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Last Time: Autoregressive 
and Flow Models
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Autoregressive Models
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Autoregressive Models: Factorization
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ICML 2020
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Mesh Representations: OBJ Format
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N-Gons Allow More Efficient Representations

Allows
• fewer elements
• more canonical meshes (easier to learn)
• but, polygons need to be planar
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Modeling Strategy
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Modeling Strategy, in More Detail

Must mask invalid predictions
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Auto-Regressive Vertex Model

Transformer can learn long-range dependencies: e.g., symmetries
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Auto-Regressive Face Model
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Examples of Generations
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Conditioning on Images
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Conditioning on Voxels
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Optimizing Chamfer Can Lead to Noisy Meshes

“Vector” representations of geometry – more on Wed



Flow Models, PointFlow

PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows. Guandao 
Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, Bharath Hariharan. ICCV'19
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Point Cloud Generation



Off-surface points have low 
probability.

Near-surface points have 
high probability.

A Shape is a Distribution of 3D Points



High probability.

Low probability

A Point Cloud Sampled from a Distribution



How to Model such a Distribution of 3D Points?



Transforming a 3D Gaussian PC to a Shape



Transforming a 3D Gaussian PC to a Shape



Transforming a 3D Gaussian PC to a Shape

+

𝑦𝑦 𝑥𝑥



Repeat N times!

Transforming a 3D Gaussian PC to a Shape

+

We want an invertible process,
transforming the point cloud y to x in a series of small steps

𝑦𝑦 𝑥𝑥
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Invertible Transforms: from Discrete to Continuous

Invertible neural network layers with simple Jacobians

discrete

continuous



Neural ODEs

Instead of specifying a discrete sequence  of
hidden layers, we parametrize the derivative
of the hidden state by a neural network.



Point CNF

𝑡𝑡0 𝑡𝑡1

Continuous Normalizing Flow (CNF)

𝑦𝑦 = 𝑦𝑦(𝑡𝑡0)
𝑥𝑥 = 𝑦𝑦(𝑡𝑡1) = 𝑦𝑦 + ∫𝑡𝑡0

𝑡𝑡1𝑔𝑔𝜃𝜃(𝑦𝑦(𝑡𝑡), 𝑡𝑡)𝑑𝑑𝑡𝑡

𝑥𝑥 = 𝑦𝑦(𝑡𝑡1)



Point CNF

𝑡𝑡0 𝑡𝑡1

Continuous Normalizing Flow (CNF)

𝑦𝑦 = 𝑦𝑦(𝑡𝑡0)
𝑥𝑥 = 𝑦𝑦(𝑡𝑡1) = 𝑦𝑦 + ∫𝑡𝑡0

𝑡𝑡1𝑔𝑔𝜃𝜃(𝑦𝑦(𝑡𝑡), 𝑡𝑡)𝑑𝑑𝑡𝑡

𝑥𝑥 = 𝑦𝑦(𝑡𝑡1)

Can be inverted!



Point CNF

CNF is Invertible

𝑦𝑦 = 𝑦𝑦(𝑡𝑡0) 𝑥𝑥 = 𝑦𝑦(𝑡𝑡1)

𝑡𝑡0 𝑡𝑡1

𝑦𝑦 = 𝑦𝑦(𝑡𝑡0) = 𝑥𝑥 + ∫𝑡𝑡1
𝑡𝑡0𝑔𝑔𝜃𝜃(𝑦𝑦(𝑡𝑡), 𝑡𝑡)𝑑𝑑𝑡𝑡



Point CNF

CNF is Invertible

𝑦𝑦 = 𝑦𝑦(𝑡𝑡0) 𝑥𝑥 = 𝑦𝑦(𝑡𝑡1)

𝑡𝑡0 𝑡𝑡1

𝑦𝑦 = 𝑦𝑦(𝑡𝑡0) = 𝑥𝑥 + ∫𝑡𝑡1
𝑡𝑡0𝑔𝑔𝜃𝜃(𝑦𝑦(𝑡𝑡), 𝑡𝑡)𝑑𝑑𝑡𝑡



Point CNF

log𝑃𝑃(𝑥𝑥) = log𝑃𝑃 𝑥𝑥 + ∫𝑡𝑡1
𝑡𝑡0𝑔𝑔𝜃𝜃(𝑦𝑦(𝑡𝑡), 𝑡𝑡)𝑑𝑑𝑡𝑡 − ∫𝑡𝑡0

𝑡𝑡1Tr
𝜕𝜕𝑔𝑔𝜃𝜃(𝑥𝑥(𝑡𝑡), 𝑡𝑡)

𝜕𝜕𝑥𝑥(𝑡𝑡)
𝑑𝑑𝑡𝑡

𝑡𝑡0 𝑡𝑡1

Change of Variable Formula

𝑦𝑦 = 𝑦𝑦(𝑡𝑡0)
𝑥𝑥 = 𝑦𝑦(𝑡𝑡1)



Point CNF

𝑡𝑡0 𝑡𝑡1






Step 2: Point CNF transforms the 
point according to the latent vector.

Step 1: Learn a latent space 
of shapes.

How to Sample Multiple Shapes?

