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Autoencoders
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Autoencoders for Content Generation

Severe overfitting
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Autoencoders for Content Generation

An autoencoder is solely trained to encode and decode with as small 
loss as possible, no matter how the latent space is organized
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Regularize the Distribution in Latent Space

Make the encoder probabilistic  with a latent space distribution like a simple Gaussian
Add a second loss measuring distribution distance (via the Kulback-Leibler divergence) 
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The Effect of Regularization

Overfitting with “punctual” distributions
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The Effect of Regularization

Create smooth gradients over the information encoded in the latent space
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Variational AutoEncoder (VAE)

Sample

How to train:
Sampling is a problem w. back propagation
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The Final VAE

Assuming a diagonal co-variance matrix
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Shapes via Signed Distance Functions
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Signed Distance Function
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Shapes via Signed Distance Functions
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Regression of Continuous SDF via a NN

NN



Lorensen et al., 1987

Can then Reconstruct via Marching Cubes



Implicit to Explicit Shape Representation
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Coding Multiple Shapes
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Auto-Decoder

Auto-Encoder Auto-Decoder

Backpropagate
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Auto-Decoder

GT

Backpropagate
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Auto-Decoder Training

GT

Backpropagate
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Results: Comparison with Octree-Based

Our 
Reconstruction

Octree Based
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Results: Comparisons with Direct Mesh-Based

Ground Truth Our Reconstruction Atlasnet (25 Patches) Atlasnet (1 Patch)
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DeepSDF Extensions: NeRF

Mildenhall et al. 2020



Neural Parametrics:
AtlasNet
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Kernel of a scalar function

Curve in 2D:
Surface in 3D: 

Space partitioning

Implicit Curves and Surfaces via Functions
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Outside
Curve/Surface
Inside
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Parametric Curves and Surfaces via Functions

These parametric mappings can be explicit functions,
but can also be neural networks
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Implicits and Parametrics are Complementary



Thibault Groueix, Pierre-Alain Langlois, 
2019
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L(D(E(X)),Y)
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Training setup for 3D reconstruction
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Test Shape 
30

Encoder
E

Generating points
Decoder

D

AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation
Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, Mathieu Aubry
https://arxiv.org/abs/1802.05384
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Test Shape 
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Encoder
E

Generating points
Decoder

D

Issue: no idea of surfaces
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➔ Generate a fixed number of points
➔ Points connectivity is missing
➔ Generated points are not correlated enough to belong to an implicit surface

n
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Limitation of PointSetGen [Fan2017]

33



Thibault Groueix, Pierre-Alain Langlois, 
2019

Limitation of PointSetGen [Fan2017]
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Limitation of PointSetGen [Fan2017]
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Limitation of PointSetGen [Fan2017]
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➔ Generate a fixed number of points
➔ Points connectivity is missing
➔ Generated points are not correlated enough to belong to an implicit surface

Limitation of PointSetGen [Fan2017]
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Thibault Groueix, Pierre-Alain Langlois, 
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Reconstructing the mesh from a pointcloud : 
Poisson Surface Reconstruction [Kazhdan2013]

Limitation of PointSetGen [Fan2017]
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➔ Generate a fixed number of points
➔ Points connectivity is missing
➔ Generated points are not correlated enough to belong to an implicit surface
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Training setup for 3D reconstruction
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Choice of representation 
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Encoder
E

Deform a surface [Groueix2018]
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Deform a surface [Groueix2018]

Piecewise Parametric Surfaces
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Deform a surface [Groueix2018]
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Results : Single View Reconstruction
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Direct application : mesh parametrization
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Semantic Parametr Spaces / Templates: 3D-CODED

3D-CODED : 3D Correspondences by Deep Deformation
Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, Mathieu Aubry https://arxiv.org/abs/1806.05228
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Semantic Parametr Spaces / Templates: 3D-CODED



Thibault Groueix, Pierre-Alain Langlois, 
2019

State-of-the-art correspondences of FAUST [Groueix2018b]
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http://imagine.enpc.fr/%7Egroueixt/3D-CODED/index.html


Generative Adversarial 
Networks
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Transform Functions for Random Variables

Conceptually, the purpose of the “transform function” is to deform/reshape the initial probability distribution:
the transform function takes from where the initial distribution is too high compared to the targeted distribution
and puts it where it is too low.

