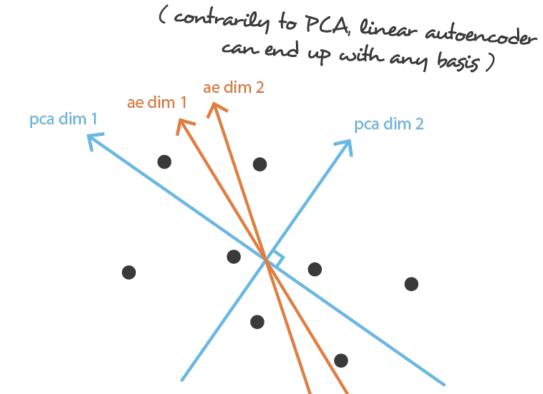
Autoencoder vs PCA



initial dim 2

Data in the full initial space

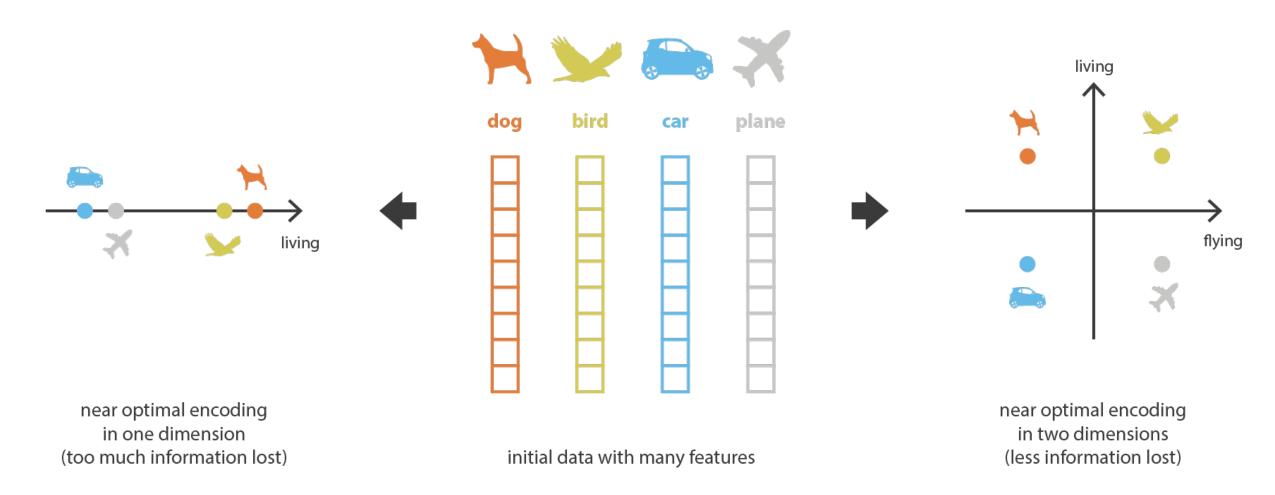
In order to reduce dimensionality, PCA and linear autoencoder target, in theory, the same optimal subspace to project data on...



Data projected on the best linear subspace

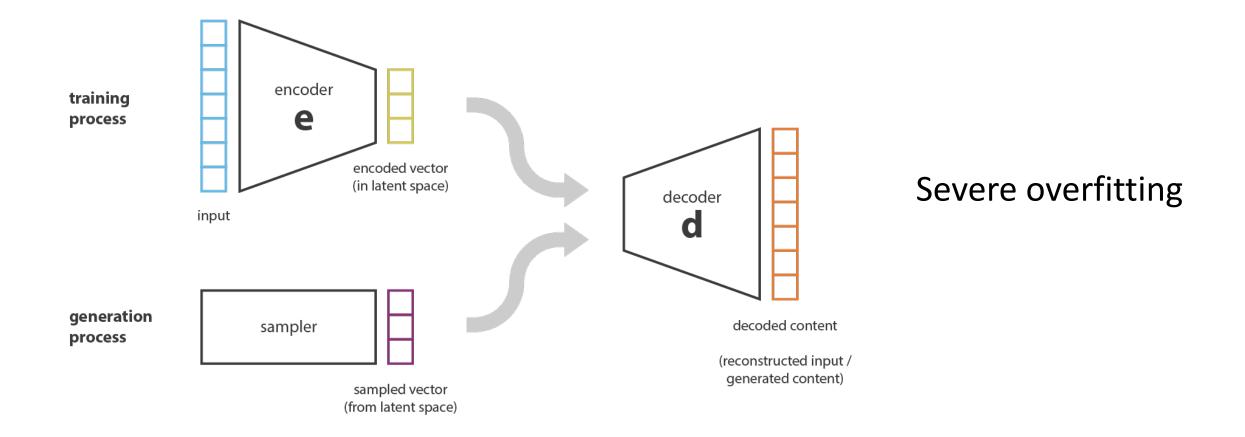
... but not necessarily with the same basis due to different constraints (in PCA the first component is the one that explains the maximum of variance and components are orthogonal)

Don't Overencode!

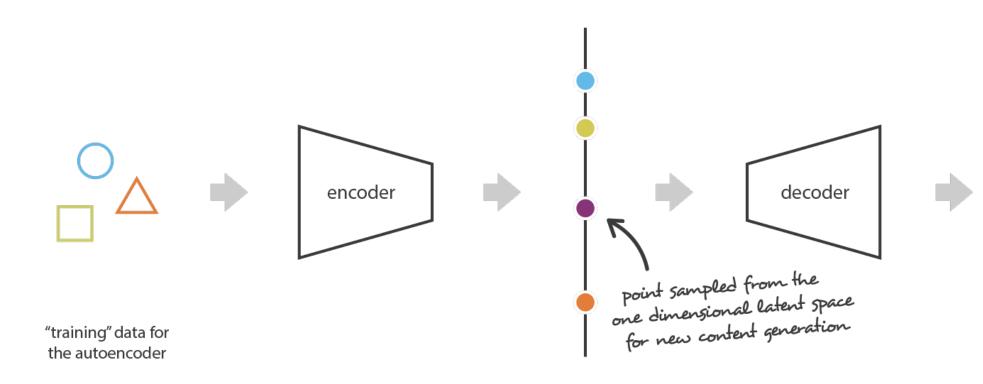


We want to structure of latent space to reflect the structure of the data – especially if we want to sample the latent space for generating new data

Autoencoders for Content Generation?



Autoencoders for Content Generation?



encoded data can be decoded without loss if the autoencoder has enough degrees of freedom

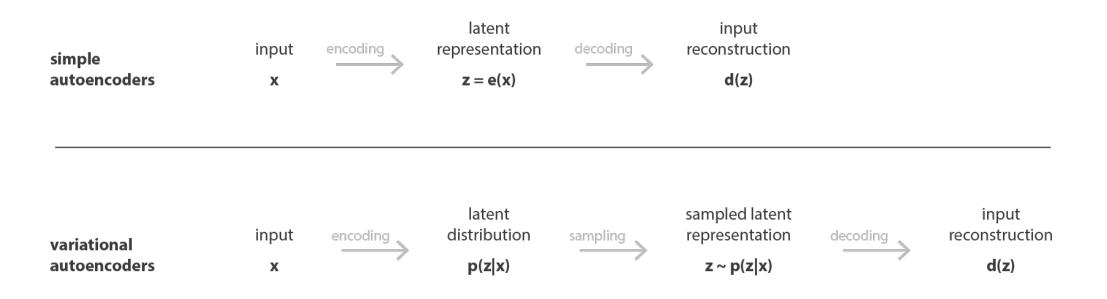
 $\langle m \rangle$

without explicit regularisation, some points of the latent space are "meaningless" once decoded

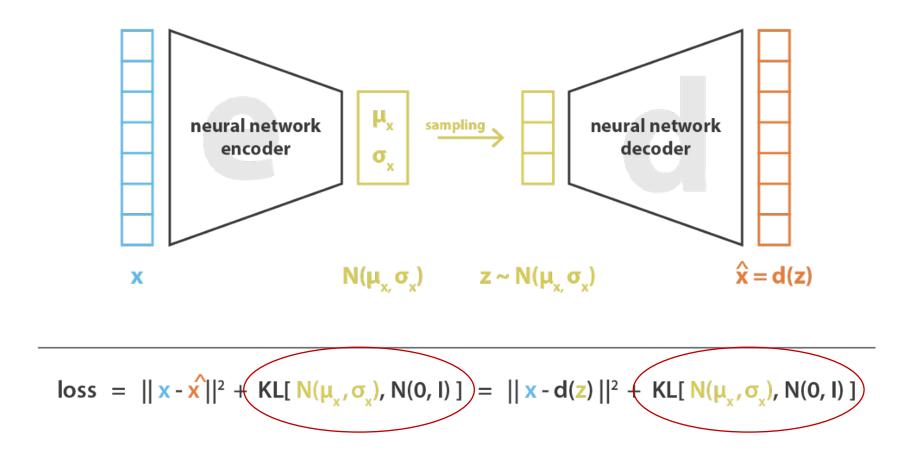
An autoencoder is solely trained to encode and decode with as small loss as possible, no matter how the latent space is organized

Variational Autoencoder (VAE)

- A variational autoencoder is an autoencoder whose training is regularized
 - to avoid overfitting and
 - to ensure that the latent space has good properties that enable generative processes
- Instead of encoding an input as a single point, we encode it as a distribution over the latent space.

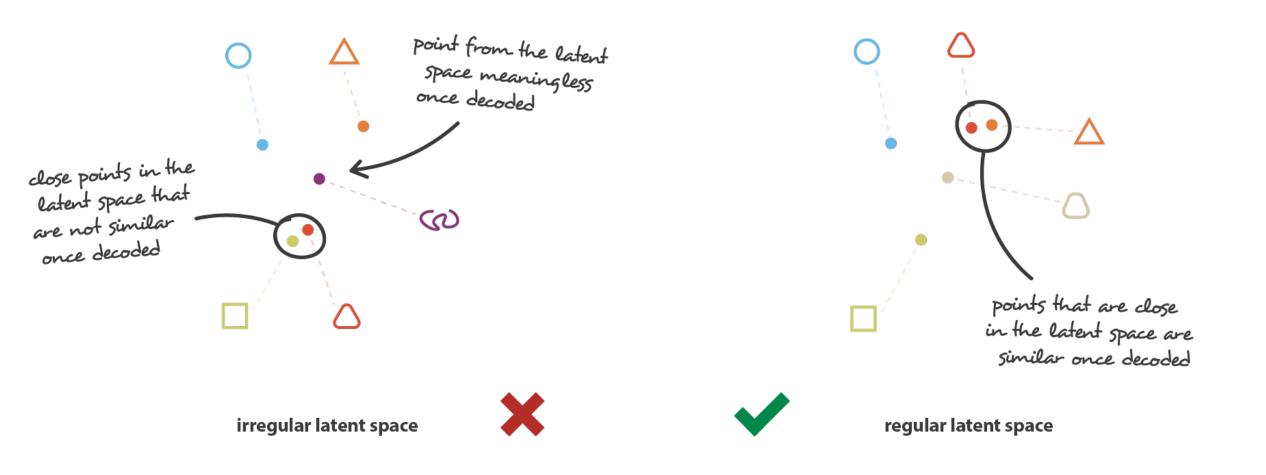


Regularize the Distribution in Latent Space

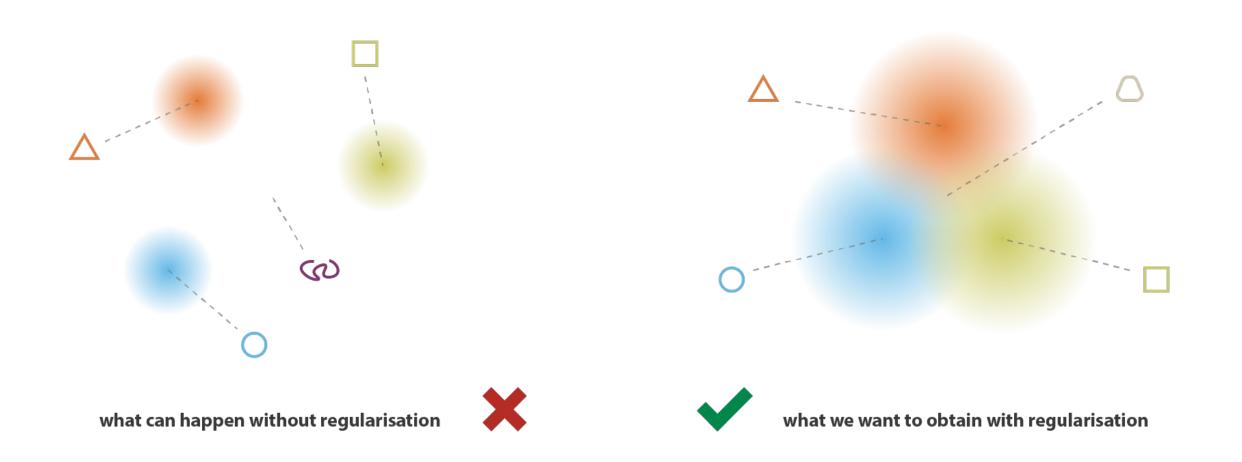


Make the latent space distribution look like a simple Gaussian Add a second loss measuring distribution distance (via the Kulback-Leibler divergence)

