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Class Logistics

* Homework 1 (VAE) is due today, 11:59 pm
* Homework 2 (deepSDF) is out, due Wed, Feb 9, 2022 (two weeks)

* Class will continue on Zoom until Clark S361 becomes available (~Feb
15)



Last Time: Neural
Parametrics, GANSs




Parametric Curves and Surfaces via Functions
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These parametric mappings can be explicit functions, L D& /)‘2%
but can also be neural networks ? | f <ot SR
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Deform a surface : space mapping trick (groueix2018]
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Deform a surface [croueix2018)
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Deform a surface [croueix2018)
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Deform a surface [croueix2018)
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Deform a surface [croueix2018)
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Jeform a surface [Groueix2018)
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Deform a surface [croueix2018)
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Direct application : mesh parametrization
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Generative Models
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GENERATIVE
NETWORK
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Input random variable
(drawn from a simple
distribution, for
example uniform).

The generative network
transforms the simple
random variable into
a more complex one.

Output random variable
(should follow the targeted
distribution, after training
the generative network).

The output of the
generative network
once reshaped.
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Gradient Descent Based on this Loss for Training

Forward transform of the

initial random variables to O O
A generate data A O o O o
O 0 o O
o ,0° . © = = > 8 0o
o GENERATIVE @ 2320 g0
o o 9, NETWORK 0 © o
o ©° <= = 00 5
o 90 "o ©
> Backpropagation of >
the matching error to
train the network
Input random variables Generative network The generated distribution is compared
(drawn from a uniform). to be trained. to the true distribution and the “matching error”

Is backpropagated to train the network.

Extremely expensive! 16



An Alternative: Compare on a Downstream Task

e An indirect loss

* Generative Adversarial Networks (GANs): compare distributions
through a downstream task

* Use the loss of that task to improve the generator

* Make that task itself be a trainable neural network

17



Use a Discriminator

e Learn a discriminator through another neural network

 the goal of the generator is to fool the discriminator, so the
generative neural network is trained to maximize the final
classification error (between true and generated data)

 the goal of the discriminator is to detect fake generated data, so the
discriminative neural network is trained to minimize the final
classification error

At each iteration of the training process, the weights of the generative network are updated in order to
increase the classification error (error gradient ascent over the generator’s parameters) whereas the

weights of the discriminative network are updated so that to decrease this error (error gradient descent
over the discriminator’s parameters).
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An Adversarial Discriminator

Bl rorward propagation (generation and classification) Bl Backward propagation (adversarial training)
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Input random The generative network The generated distribution The discriminative network The classification error
variables. is trained to maximise the and the true distribution are is trained to minimise the is the basis metric for the
final classification error. not compared directly. final classification error. training of both networks.
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A Mathematical Formulation

* agenerative network G(.) that takes a random input z with density p, (the “noise vector”) and returns an
output x, = G(z) that should follow (after training) the targeted probability distribution

* adiscriminative network D(.) that takes an input x that can be a “true” one (x,, whose density is denoted p,)
or a “generated” one (x,, whose density p, is the density induced by the density p, going through G) and that
returns the probability D(x) of to be a “true” data

B[l D(@)] + 5 Eenp. [D(G(2)]

(Eonp,[1 = D(2)] + Egrp, [D()])

Error FE(G,D) =

|~/ DN =

max (ml%n E(G, D))

A minimax Nash equilibrium
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GAN Advantages

e Generation is straightforward
* Mode detail is captured
* Training does not require MLE estimation

e Robust to overfitting (generator never sees the
training data) e 3

* Impressive empirical results

21



GAN Issues

* Learned probability distribution is implicit
 Vanilla GANS only good for sampling/generation

* Training is difficult and often unstable
* Non-convergence
* Vanishing gradients
* Mode collapse

22
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ShapeNet: Large-scale 3D Shape CAD Models
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Chang et al., “Shapenet: An information-rich 3d model repository” 24


https://www.shapenet.org/

PartNet: Part Segmentation Annotation
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https://partnet.cs.stanford.edu/

