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• Homework 1 (VAE) is due today, 11:59 pm

• Homework 2 (deepSDF) is out, due Wed, Feb 9, 2022 (two weeks)

• Class will continue on Zoom until Clark S361 becomes available (~Feb 
15)
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Class Logistics



Last Time: Neural 
Parametrics, GANs
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Parametric Curves and Surfaces via Functions

These parametric mappings can be explicit functions,
but can also be neural networks
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Piecewise Parametric Surfaces
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Thibault Groueix, Pierre-Alain Langlois, 
2019

Direct application : mesh parametrization
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Thibault Groueix, Pierre-Alain Langlois, 
2019
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Generative Models
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Gradient Descent Based on this Loss for Training

Extremely expensive!



• An indirect loss

• Generative Adversarial Networks (GANs): compare distributions 
through a downstream task

• Use the loss of that task to improve the generator

• Make that task itself be a trainable neural network
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An Alternative: Compare on a Downstream Task



• Learn a discriminator through another neural network

• the goal of the generator is to fool the discriminator, so the 
generative neural network is trained to maximize the final 
classification error (between true and generated data)

• the goal of the discriminator is to detect fake generated data, so the 
discriminative neural network is trained to minimize the final 
classification error
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Use a Discriminator

At each iteration of the training process, the weights of the generative network are updated in order to 
increase the classification error (error gradient ascent over the generator’s parameters) whereas the 
weights of the discriminative network are updated so that to decrease this error (error gradient descent 
over the discriminator’s parameters).
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An Adversarial Discriminator



• a generative network G(.) that takes a random input z with density pz (the “noise vector”) and returns an 
output xg = G(z) that should follow (after training) the targeted probability distribution

• a discriminative network D(.) that takes an input x that can be a “true” one (xt, whose density is denoted pt) 
or a “generated” one (xg, whose density pg is the density induced by the density pz going through G) and that 
returns the probability D(x) of to be a “true” data
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A Mathematical Formulation

Error

A minimax Nash equilibrium



• Generation is straightforward
• Mode detail is captured
• Training does not require MLE estimation
• Robust to overfitting (generator never sees the 

training data)
• Impressive empirical results
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GAN Advantages



• Learned probability distribution is implicit
• Vanilla GANS only good for sampling/generation

• Training is difficult and often unstable
• Non-convergence
• Vanishing gradients
• Mode collapse
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GAN Issues



Public 3D Data Sets
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ShapeNet: Large-scale 3D Shape CAD Models

https://www.shapenet.org
Chang et al., “Shapenet: An information-rich 3d model repository”

Synthetic, 3D Shapes
> 3M Models, 3K Categories

ShapeNetCore:
51,300 unique 3D models
55 common categories
Canonical Poses/Sizes
Shape/Images/Text/etc.

Advance fields in 3DDL

https://www.shapenet.org/
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PartNet: Part Segmentation Annotation

https://partnet.cs.stanford.edu/ Mo et al., “PartNet: A Large-scale Benchmark for Fine-grained and 
Hierarchical Part-level 3D Object Understanding”, CVPR 2019

Synthetic, 3D Shapes
Based upon ShapeNet
573,585 Part Instances
26,671 Objects, 24 Categories

Part Segmentations
• Fine-grained
• Hierarchical
• Instance-level

https://partnet.cs.stanford.edu/
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PartNet-Mobility and SAPIEN: Part Articulation

https://sapien.ucsd.edu/ Xiang et al., “SAPIEN: A SimulAted Part-based 
Interactive ENvironment”, CVPR 2020

Synthetic, 3D Shapes
Based upon ShapeNet/PartNet
14,068 Articulated Parts
2,346 Objects, 46 Categories

Part Articulation
Physical Simulation

Support the study of various 
robotic manipulation tasks

https://sapien.ucsd.edu/
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ABC: with Parametrized Curves and Surfaces

https://deep-geometry.github.io/abc-dataset/ Sebastian et al., “ABC: A Big CAD Model Dataset For 
Geometric Deep Learning”, CVPR 2019

Synthetic, 3D CAD Models
> 1M Models
mostly, Mechanical Parts

with Explicitly Parametrized 
Curves and Surfaces

Normal Estimation
Surface Parametrization

https://deep-geometry.github.io/abc-dataset/
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AutoDesk Fusion 360 Gallery Dataset

https://github.com/AutodeskAILab/Fusion360GalleryDataset
Willis et al., “Fusion 360 Gallery: A Dataset and Environment for Programmatic CAD 
Construction from Human Design Sequences”, ACM Transactions on Graphics (TOG)

Synthetic, 3D CAD Models
~ 20K Designs

Sketch + Extrude
B-representation

Reconstruction Dataset
Segmentation Dataset
Assembly Dataset

https://github.com/AutodeskAILab/Fusion360GalleryDataset
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CO3D: Common Objects in 3D

https://github.com/facebookresearch/co3d Reizenstein et al., “Common Objects in 3D: Large-Scale Learning 
and Evaluation of Real-life 3D Category Reconstruction”, ICCV 2021

Real-world 3D Shape Scans
1.5M Multi-view Images
19K Objects, 50 Categories

Novel View Synthesis
3D Reconstruction

https://github.com/facebookresearch/co3d
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3D-Front: Large-scale Synthetic 3D Scenes

https://tianchi.aliyun.com/specials/promotion/alibaba-3d-scene-dataset Fu et al., “3D-FRONT: 3D Furnished Rooms 
with layOuts and semaNTics”, ICCV 2021