Continuity and Completeness in Latent Space

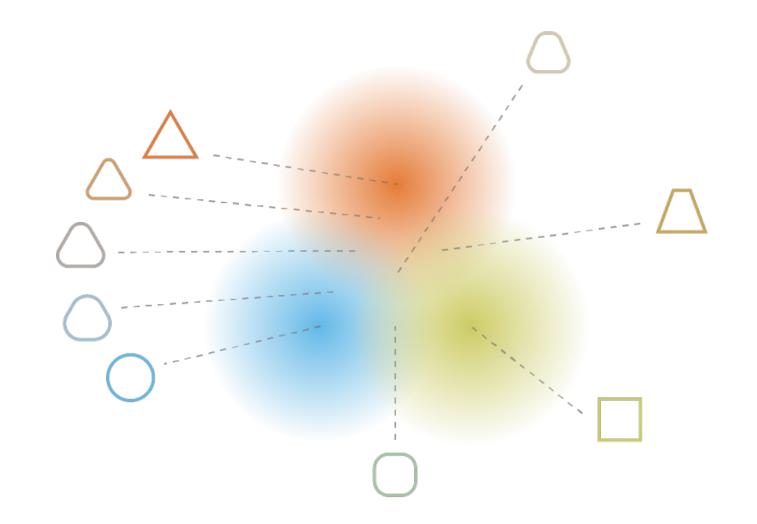


The Effect of Regularization



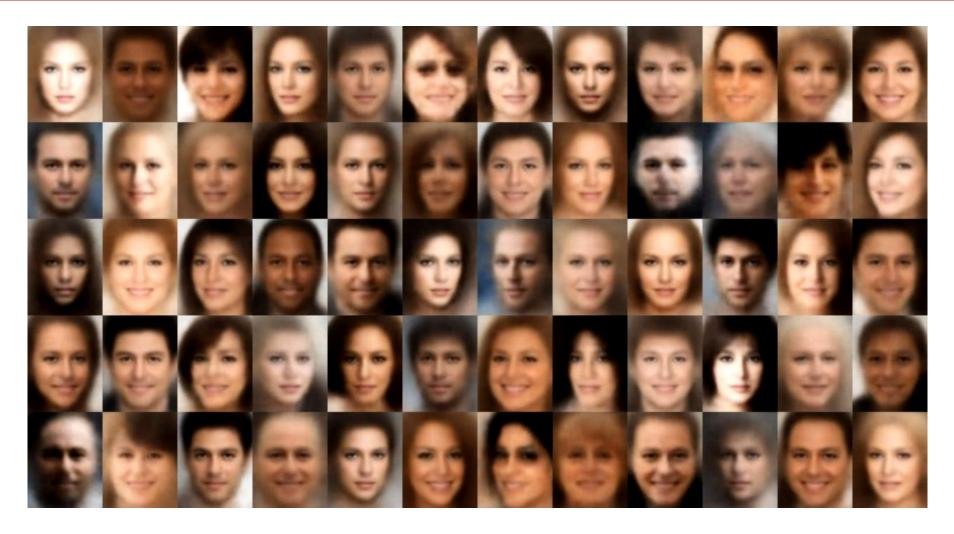
Overfitting with "punctual" distributions

The Effect of Regularization



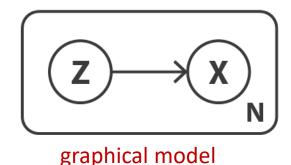
Create smooth gradients over the information encoded in the latent space

But at the Expense of Reconstruction Quality



(source: Wojciech Mormul on Github)

Variational Inference I: Probabilistic Synthesis



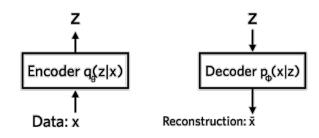
 $p(z) \equiv \mathcal{N}(0, I)$ $p(x \mid z) \equiv \mathcal{N}(f(z), cI) \quad f \in F \quad c > 0$ $p(z \mid x) = \frac{p(x \mid z)p(z)}{p(x)} = \frac{p(x \mid z)p(z)}{\int p(x \mid u)p(u)du}$

assume diagonal covariance

by Bayes, but intractable

VI: Approximate a complex target distribution by a simpler parametric distribution (e.g., a Gaussian) q

$$g_x(z) \equiv \mathcal{N}(g(x), h(x)) \quad g \in G \quad h \in H$$



 $(g^*, h^*) = \underset{(g,h)\in G\times H}{\operatorname{arg\,min}} KL\left(q_x(z), p(z \mid x)\right)$ $= \operatorname*{arg\,min}_{(g,h)\in G\times H} \left(\mathbb{E}_{z\sim q_x} \left(\log q_x(z) \right) - \mathbb{E}_{z\sim q_x} \left(\log \frac{p(x\mid z)p(z)}{p(x)} \right) \right)$ $= \underset{(g,h)\in G\times H}{\operatorname{arg\,min}} \left(\mathbb{E}_{z\sim q_x} \left(\log q_x(z) \right) - \mathbb{E}_{z\sim q_x} \left(\log p(z) \right) - \mathbb{E}_{z\sim q_x} \left(\log p(x \mid z) \right) + \mathbb{E}_{z\sim q_x} \left(\log p(x) \right) \right) \right)$ $= \underset{(g,h)\in G\times H}{\operatorname{arg\,max}} \left(\mathbb{E}_{z\sim q_x}(\log p(x\mid z)) - KL\left(q_x(z), p(z)\right) \right)$ $= \operatorname*{arg\,max}_{(z,b) \in C \times H} \left(\mathbb{E}_{z \sim q_x} \left(-\frac{\|x - f(z)\|^2}{2c} \right) - KL\left(q_x(z), p(z)\right) \right)$

Variational Inference II

$$f^{*} = \underset{f \in F}{\arg \max \mathbb{E}_{z \sim q_{x}^{*}}} (\log p(x \mid z))$$

= $\underset{f \in F}{\arg \max \mathbb{E}_{z \sim q_{x}^{*}}} \left(-\frac{\|x - f(z)\|^{2}}{2c} \right)$
 $(f^{*}, g^{*}, h^{*}) = \underset{(f,g,h) \in F \times G \times H}{\arg \max} \left(\mathbb{E}_{z \sim q_{x}} \left(-\frac{\|x - f(z)\|^{2}}{2c} \right) - KL(q_{x}(z), p(z)) \right)$

ELBO: Evidence Lower BOund

$$\log p(x)$$

$$= \log \int_{z} p(x, z)$$

$$= \log \int_{z} p(x, z) \frac{q_{x}(z)}{q_{x}(z)}$$

$$\geq \mathbb{E}_{z \sim q_{x}} \left[\log \frac{p(x, z)}{q_{x}(z)} \right] \quad \text{By Jensen'}$$

$$= \mathbb{E}_{z \sim q_{x}} \left[\log \frac{p(x \mid z)p(z)}{q_{x}(z)} \right]$$

$$= \mathbb{E}_{z \sim q_{x}} [\log p(x \mid z)] + \mathbb{E}_{z \sim q_{x}} \left[\log \frac{p(z)}{q_{x}(z)} \right]$$

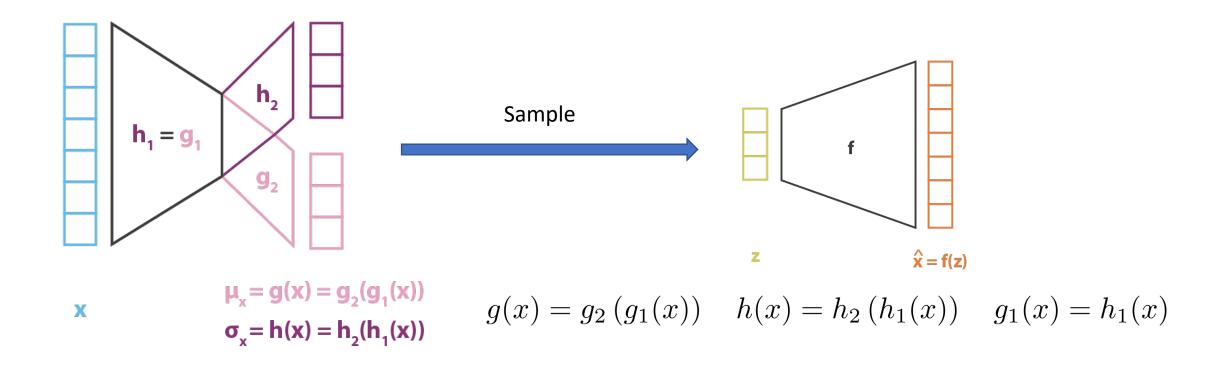
$$= \mathbb{E}_{z \sim q_{x}} [\log p(x \mid z)] + \int_{z} q_{x}(z) \log \frac{p(z)}{q_{x}(z)}$$

$$= \mathbb{E}_{z \sim q_{x}} [\log p(x \mid z)] - D_{KL} [q_{x}(z) \| p(z)]$$

$$= \text{likelihood} - KL$$

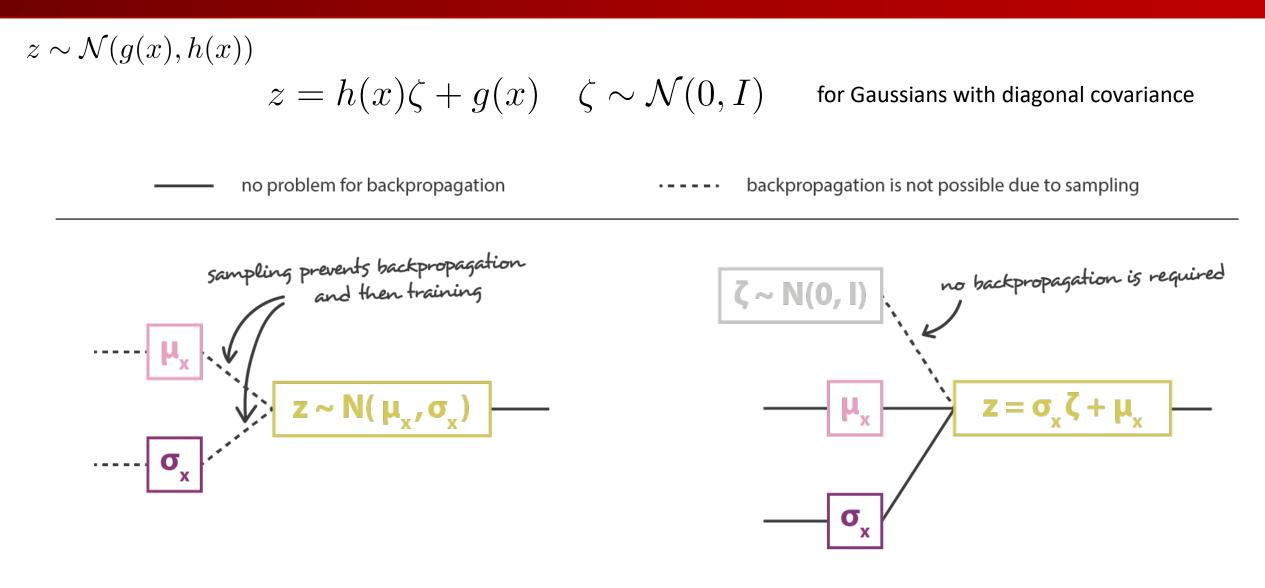
By Jensen's inequality on a concave function (log)