+ Synthetic, 3D Shapes

+ Based upon ShapeNet

# 573,585 Part Instances

¢+ 26,671 Objects, 24 Categories

# Part Segmentations
Fine-grained
Hierarchical
Instance-level

Mo et al., “PartNet: A Large-scale Benchmark for Fine-grained and
Hierarchical Part-level 3D Object Understanding”, CVPR 2019
25


https://partnet.cs.stanford.edu/

PartNet-Mobility and SAPIEN: Part Articulation

¢+ Synthetic, 3D Shapes

¢+ Based upon ShapeNet/PartNet
¢+ 14,068 Articulated Parts

+ 2,346 Objects, 46 Categories

+ Part Articulation
¢ Physical Simulation

¢ Support the study of various
robotic manipulation tasks

Xiang et al., “SAPIEN: A SimulAted Part-based

https //Sa ple n.u CSd . ed u/ Interactive ENvironment”, CVPR 2020
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https://sapien.ucsd.edu/

ABC: with Parametrized Curves and Surfaces

https://deep-geometry.github.io/abc-dataset/

+ Synthetic, 3D CAD Models
+ > 1M Models
+ mostly, Mechanical Parts

¢+ with Explicitly Parametrized
Curves and Surfaces

# Normal Estimation
# Surface Parametrization

Sebastian et al., “ABC: A Big CAD Model Dataset For
Geometric Deep Learning”, CVPR 2019
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https://deep-geometry.github.io/abc-dataset/

AutoDesk Fusion 360 Gallery Dataset

il [
WW]”WWIIW
l .

+ Synthetic, 3D CAD Models
¢+ ~ 20K Designs

¢ Sketch + Extrude
¢+ B-representation

# Reconstruction Dataset
# Segmentation Dataset

- Vq.@q o Assembly Dataset

Sketch 1 Extrude 1 Sketch 2 Extrude 2

Willis et al., “Fusion 360 Gallery: A Dataset and Environment for Programmatic CAD

httpS //glth u b.CO m/AUtOdes kAI La b/FUSion?)GOGa ”e erataset Construction from Human Design Sequences”, ACM Transactions on Graphics (TOG) o8



https://github.com/AutodeskAILab/Fusion360GalleryDataset

CO3D: Common Objects in 3D

&[5

ﬁnﬂ‘] Qﬁﬁa% @g*

https://github.com/facebookresearch/co3d

[6 CO3D

+ Real-world 3D Shape Scans
+ 1.5M Multi-view Images
+ 19K Objects, 50 Categories

+ Novel View Synthesis
+ 3D Reconstruction

Reizenstein et al., “Common Objects in 3D: Large-Scale Learning
and Evaluation of Real-life 3D Category Reconstruction”, ICCV 2021
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https://github.com/facebookresearch/co3d

3D-Front: Large-scale Synthetic 3D Scenes

Guest Bedroom & Synthetlc, 3D CAD MOdElS
Master Bedroom ¢+ from Professional Designers

¢+ 18,797 Rooms
¢+ 7,302 Furniture Objects

¢+ Indoor Scene Synthesis
¢ Texture Synthesis

Living Room

Fu et al., “3D-FRONT: 3D Furnished Rooms

https://tianchi.aliyun.com/specials/promotion/alibaba-3d-scene-dataset with layOuts and semaNTics". ICCY 2021
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https://tianchi.aliyun.com/specials/promotion/alibaba-3d-scene-dataset

ScanNet: Large-scale Real-world 3D Scene Scans
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http://www.scan-net.org/

ScanNet Benchmark Challenge

# Real 3D Scene Scans
# RGB-D Videos with 2.5M Views
# 1,500 3D Real Scene Scans

¢+ Semantic/Instance Segmentation

¢ Object Detection/Classification

¢+ Scene Completion/
Reconstruction / Generation

Dai et al., “ScanNet: Richly-annotated 3D
Reconstructions of Indoor Scenes”, CVPR 2017
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http://www.scan-net.org/