Synthetic, 3D CAD Models
from Professional Designers

18,797 Rooms
7,302 Furniture Objects

Indoor Scene Synthesis
Texture Synthesis

https://tianchi.aliyun.com/specials/promotion/alibaba-3d-scene-dataset
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ScanNet: Large-scale Real-world 3D Scene Scans

http://www.scan-net.org/ Dai et al., “ScanNet: Richly-annotated 3D 
Reconstructions of Indoor Scenes”, CVPR 2017

Real 3D Scene Scans
RGB-D Videos with 2.5M Views
1,500 3D Real Scene Scans

Semantic/Instance Segmentation
Object Detection/Classification
Scene Completion/
Reconstruction / Generation

http://www.scan-net.org/
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Matterport3D and HM-3D: Larger and Largest

https://niessner.github.io/Matterport/
Chang et al., “Matterport3D: Learning from RGB-D 
Data in Indoor Environments”, 3DV 2017

https://aihabitat.org/datasets/hm3d/

Ramakrishnan et al., “Habitat-Matterport 3D Dataset HM3D: 1000 Large-
scale 3D Environments for Embodied AI”, NeurIPS (dataset) 2021

194,400 RGB-D Images
90 Building-scale Real Scans

1,000 Building-scale Real 
Scans (the Largest until now)

https://niessner.github.io/Matterport/
https://aihabitat.org/datasets/hm3d/
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http://www.cvlibs.net/datasets/kitti/
Geiger et al., “Are we ready for Autonomous Driving? 
The KITTI Vision Benchmark Suite”, CVPR 2012

https://www.nuscenes.org/

Caesar et al., “nuScenes: A multimodal dataset 
for autonomous driving”, CVPR 2020

389 Images
200K Object Annotations

1,000 Scenes
23 Classes and 8 Attributes

Kitti and nuScenes: Outdoor Road Scenes for AV

http://www.cvlibs.net/datasets/kitti/
https://www.nuscenes.org/
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BuildingNet: Large-scale 3D Building Models

https://buildingnet.org/ Selvaraju et al., “BuildingNet: Learning to 
Label 3D Buildings”, ICCV 2021

Synthetic, 3D CAD Models
292K Parts, 2K Buildings
E.g. houses, churches, 

skyscrapers, town halls, libraries, 
and castles

Part Annotations
e.g. roof, chimney, wall, lamp

Edge Annotations
e.g. proximity, support, 

containment

https://buildingnet.org/
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HoliCity: A City-scale 3D Dataset

https://holicity.io/ Zhou et al., “HoliCity: A City-Scale Data 
Platform for Learning Holistic 3D Structures"

Real-world Scenes in London
Aligned with 3D CAD Models
13312 x 6656 m^2

3D Structural Annotations
e.g. planes, corners, lines

Semantic Segmentation

Support the study of city-
scale 3D tasks

https://holicity.io/
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SensatUrban: An Urban-Scale Dataset

https://github.com/QingyongHu/SensatUrban Hu and Yang et al., “Towards Semantic Segmentation of Urban-Scale 3D 
Point Clouds: A Dataset, Benchmarks and Challenges”, CVPR 2021

3D Real-world Scans
6 km ^ 2 City Landscape

13 Semantic Classes
e.g. ground, vegetation, car

Support the study of urban-
scale 3D tasks

https://github.com/QingyongHu/SensatUrban


3D Generation as a
Multi-Step Process
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Autoregressive Models, 
PolyGen
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Autoregressive Models
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Autoregressive Models: Factorization
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Autoregressive models and RNNs
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Comparison



• WaveNet (Deep Mind)

• Pixel Recurrent Networks (Deep 
Mind)
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Examples

• Conditional Pixel Networks 
(Deep Mind)

PixelCNN decoders



44

ICML 2020
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Generating Virtual Worlds
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Generating Virtual Objects
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Mesh Representations: OBJ Format
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ShapeNet Core DataSet: ~55K Meshes
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Higher-Order Elements: N-Gon Meshes
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N-Gons Allow More Efficient Representations

Allows
• fewer elements
• more canonical meshes (easier to learn)
• but, polygons need to be planar
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Modeling Strategy
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Modeling Strategy, in More Detail

Must mask invalid predictions
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Auto-Regressive Vertex Model

8-bits
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Auto-Regressive Vertex Model

Transformer can learn long-range dependencies: e.g., symmetries
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Auto-Regressive Face Model
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Pointer Networks

Pointers are compared to vertex embeddings
and normalized to obtain a predictive distribution
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Auto-Regressive Face Model
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Results: Conditioning on Class Labels
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More Examples of Generations
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Conditioning on Images and Voxels
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Conditioning on Images
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Conditioning on Images
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Conditioning on Voxels
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Conditioning on Voxels
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Conditional Generation Evaluation: Chamfer Dist

• AtlasNet wins on a single prediction
• But PolyGen catches up with more predictions
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Is Chamfer the Best Metric?
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Optimizing Chamfer Can Lead to Noisy Meshes
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PolyGen Summary



Flow Models, PointFlow

PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows. Guandao 
Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, Bharath Hariharan. ICCV'19
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That’s All
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