Variational Inference with NNs

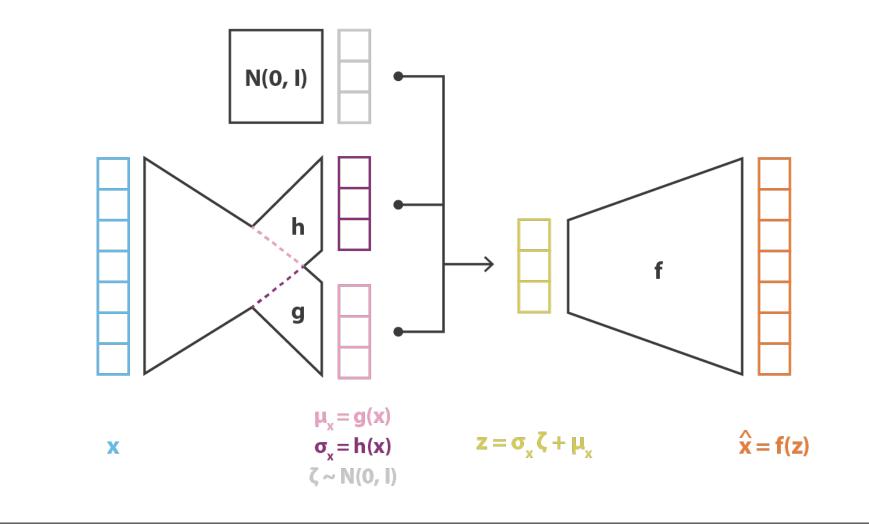


Sampling is a problem w. back propagation

The Reparametrization Trick

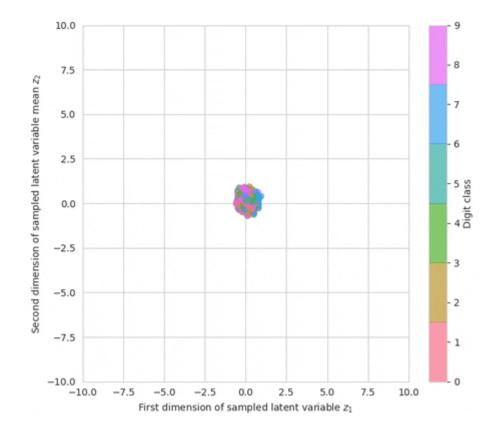


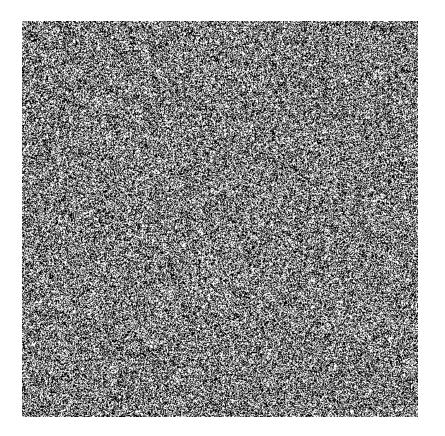
The Final VAE



loss = $C ||x - \hat{x}||^2 + KL[N(\mu_x, \sigma_x), N(0, I)] = C ||x - f(z)||^2 + KL[N(g(x), h(x)), N(0, I)]$

MNIST Example





Class differentiation

Sampling the likelihood

Generative Models: Deep Neural Implicits

JJ (Jeong Joon) Park

Example Student Presentation

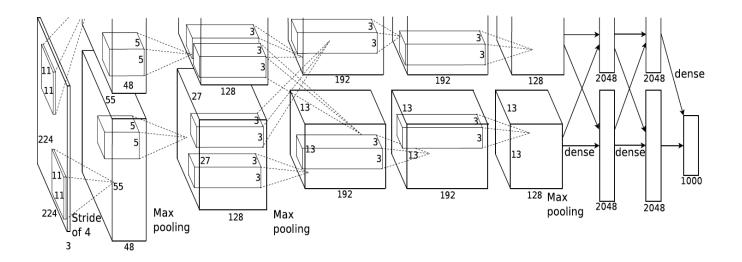
DeepSDF: Learning Continuous SDFs for Shape Representation

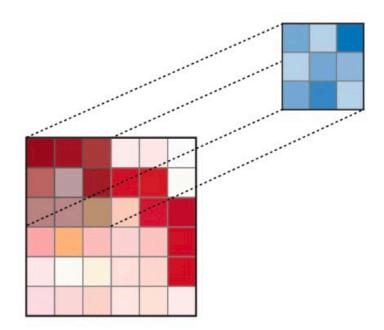
Jeong Joon Park¹, Peter Florence², Julian Straub³, Richard Newcombe³, Steven Lovegrove³

¹ University of Washington, ² MIT, ³ Facebook Reality Labs

CVPR 2019

Representation for 2D Deep Learning





ImageNet. 2012

Convolution Layer

Representation for 2D Deep Learning

Summer 📿 Winter

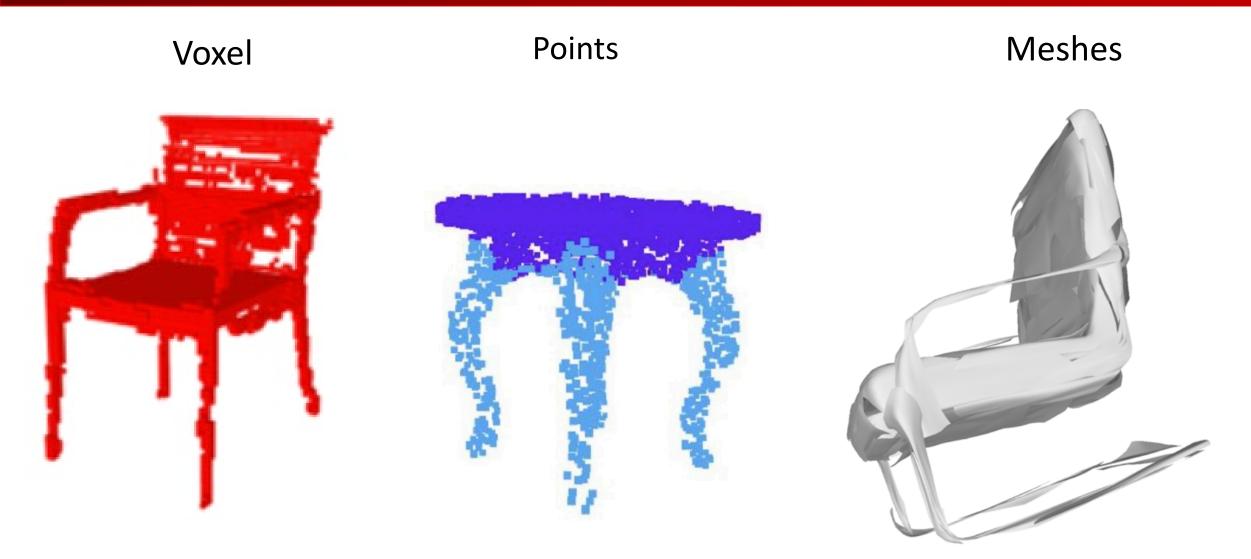
summer \rightarrow winter

winter \rightarrow summer

CycleGAN, 2017

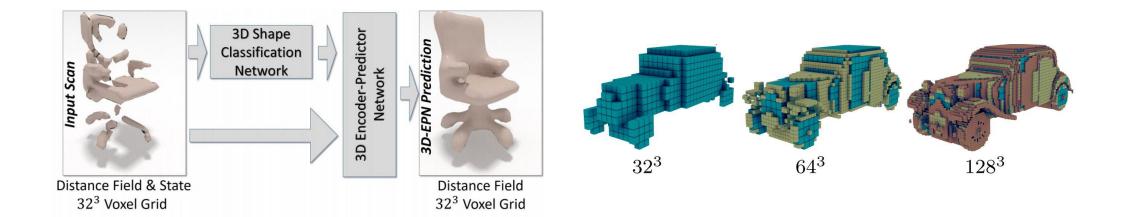
Liu et al, 2018

Representations for 3D Deep Learning

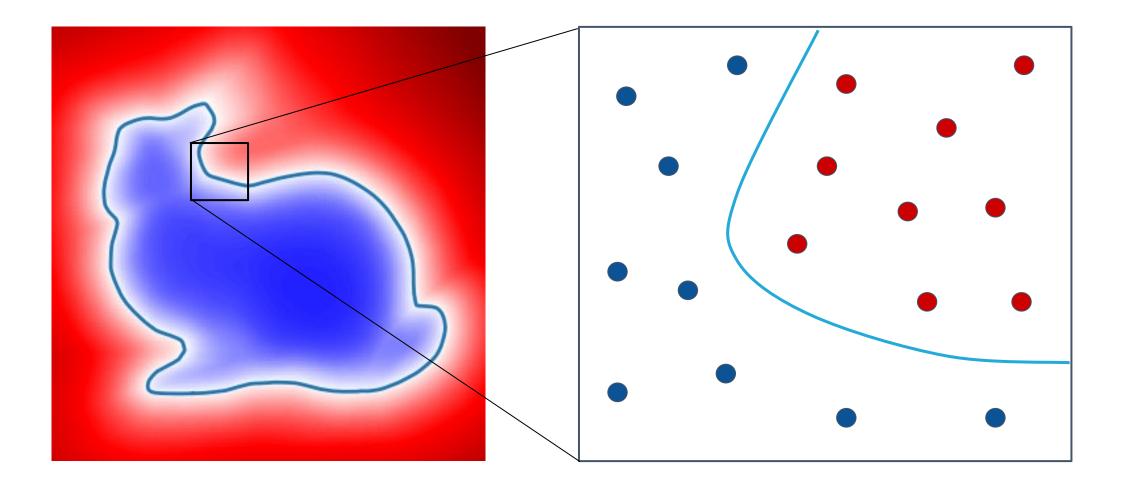


Voxel Representation

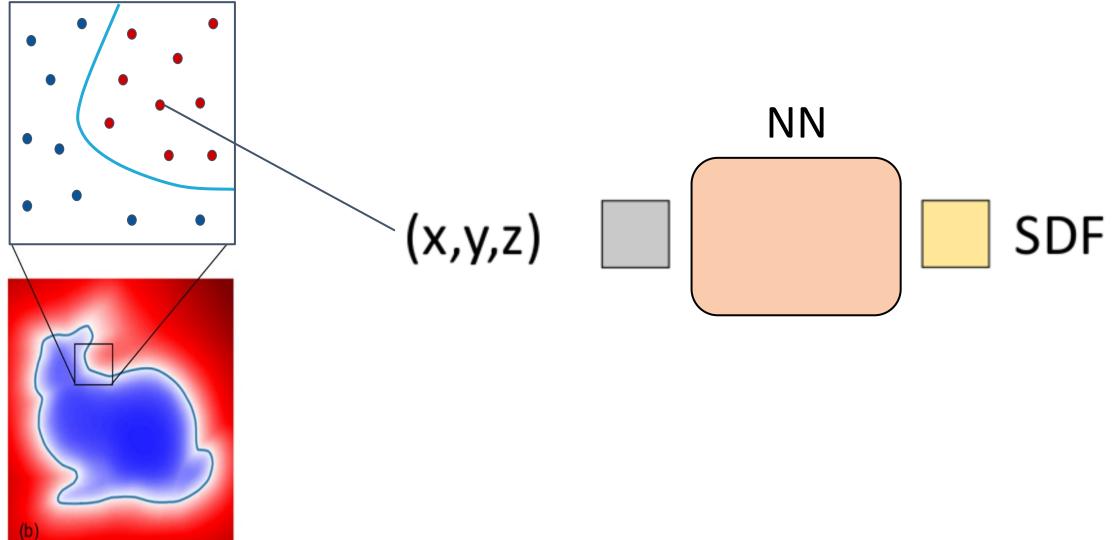
• Memory Intensive, Computationally Expensive (N^3)