Matterport3D and HM-3D: Larger and Largest

# 194,400 RGB-D Images
# 90 Building-scale Real Scans

https://niessner.github.io/Matterport/

Chang et al., “Matterport3D: Learning from RGB-D
Data in Indoor Environments”, 3DV 2017

+ 1,000 Building-scale Real
Scans (the Largest until now)

https://aihabitat.org/datasets/hm3d/

Ramakrishnan et al., “Habitat-Matterport 3D Dataset HM3D: 1000 Large-
scale 3D Environments for Embodied Al”, NeurlPS (dataset) 2021
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https://niessner.github.io/Matterport/
https://aihabitat.org/datasets/hm3d/

Kitti and nuScenes: Outdoor Road Scenes for AV

# 389 Images
# 200K Object Annotations

http://www.cvlibs.net/datasets/kitti/

Geiger et al., “Are we ready for Autonomous Driving?
The KITTI Vision Benchmark Suite”, CVPR 2012

+ 1,000 Scenes
# 23 Classes and 8 Attributes

https://www.nuscenes.org/

Caesar et al., “nuScenes: A multimodal dataset
for autonomous driving”, CVPR 2020

Radar Lidar Map

"Ped with pet, bicycle, car makes a u-turn, lane change, peds crossing crosswalk" 33


http://www.cvlibs.net/datasets/kitti/
https://www.nuscenes.org/

BuildingNet: Large-scale 3D Building Models

N e o | * Synthetic, 3D CAD Models
== ¢ 292K Parts, 2K Buildings

+ E.g. houses, churches,
skyscrapers, town halls, libraries,

ﬂ | and castles

eiling .paith .wfﬁdow plefint/tree M ground .M'[enge
+ Part Annotations
+ e.g. roof, chimney, wall, lamp

¢+ Edge Annotations
# e.g. proximity, support,

containment
https://buildingnet.org/ Lobe 30 Budngs V2051


https://buildingnet.org/

HoliCity: A City-scale 3D Dataset

(c) Panorama (d) RGB (e) Renderings (surface segments, depth, normal)

https://holicity.io/

# Real-world Scenes in London
+ Aligned with 3D CAD Models
+ 13312 x 6656 m~2

¢ 3D Structural Annotations
+ e.g. planes, corners, lines
# Semantic Segmentation

# Support the study of city-
scale 3D tasks

Zhou et al., “HoliCity: A City-Scale Data

Platform for Learning Holistic 3D Structures"

35


https://holicity.io/

SensatUrban: An Urban-Scale Dataset

+ 3D Real-world Scans
+ 6 km ” 2 City Landscape

+ 13 Semantic Classes
#e.g. ground, vegetation, car

# Support the study of urban-
scale 3D tasks

Figure 3: Examples of our SensatUrban dataset. Different semantic classes are labeled by different colors.

Hu and Yang et al., “Towards Semantic Segmentation of Urban-Scale 3D

https://github.com/QingyongHu/SensatUrban Point Clouds: A Dataset, Benchmarks and Challenges”, CVPR 2021 ”



https://github.com/QingyongHu/SensatUrban

3D Generation as a
Multi-Step Process




Autoregressive Models,
PolyGen




Autoregressive Models

The term autoregressive originates from the literature on time-series models

where observations from the previous time-steps are used to predict the value at
the current time step.

Put simply, an autoregressive model is merely a feed-forward model which predicts
future values from past values:

Ve =C+ G1Ve1 + P2Vep + o+ OpVep + &, €~N(0,0%)

y; could be:

The specific stock price of day i...

The amplitude of a simple pendulum at period i...

Or any variable that depends on its preceding values!

\(m) ’

39



Autoregressive Models: Factorization

Main challenge: distributions over high dimensional objects is actually very sparse!!