Cumulative Distribution Function (CDF)
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Complex Output Distributions

The problem of generating a new image of dog is equivalent to the problem of generating
a new vector following the “dog probability distribution” over the N dimensional vector space.
So we are, in fact, facing a problem of generating a random variable with respect to a specific probability distribution.

Use a neural network as the transform function
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Generative Model Structure



• generate some uniform inputs
• make these inputs go through the network and collect the generated 

outputs
• compare the true “dog probability distribution” and the generated 

one based on the available samples 
• use backpropagation to make one step of gradient descent to lower 

the distance between true and generated distributions

• This is a very hard problem
• Maximum Mean Discrepancy (MMD)
• compute the MMD distance between the sample of true dog images and the 

sample of generated ones
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Loss: Comparing Distributions Based on Samples
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Gradient Descent Based on this Loss for Training

Extremely expensive!



• An indirect loss

• Generative Adversarial Networks (GANs): compare distributions 
through a downstream task

• Use the loss of that task to improve the generator

• Make that task itself be a trainable neural network
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An Alternative: Compare on a Downstream Task
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A Distribution Discriminator as that Task

Baseline: the direct approach

The distribution in blue is the true one while the generated 
distribution is depicted in orange. Iteration by iteration, we 
compare the two distributions and adjust the networks 
weights through gradient descent steps. Here the 
comparison is done over the mean and the variance 
(similar to a truncated moments matching method). Notice 
that (obviously) this example is so simple that it doesn’t 
require an iterative approach: the purpose is only to 
illustrate the intuition given above.
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A Distribution Discriminator as that Task

Indirect: use a discriminator

differentiate samples between
the two distributions

The blue distribution is the true one, the orange is the 
generated one. In grey, with corresponding y-axis on the 
right, we displayed the probability to be true for the 
discriminator if it chooses the class with the higher density in 
each point (assuming “true” and “generated” data are in 
equal proportions). The closer the two distributions are, the 
more often the discriminator is wrong. When training, the 
goal is to “move the green area” (generated distribution is 
too high) towards the red area (generated distribution is too 
low).



• Learn a discriminator through another neural network

• the goal of the generator is to fool the discriminator, so the 
generative neural network is trained to maximize the final 
classification error (between true and generated data)

• the goal of the discriminator is to detect fake generated data, so the 
discriminative neural network is trained to minimize the final 
classification error
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How to Get a Discriminator?

At each iteration of the training process, the weights of the generative network are updated in order to 
increase the classification error (error gradient ascent over the generator’s parameters) whereas the 
weights of the discriminative network are updated so that to decrease this error (error gradient descent 
over the discriminator’s parameters).
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An Adversarial Discriminator



• a generative network G(.) that takes a random input z with density pz (the “noise vector”) and returns an 
output xg = G(z) that should follow (after training) the targeted probability distribution

• a discriminative network D(.) that takes an input x that can be a “true” one (xt, whose density is denoted pt) 
or a “generated” one (xg, whose density pg is the density induced by the density pz going through G) and that 
returns the probability D(x) of to be a “true” data
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A Mathematical Formulation

Error

A minimax Nash equilibrium



In an idealized setting of unlimited capacity generator and 
discriminator and smoothness of the underlying distributions:

it can be shown that the learned generator produces the same density 
as the true density and the learned discriminator can’t do better than 
being true in one case out of two.
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Direct vs. Indirect Losses
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An Example: DCGAN
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An Example: DCGAN
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Also for 3D
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Latent Space Arithmetic