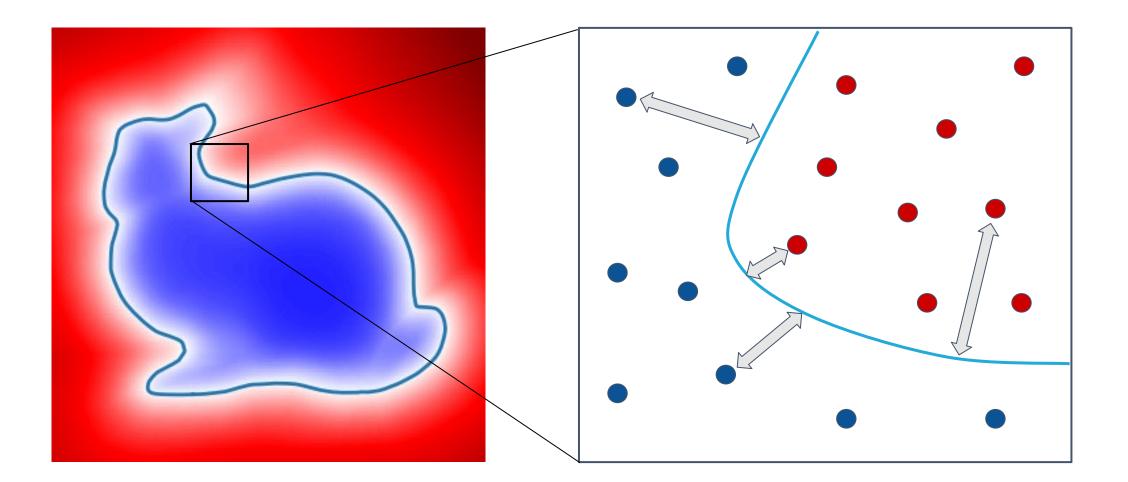
Surface as Decision Boundary



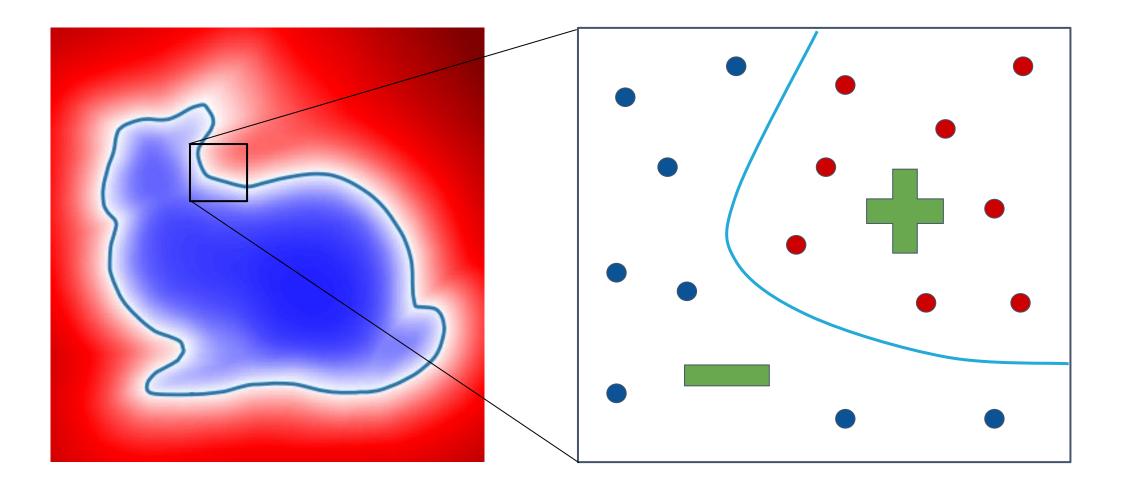
Regression of Continuous SDF



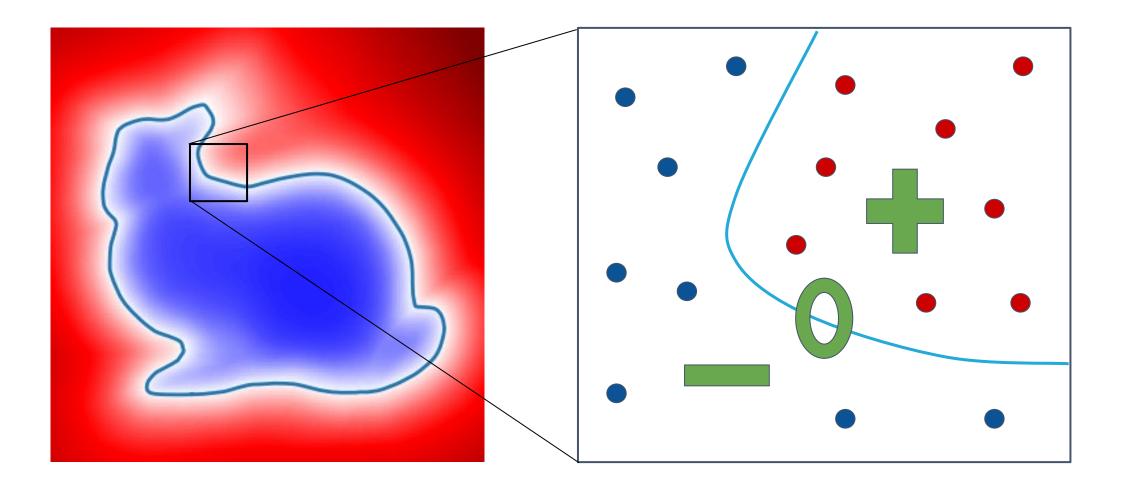
Signed Distance Function



Signed Distance Function



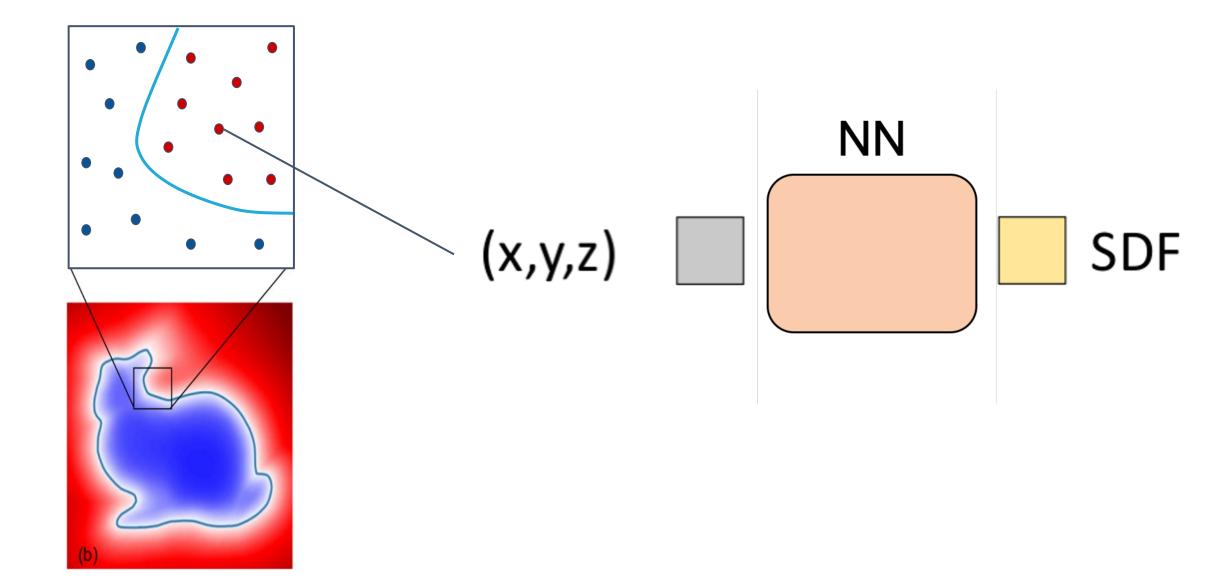
Signed Distance Function



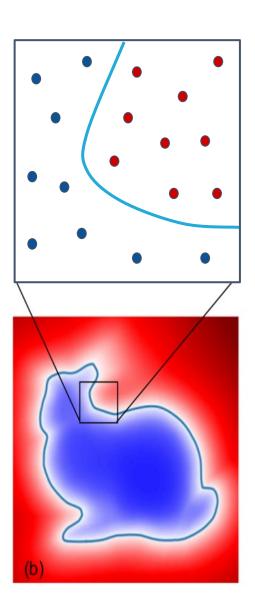
Discrete SDF

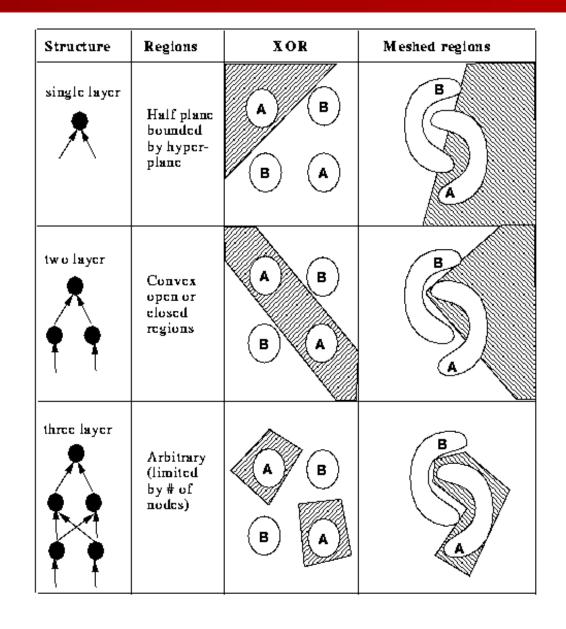
-0.9	- 0.3	0.Q	0.2	1	1	1	1	1
-1	-0.9	-0.2	q .0	0.2	1	1	1	1
-1	-0.9	- 0.3	0.)	0.1	0.9	1	1	1
			0.0				1	1
-1	- 0.9	-0.4	-0.1	Q.1	0.8	0.9	1	1
-1	- 0.7	-0.3	0,0	0.3	0.6	1	1	1
			00				1	1
-0.9	-0.7	-0.2	G 0	0.2	0.8	0.9	1	1
-0.1	0.0	0.0	0.1	0.3	1	1	1	1
0.5	0.3	0.2	0.4	0.8	1	1	1	1

Continuous SDF

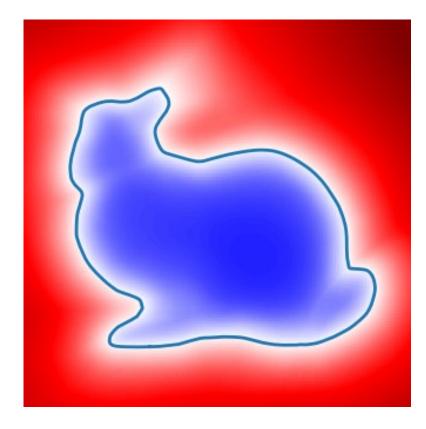


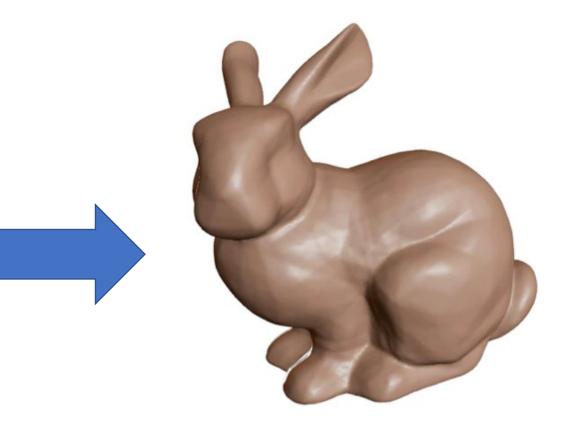
Universal Approximation Theorem



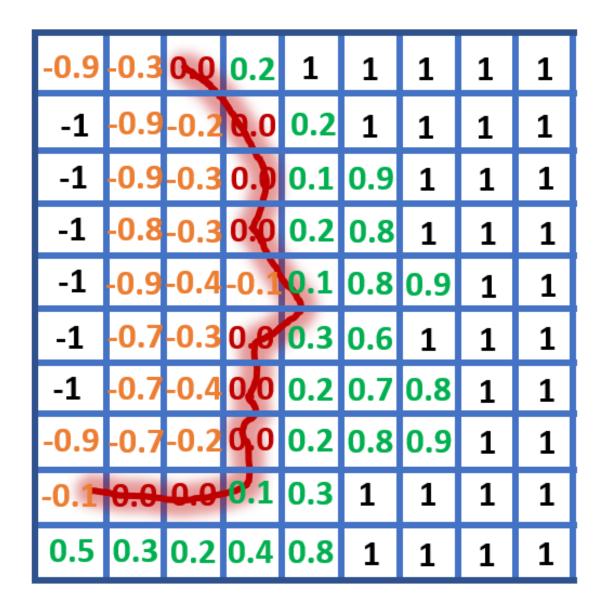


Implicit to Explicit

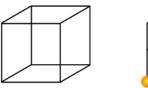


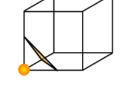


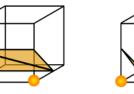
Implicit to Explicit – Discrete sampling