Too many possibilities! ~—— Main idea: write as a product of simpler terms

Definition of conditional probability:

P(x1,x3) = P(x1) P(x2]x1) jf
Product rule: . ﬂ
P(xy, X5, .., Xp) = HPQ (xi|x<;)
=1

Divide and conquer | We can solve the joint distribution P(x) by can you tell the exact

likelihood of the next pixel
(noted as a red point)
conditioned on the given

solving simpler conditional distributions pg (x;|x<;) one by one piels?

40



Autoregressive models and RNNs
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Obligatory RNN diagram. Source: Chris Olah. WaveNet animation. Source: Google DeepMind.
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Relationship with RNN:

Like an RNN, an autoregressive model’s output h¢,at time t depends on not just x¢, but also
X1,X2, ..., X;—1 from previous time steps.

However, unlike an RNN, the previous x4, X5, ..., X;_1 are not provided via some hidden
state: they are given just as an input to the model.



Comparison

Differences between Autoregressive models (AR), VAE and GAN:

GAN model doesn’t define any distribution, it adapts discriminator to learn

the data distribution imp

icitly. P(X, Z) = P(X|2)P(2)

VAE model believes the data distribution is too complex to model directly,

thus it tries to learn the o

istribution by defining an intermediate distribution

and learning the map between the defined simple distribution to the
complex data distribution. P(X, Z) = P(X|Z)P(Z)

AR model on the one hand assumes that the data distribution can be
learned directly (tractable), then it define its outputs as conditional

distributions to solve the generation problem by directly modeling each

conditional distribution.

42



 WaveNet (Deep Mind) e Conditional Pixel Networks
(Deep Mind)
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Figure 1. Image completions sampled from a PixeIRNN.

occluded completions original
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DeepMind

PolyGen: An Autoregressive Generative

Model of 3D Meshes

Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, Peter Battaglia

ICML 2020
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Generating Virtual Worlds

3D objects populate
virtual worlds

VR / AR
Games

-
e Film / Television
™ Al environments

Objects are made out
of meshes

45



Generating Virtual Objects

Generated Objects




Mesh Representations: OBJ Format

# CuUupe.ob

v 1.000000 1.000000 -1.000000

v 1.000000 -1.000000 -1.000000
v 1.000000 1.000000 1.000000

v 1.000000 -1.000000 1.000000
v -1.600000 1.000000 -1.000000
v -1.000000 -1.000000 -1.000000
v -1.000000 1.000000 1.000000

v -1.000000 -1.000000 1.000000
1573

f4a378

f8756

f6248

T 2354

*+56512 ‘!3,
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ShapeNet Core DataSet: “55K Meshes




Higher-Order Elements: N-Gon Meshes

¢ Meshes can be
triangulated in many
ways

e N-gons simplify the
modeling problem

Triangles

49



N-Gons Allow More Efficient Representations

(a) Triangle mesh (b) n-gon mesh

Allows
* fewer elements
* more canonical meshes (easier to learn)

* but, polygons need to be planar
50



Modeling Strategy

PV, F) = p(V)p(FIV)

i o

1. Model vertices
2. Model faces given vertices

p(V) Vertex model |
p(FlV) Face model

M= (V,F)



Modeling Strategy, in More Detail
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Auto-Regressive Vertex Model

Vertices

Treat as long sequence. Order by z-value, then y-value, then
x-value Stopping token

YV = (20, Y0, 20y 21, Y1, T15« + + 5 2V YV, TV, 8]
= [vg, V1, v2, . .., V3V +1]

8-bits Quantize vertices and predict softmax distributions (like
WaveNet / PixelCNN) with autoregressive architecture