• Generation is straightforward
• Mode detail is captured
• Training does not require MLE estimation
• Robust to overfitting (generator never sees the 

training data)
• Impressive empirical results
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GAN Advantages



• Learned probability distribution is implicit
• Vanilla GANS only good for sampling/generation

• Training is difficult and often unstable
• Non-convergence
• Vanishing gradients
• Mode collapse
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GAN Issues



• Non-convergence
• Stochastic gradient descent was not designed to find the Nash equilibria 

in multi-player games
• Competition between generator and discriminator can cause instabilities
• A black art, addressed through adding noise to discriminator inputs, 

toying with learning rates, and various regularizations

• Vanishing gradients
• Generator training can fail if the discriminator is too good -- an optimal 

discriminator doesn’t provide enough information for the generator to 
make progress

• As gradients flow backwards, they can become so small that the early 
generator layers stop changing

• A key contribution to address this was the Wasserstein loss, using 
transportation metrics
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Explanation and Some Remedies

Wasserstein GAN, Martin Arjovsky, Soumith Chintala, Léon Bottou, 2017 https://arxiv.org/abs/1701.07875

• diff eq has sinusoidal terms
• will not converge, even 

with small leaning rate



• Mode collapse
• Generator fails to produce diverse-enough samples

• Remedy: let the discriminator looks at the entire batch, not just a single sample –
mark as “fake” if there is lack of diversity 77

Explanation and Some Remedies



• Disentanglement means that individual latent dimensions capture independent 
key attribute of the output

• How to achieve disentanglement without explicit supervision?

• InfoGAN approach:
• partition the noise vector into 2 parts

• a z vector that will capture slight/local variations in the output
• a small c vector will capture the main attributes of the output

• maximize mutual information between c and the generated data

• For MNIST, c dimensions correlate with digit class, thickness, slope, etc.
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Disentanglement: InfoGAN

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. InfoGAN:
Interpretable Representation Learning by Information Maximization Generative Adversarial Nets https://arxiv.org/abs/1606.03657



• An alternative architecture based on the style transfer literature

• Allows unsupervised separation of high-level attributes (e.g., pose vs 
identity for human faces) as well as stochastic variation (freckles, 
facial hair)

• Allows control of the synthesis
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Disentanglement: StyleGAN
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StyleGAN Architecture (Image Generation)

A = learned affine transform

B = per-channel scaling factors

AdaIN = adaptive instance normalization

In Instance Normalization, mean and
variance are calculated for each individual
channel for each individual sample across
both spatial dimensions
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Example Generations

Two sets of images were generated from their respective latent 
codes (sources A and B); the rest of the images were generated by
copying a specified subset of styles from source B and taking the 
rest from source A. Copying the styles corresponding to coarse 
spatial resolutions (42 – 82) brings high-level aspects such as pose, 
general hair style, face shape, and eyeglasses from source B, while 
all colors (eyes, hair, lighting) and finer facial features resemble A. 
If we instead copy the styles of middle resolutions (162 – 322) from 
B, we inherit smaller scale facial features, hair style, eyes 
open/closed from B, while the pose, general face shape, and 
eyeglasses from A are preserved. Finally, copying the fine styles 
(642 – 10242) from B brings mainly the color scheme and 
microstructure.



StyleGAN Encoder

How does it work?

Learn a latent representation of an 
image from a (pre-trained) 

StyleGAN generator

Latent directions trained from a 
predictive classifier using latent 

space as features

Image 
transformations

To manipulate the images 
to e.g. smile

How does the image look 
like in latent space?

Learn a latent representation of an 
image from a (pre-trained) 

StyleGAN generator

Latent directions trained from a 
predictive classifier using latent 

space as features

Image Pre-trained StyleGAN
generator

Image 

A handful of labelled 
attributes e.g. is the 

image smiling? Gender? 
Age?
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That’s All
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