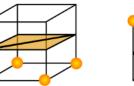


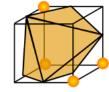
Marching Cubes

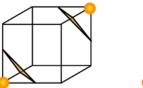


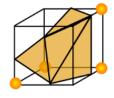






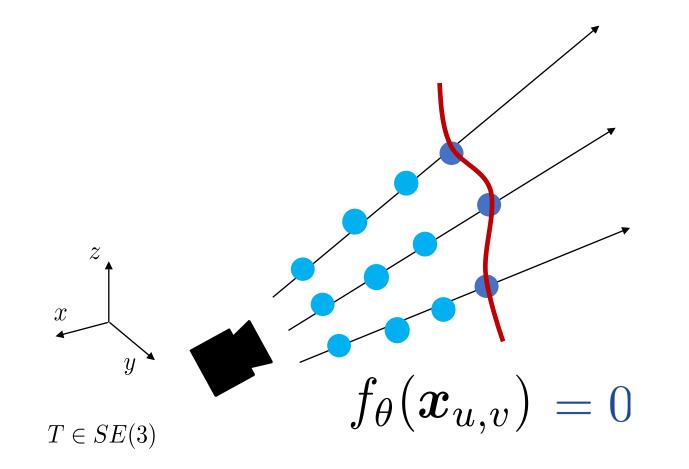




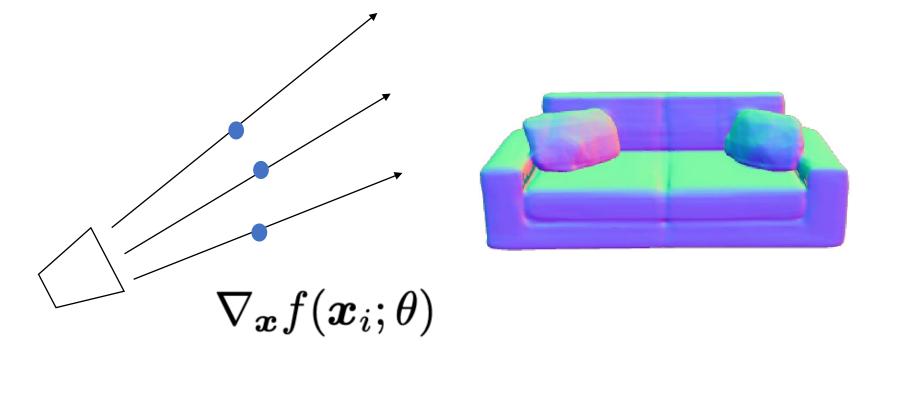


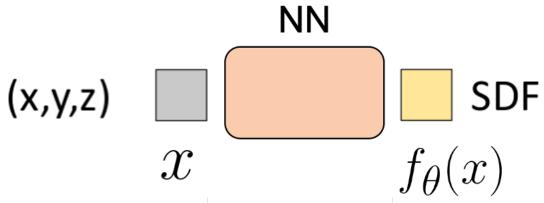
Lorensen et al., 1987

2. Raycasting

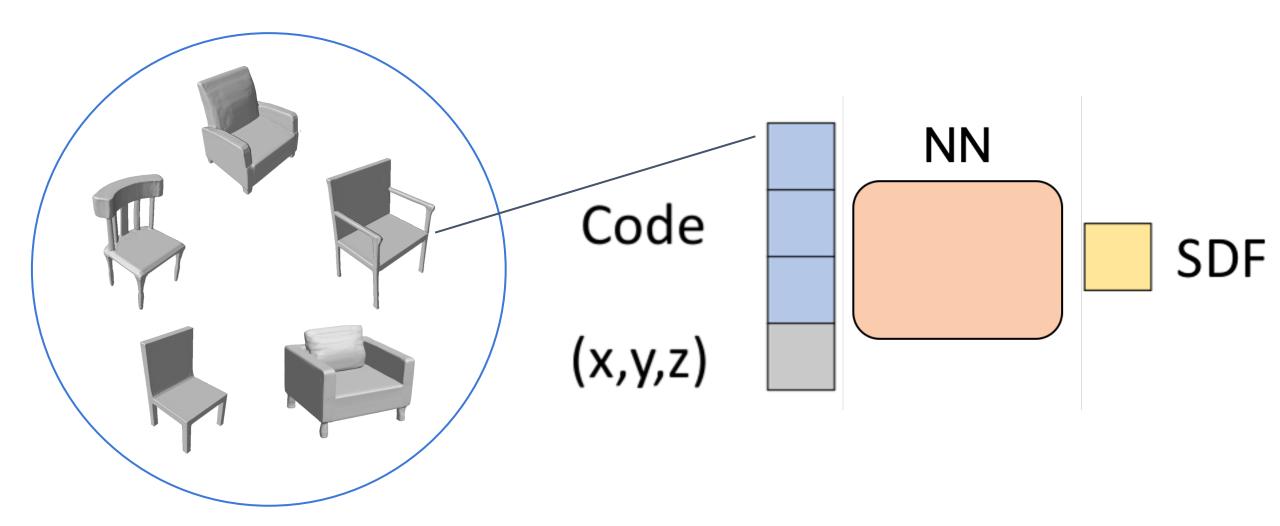


2. Raycasting

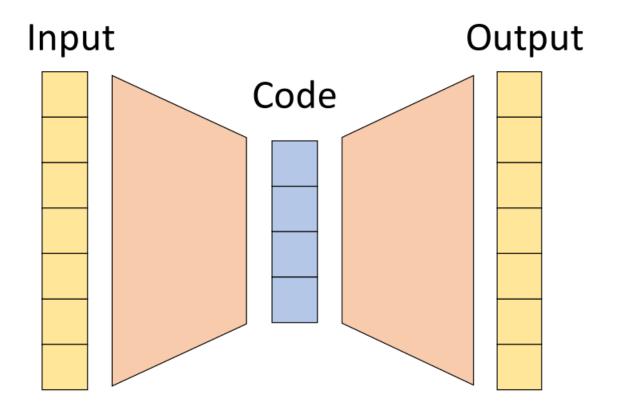




Coding Multiple Shapes

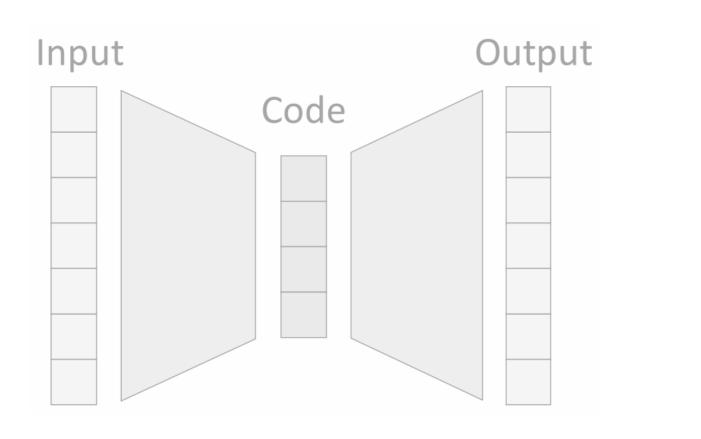


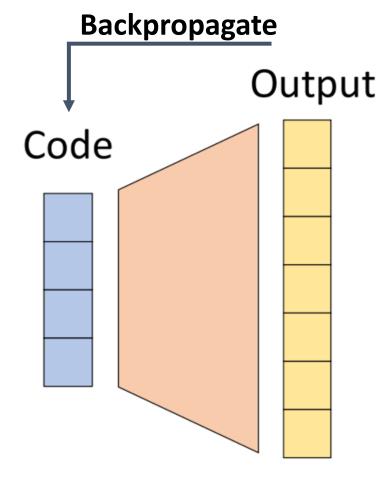
Auto-Encoder



Auto-Encoder

Auto-Decoder

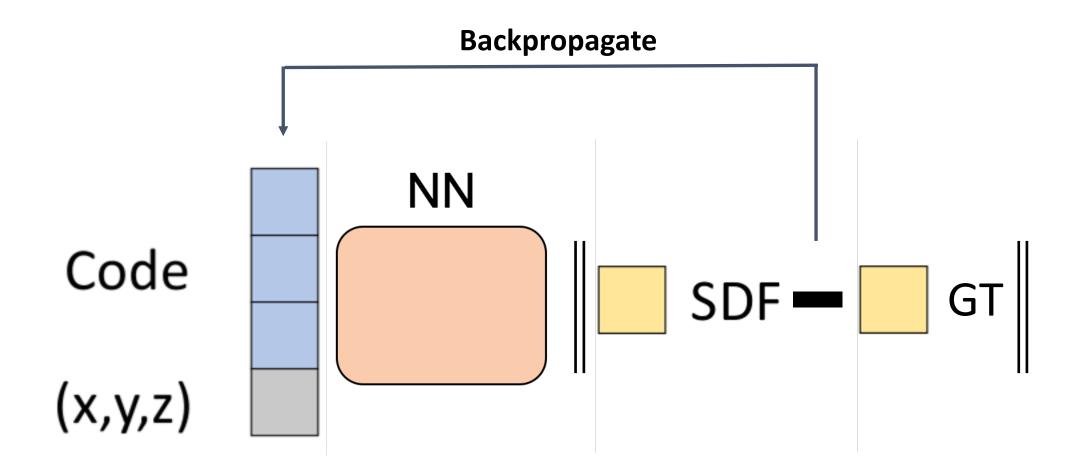




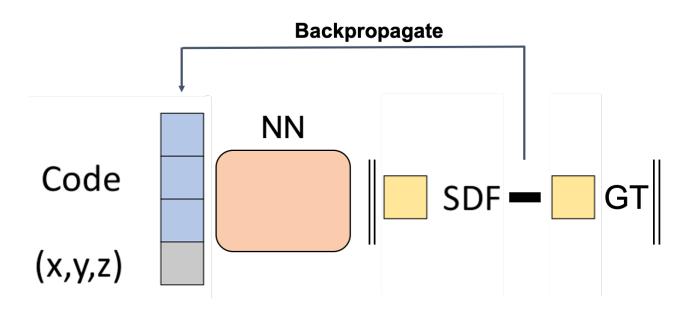
Auto-Encoder

Auto-Decoder

Auto-Decoder



Benefits of Auto-Decoder

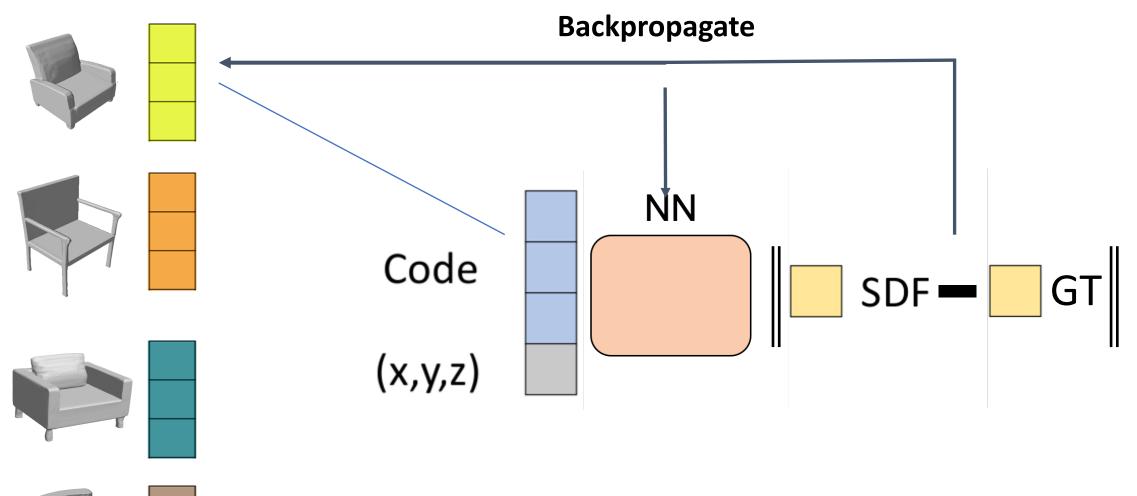


Benefits during Inference

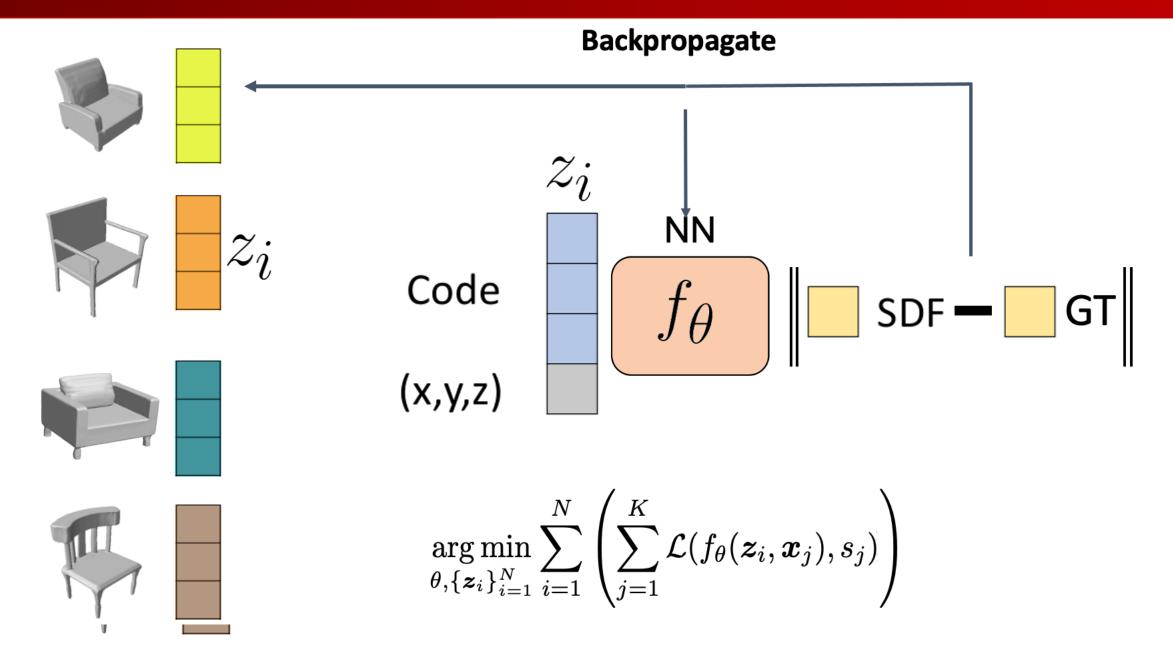
1. Any Number of Observations – Partial