PE}(V) - H P(J(T"nh'{u)

n
53



Auto-Regressive Vertex Model

Vertex Prediction
Coordinates Probabilities
> plvq)=
v,=0.5 - pvalvy)=
Vertices
V2=_D.1 - D(V3|V,3)=
v =(0.3,-0.1, 0.5)
—» Flatten —= | va=0.3 = plvav_g)=
v=(-0.1,0.4,0.2)
v,=0.2 > plvslv.g=
vs=0.4 - plvgv= <o il

Vertex Transformer Location

e Outputs predictive distribution for sequence of vertex
coordinates.
e Train to maximize summed log-probability of sequence
(aka cross-entropy loss) @

Transformer can learn long-range dependencies: e.g., symmetries 54



Auto-Regressive Face Model

F =y, f1,5,...,5F]

Treat as long sequence with new-face indicators. Order by
lowest vertex index, then second lowest, etc

f

I|

() [} -; I | ‘2 0 1..2::;
ff n, £ 152 Ly

Predict softmax distribution over vertex indices

§ €312, ... Ny, R, 8}
po(FIV) = | | pa(snls<n, V)
I
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Pointer Networks

Pointer
Embedding
Vertex D Vertex
Embeddings - Scores
= i =
Se = ] ot - 8
| | \
e + = =, [_
1 i\ — =
P
G * — > %2 '/'
|
e; -— = S
|
Dot
Product

Softmax —

Pointer Networks

Oriol Vinyals® Meire Fortunato® Navdeep Jaitly
Google Brain Department of Mathematics, UC Berkeley Google Brain

Pointers are compared to vertex embeddings
and normalized to obtain a predictive distribution
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Auto-Regressive Face Model

Vertex Vertex
Locations Embeddings

— -
- Transformer
Va | J

Pointer
Embeddings

[ v |
Vertex i

) - pif,)=

NS N

Faces E — *}\Q\i\ -E\;:E.%‘\ plflf.2)=

» - . x\\\\\&\\}\\k o=

BCETEE N PR - SR B \ R
| t=0,29 | e e N = N plfslf.2)=
Pl o=

-—b piflf.)=

s \"' Pligl-g= <=5

‘n.-'erltex Face Transformer
Indices Index

e \Vertex encoder produces contextual vertex embeddings

e Face model uses vertex embeddings as input -> outputs pointers
57



Results: Conditioning on Class Labels

Sofa
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Table
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More Examples of Generations

g- =
=l
=
2
qg o
A a0
e
Y £
Q0 g
=
3] =

Cabinet
Chair

Table
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Conditioning on Images and Voxels

. Generate meshes given voxel or Image
inputs
A Enables object design for non-experts

(like MineCraft)

. Use conv-net encoder and pass
embeddings to vertex / face model
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Conditioning on Images

Inputs Model predictions Targets

Mgy gl
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Conditioning on Images




Conditioning on Voxels




Conditioning on Voxels

Inputs Model predictions Targets
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Conditional Generation Evaluation: Chamfer Dist

Image conditional Voxel conditional
25 - -— i MDdEl
§ AtlasNet
E 20 = —
n
o 15 < -
o
Y
E 10 = =
& i \
U s 4 _
. e
| | | | | | | I | I
2 4 13 8 10 ? 4 7] ] 10
MNum. Predictions Mum. Predictions

» AtlasNet wins on a single prediction
e But PolyGen catches up with more predictions
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Is Chamfer the Best Metric?

AtlasNet meshes don't look Inputs Model predictions AtlasNet predictions

like human designed

¢ Uneven surfaces
e Stretching artifacts
e Disconnected patches

meshes:.
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Optimizing Chamfer Can Lead to Noisy Meshes

(a) PolyGen (b) Occupancy Networks
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PolyGen Summary

e Mesh generation using autoregressive models is
feasible

e Directly modeling human-designed meshes means
we can output diverse and realistic meshes

e Challenges remain in scaling to larger meshes, and
due to availability of large datasets

70



Flow Models, PointFlow

PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows. Guandao
Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, Bharath Hariharan. ICCV'19
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That’s All

FSTOFL ey
1.89

e ——
—
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