2. More Controlled Inference – e.g. Accuracy, Priors

Auto-Decoder Training

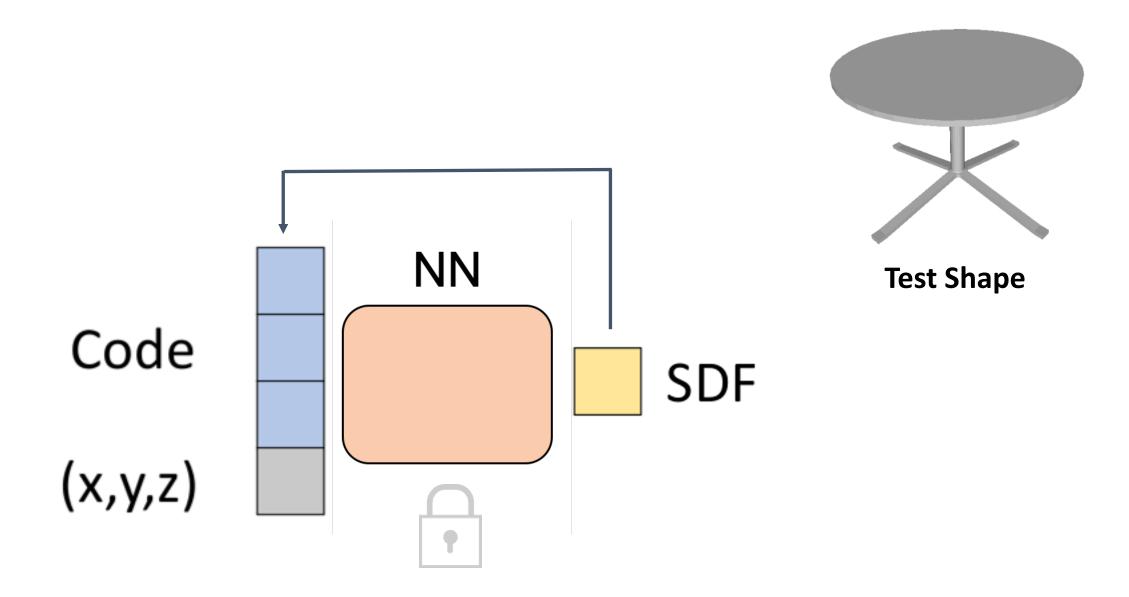


Auto-Decoder Training

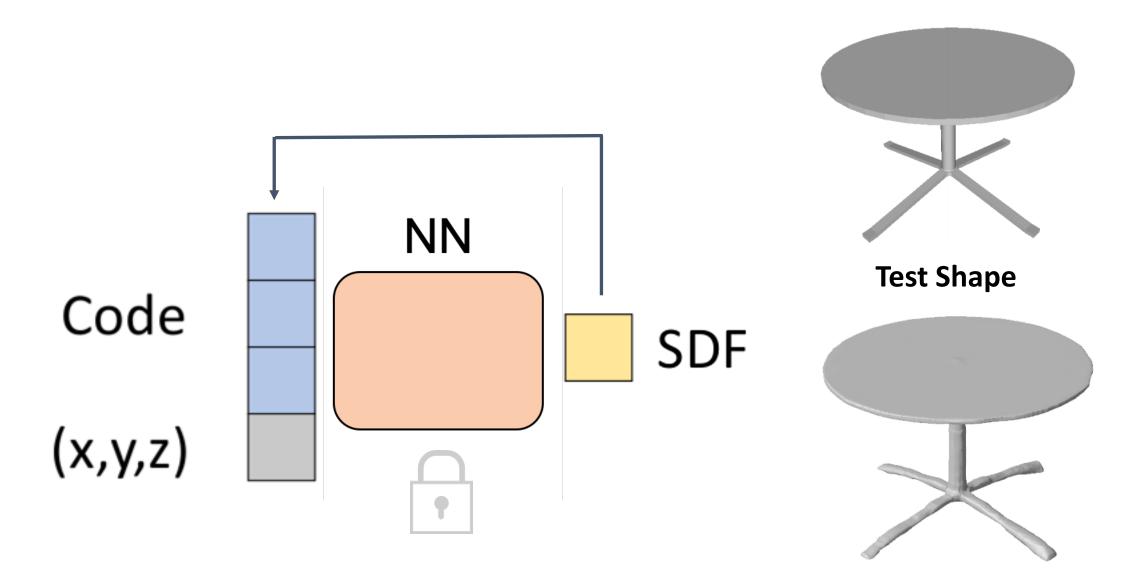


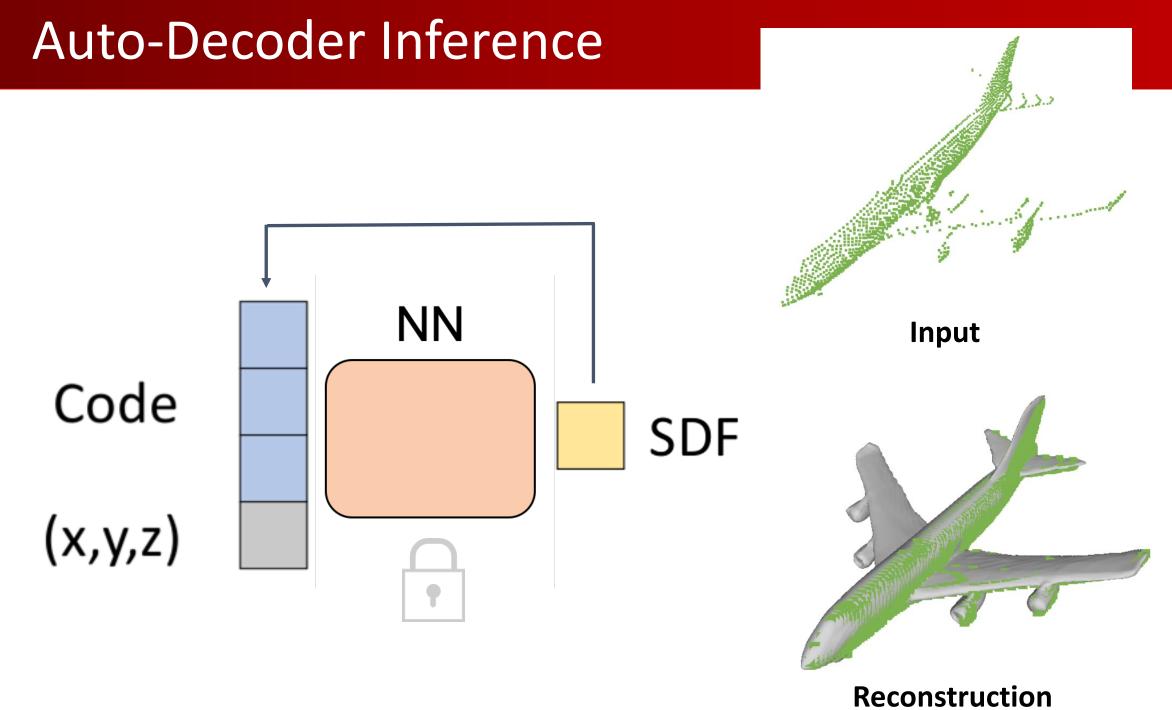
Latent Space of Shapes

Auto-Decoder Inference



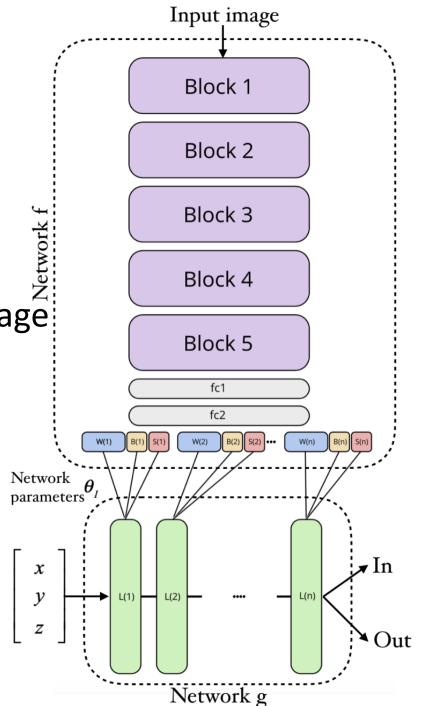
Auto-Decoder Inference





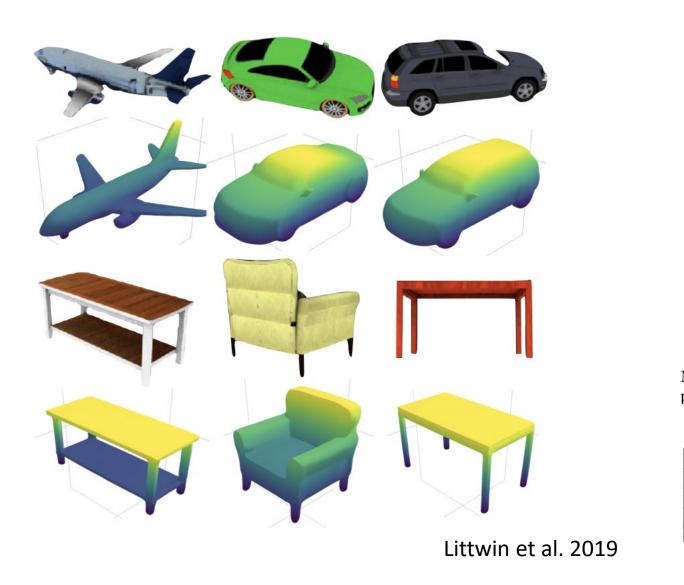
Alternative: Image to SDF

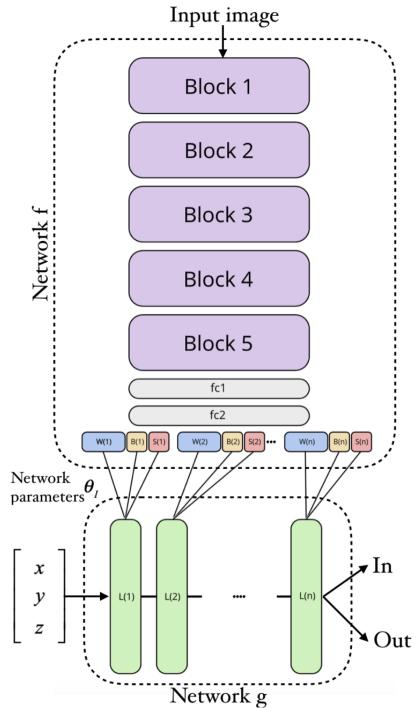
- Instead of conditioning on code, predict to weights of the MLP itself
- Takes an image \rightarrow outputs the weights
- The new network models the implicit field for the image



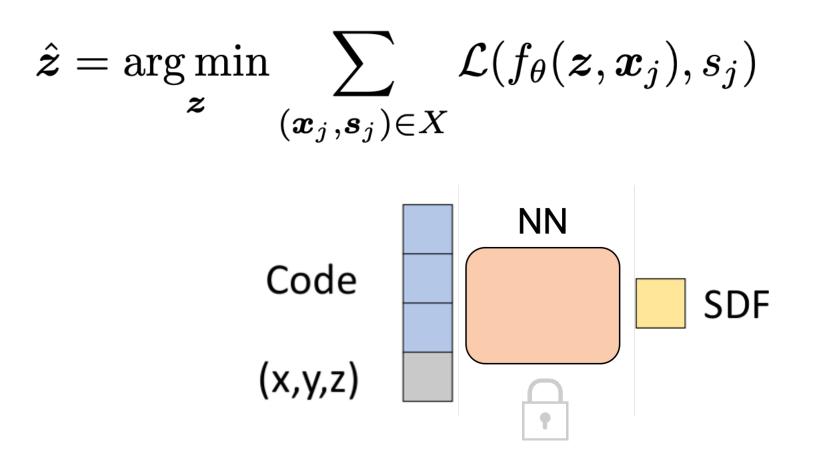
Littwin et al. 2019

Alternative: Image to SDF





Adding Priors to Inference



Adding Priors to Inference

$$\hat{oldsymbol{z}} = rgmin_{oldsymbol{x}} \sum_{(oldsymbol{x}_j,oldsymbol{s}_j)\in X} \mathcal{L}(f_{ heta}(oldsymbol{z},oldsymbol{x}_j),s_j)$$

Distribution Prior:

$$rac{1}{\sigma^2} ||oldsymbol{z}||_2^2$$

SDF Regularization:
$$ig(\|
abla_{m{x}}f(m{x}; heta)\|-1ig)^2$$
 (Matan et al. 2020)

Normal Regularization: $\|
abla_{m{x}} f(m{x}_i; heta) - m{n}_i\|$

Results

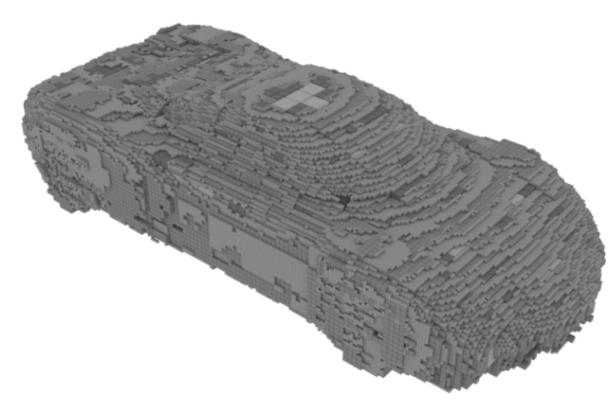
Auto-encoding unknown shapes

CD, median				·	
AtlasNet-Sph.	0.511	0.079	0.389	2.180	0.330
AtlasNet-25	0.276	0.065	0.195	0.993	0.311
DeepSDF	0.072	0.036	0.068	0.219	0.088

Shape completion

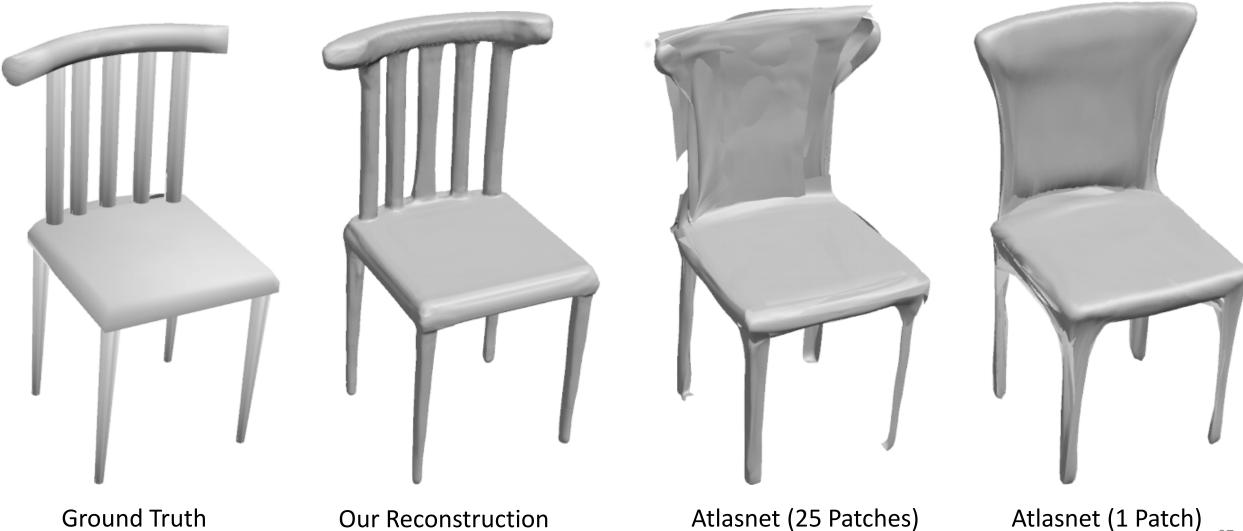
		lower	higher is better					
Method	CD,	CD,		Mesh	Mesh	Cos		
\Metric	med.	mean	EMD	acc.	comp.	sim.		
chair								
3D-EPN	2.25	2.83	0.084	0.059	0.209	0.752		
DeepSDF	1.28	2.11	0.071	0.049	0.500	0.766		
plane								
3D-EPN	1.63	2.19	0.063	0.040	0.165	0.710		
DeepSDF	0.37	1.16	0.049	0.032	0.722	0.823		

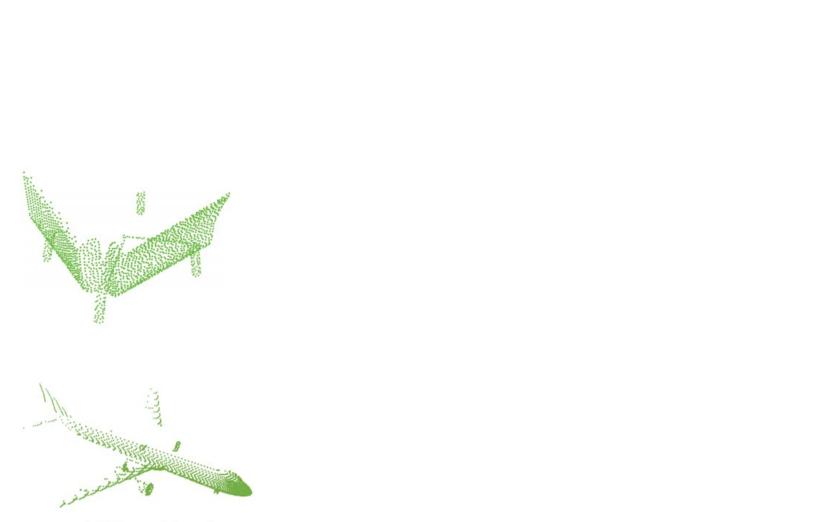
Results: Comparison with Octree-Based



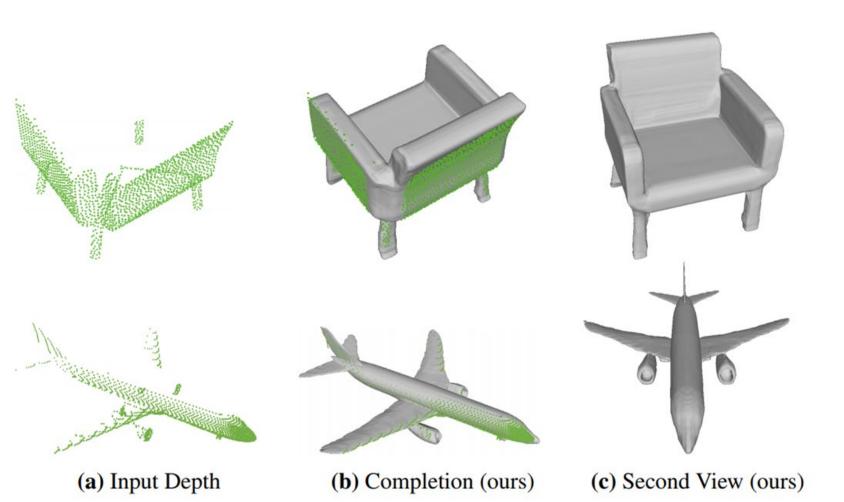
Our Reconstruction **Octree Based**

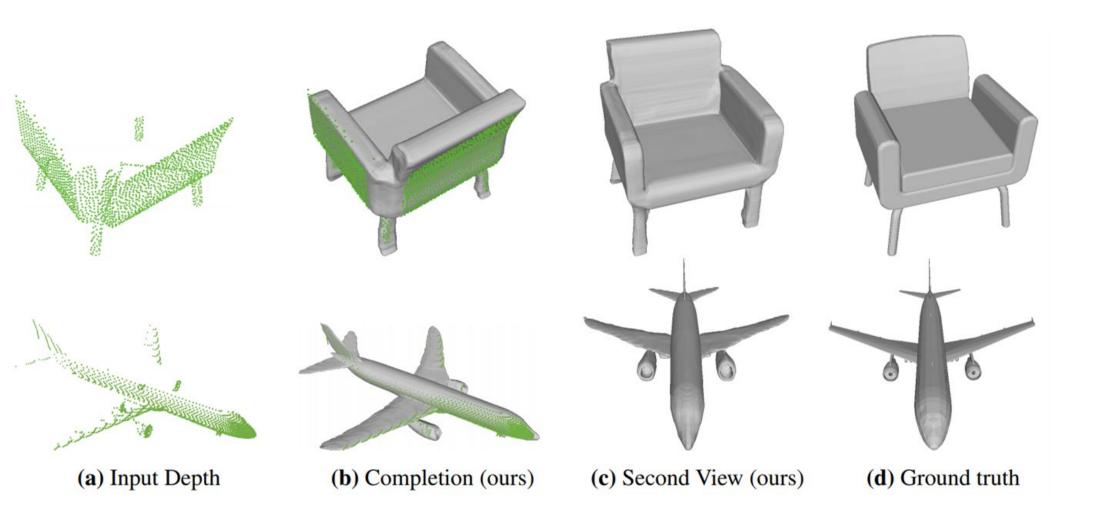
Results: Comparisons with Mesh-Based

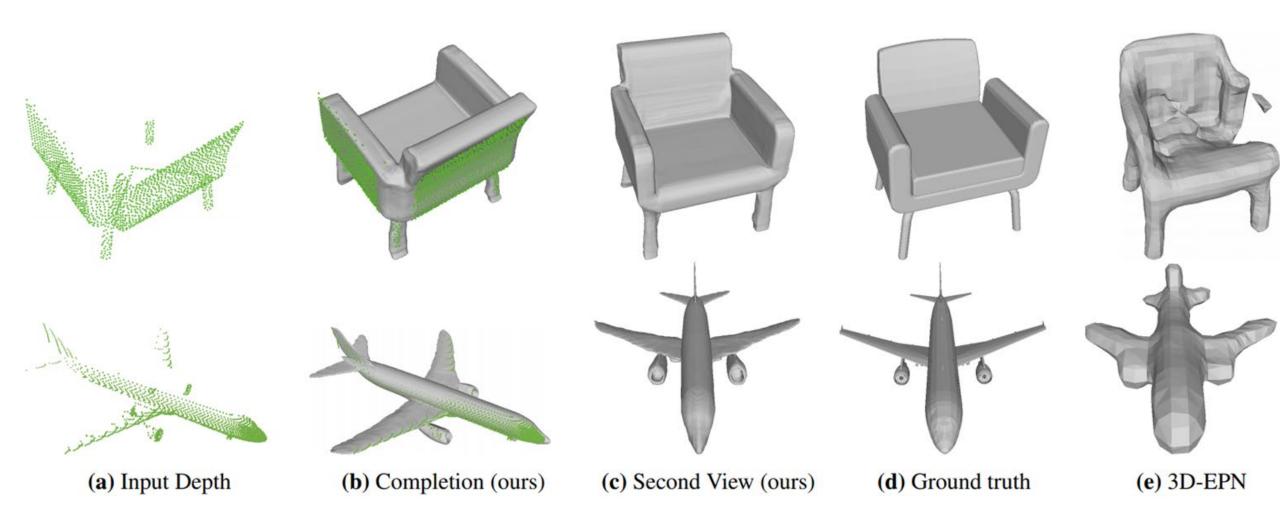


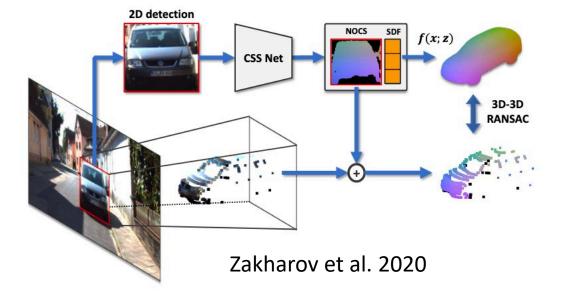


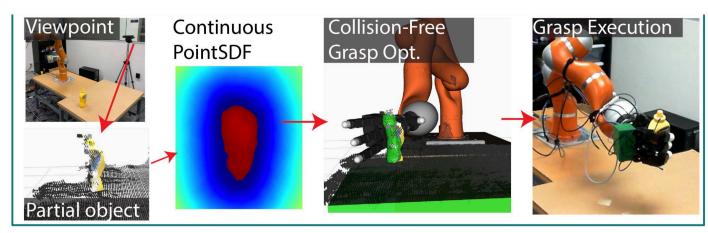
(a) Input Depth



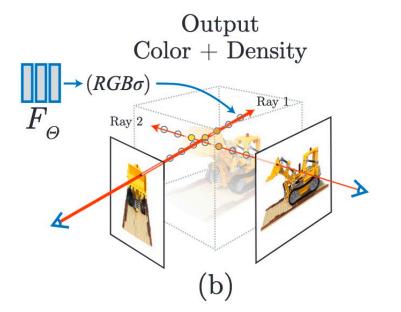


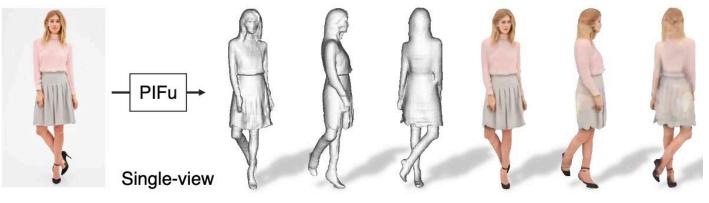






Merwe et al. 2020

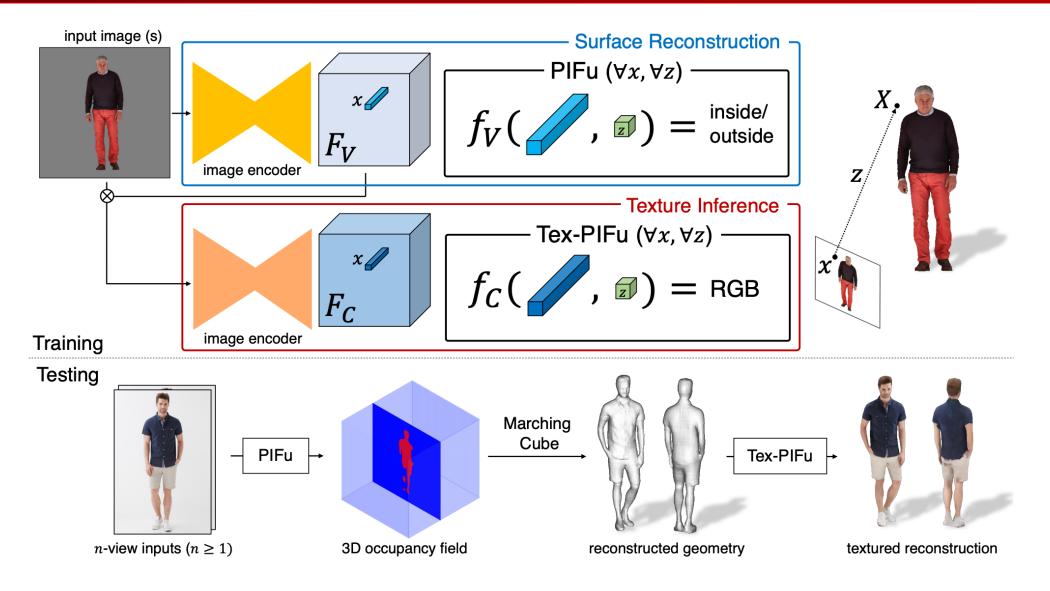




Saito et al. 2019

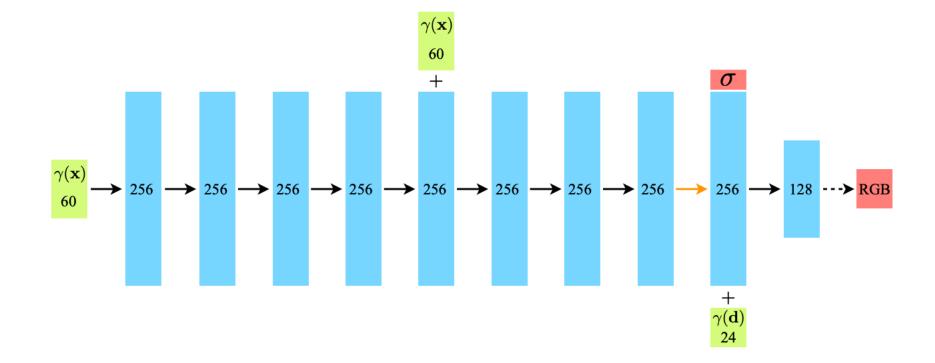
Mildenhall et al. 2020

DeepSDF Extensions: PiFU

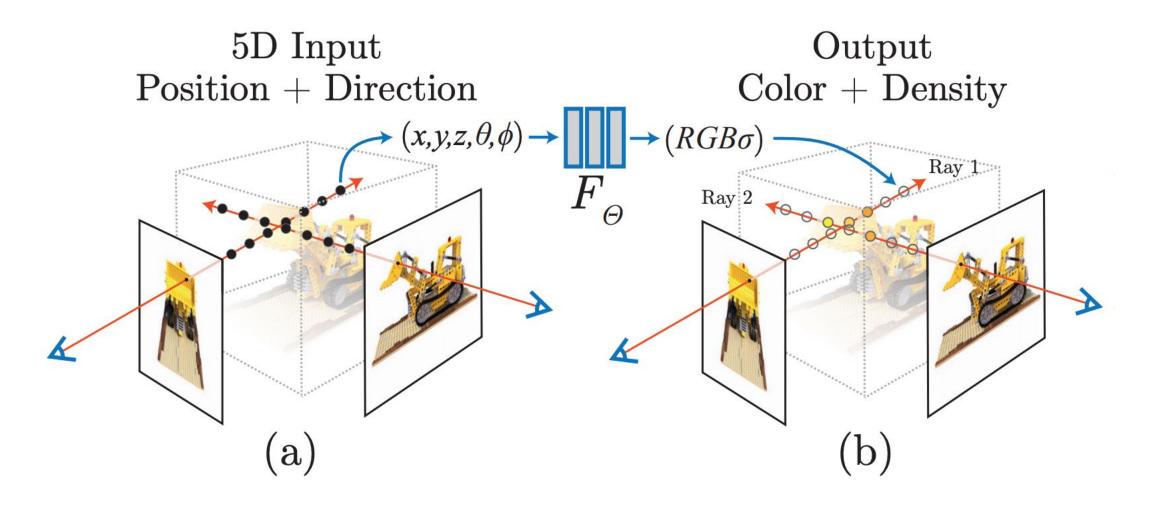


DeepSDF Extensions: NeRF

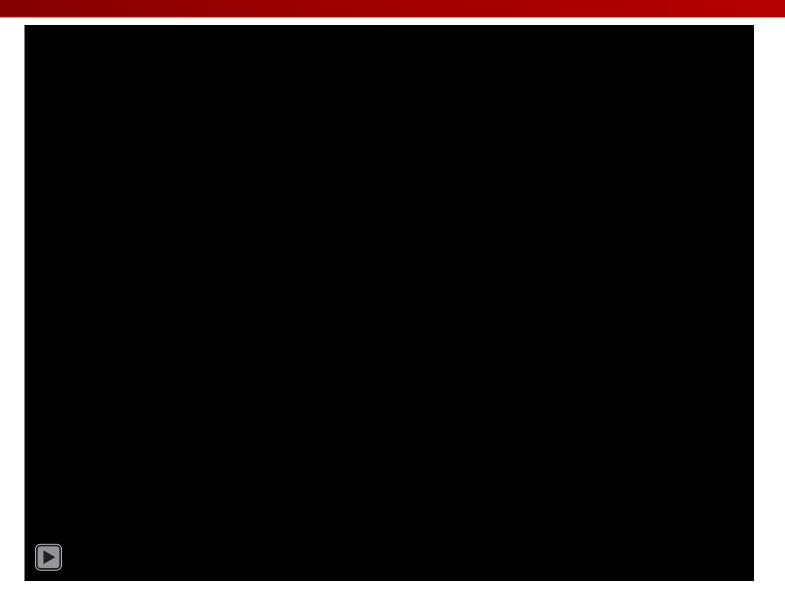
 Coordinate-based modeling of RGB and Densities Instead of SDFs



DeepSDF Extensions: NeRF

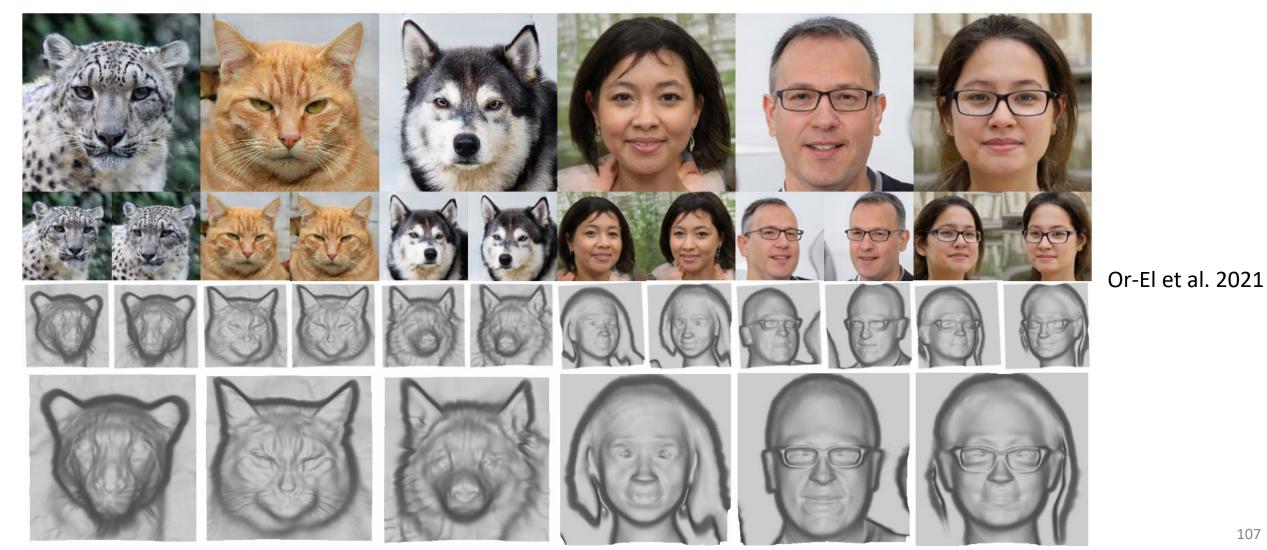


DeepSDF Extensions: NeRF



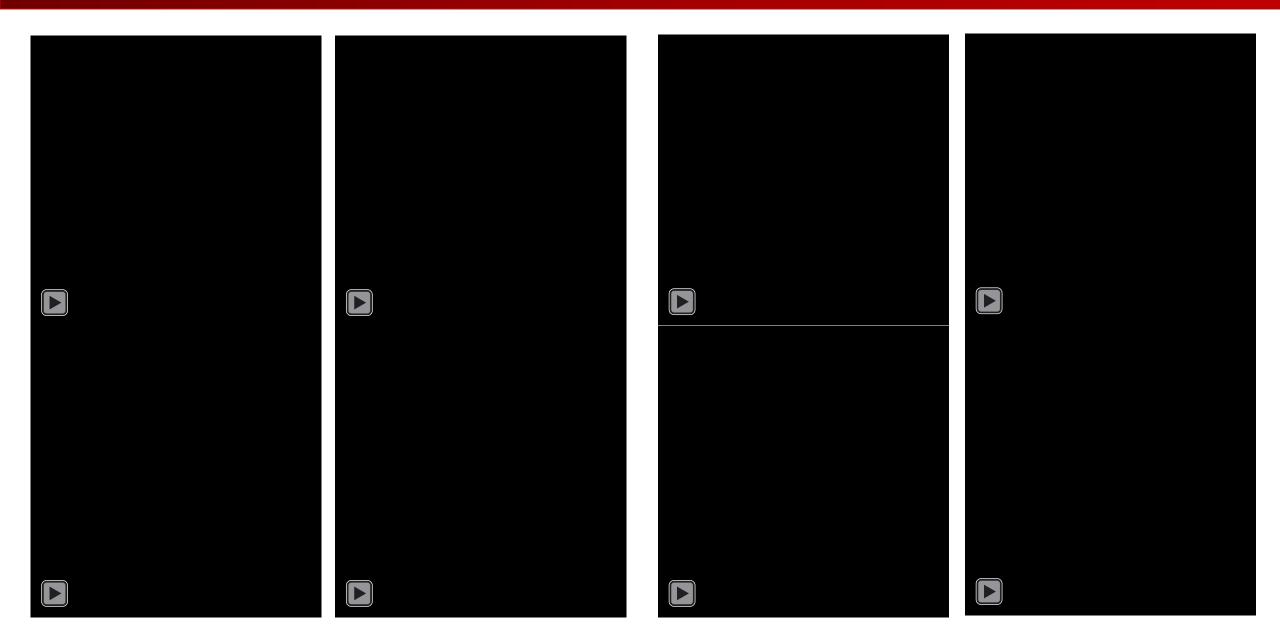
DeepSDF Extension: StyleSDF

• A 3D GAN using DeepSDF + NeRF modeling



107

DeepSDF Extension: StyleSDF



Thank you!

• Speaker: Jeong Joon Park

That's All