Point CNF



Point CNF

Latent CNF

Sample a Novel Shape



Point CNF

Latent CNF

The Entire PointFlow Architecture

Everything is invertible
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VAE Architecture



𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖

𝑧𝑧

𝑖𝑖 = 1 …𝑁𝑁

𝑄𝑄𝜙𝜙(𝑧𝑧|𝑋𝑋)

log𝑃𝑃𝜃𝜃(𝑋𝑋) ≥ 𝔼𝔼𝑄𝑄𝜙𝜙(𝑧𝑧|𝑋𝑋)[log𝑃𝑃𝜃𝜃(𝑋𝑋|𝑧𝑧)] − 𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄𝜙𝜙(𝑧𝑧|𝑋𝑋)||𝑃𝑃𝜓𝜓(𝑧𝑧))

= 𝔼𝔼𝑄𝑄𝜙𝜙(𝑧𝑧|𝑋𝑋)[log𝑃𝑃𝜃𝜃(𝑋𝑋|𝑧𝑧)] − 𝔼𝔼𝑄𝑄𝜙𝜙(𝑧𝑧|𝑋𝑋)[log𝑄𝑄𝜙𝜙(𝑧𝑧|𝑋𝑋)] + 𝔼𝔼𝑄𝑄𝜙𝜙(𝑧𝑧|𝑋𝑋)[log𝑃𝑃𝜓𝜓(𝑧𝑧)]

Reconstruction Loss Regularization Loss Prior Loss

ELBO

VAE Framework



Reconstruction Loss

Point CNF

𝔼𝔼𝑄𝑄𝜙𝜙(𝑧𝑧|𝑋𝑋)[log𝑃𝑃𝜃𝜃(𝑋𝑋|𝑧𝑧)] − 𝔼𝔼𝑄𝑄𝜙𝜙(𝑧𝑧|𝑋𝑋)[log𝑄𝑄𝜙𝜙(𝑧𝑧|𝑋𝑋)] + 𝔼𝔼𝑄𝑄𝜙𝜙(𝑧𝑧|𝑋𝑋)[log𝑃𝑃𝜓𝜓(𝑧𝑧)]

VAE Framework - Reconstruction Loss



𝔼𝔼𝑄𝑄𝜙𝜙(𝑧𝑧|𝑋𝑋)[log𝑃𝑃𝜃𝜃(𝑋𝑋|𝑧𝑧)] − 𝔼𝔼𝑄𝑄𝜙𝜙(𝑧𝑧|𝑋𝑋)[log𝑄𝑄𝜙𝜙(𝑧𝑧|𝑋𝑋)] + 𝔼𝔼𝑄𝑄𝜙𝜙(𝑧𝑧|𝑋𝑋)[log𝑃𝑃𝜓𝜓(𝑧𝑧)]

Regularization Loss

𝑄𝑄𝜙𝜙(𝑧𝑧𝑖𝑖|𝑋𝑋𝑖𝑖) = 𝒩𝒩(𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖)

PointNet

𝜇𝜇𝑖𝑖
𝜎𝜎𝑖𝑖

𝑧𝑧𝑖𝑖 ∼ 𝒩𝒩(𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖)

×

+

VAE Framework - Regularization Loss



Prior Loss

Latent CNF

𝔼𝔼𝑄𝑄𝜙𝜙(𝑧𝑧|𝑋𝑋)[log𝑃𝑃𝜃𝜃(𝑋𝑋|𝑧𝑧)] − 𝔼𝔼𝑄𝑄𝜙𝜙(𝑧𝑧|𝑋𝑋)[log𝑄𝑄𝜙𝜙(𝑧𝑧|𝑋𝑋)] + 𝔼𝔼𝑄𝑄𝜙𝜙(𝑧𝑧|𝑋𝑋)[log𝑃𝑃𝜓𝜓(𝑧𝑧)]

VAE Framework - Prior Loss



Auto-encoding Results



Generation Results



𝑡𝑡0 𝑡𝑡1

Visualization of Point Transformations



Structured Shape 
Representations

46
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Structured Shape Representations



Example of
Neural Shape Generator:

GRASS
GRASS: Generative Recursive Autoencoders for Shape Structures. Jun Li, Kai Xu, Siddhartha Chaudhuri, 
Ersin Yumer, Hao Zhang, Leonidas Guibas. Siggraph 2017.
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Shapes Naturally Have Compositional Structure

These reflect
• part-subpart hierarchies
• groupings based on type
• groupings based on adjacency
• groupings based on symmetry



 GRASS factorizes a shape into a hierarchical 
layout of simplified parts, plus fine-grained part 
geometries

 Weakly supervised:

 segments or parts

  labels

 manually curated “ground truth” hierarchies

 Structure-aware: learns a generative distribution 
over informative shape structures

GRASS: Generative Network Over Unlabeled Part Layouts

Refl. sym.Refl. sym.



• Challenge 1: Ingest and generate arbitrary complexity part layouts 
with a fixed-dimensional network

• Challenge 2: Map a layout invertibly to a fixed-D code (“Shape DNA”) 
that implicitly captures adjacency, symmetry and hierarchy

• Challenge 3: Capture both structure and fine geometry details

Three Challenges



Socher et al. 2011

 Repeatedly merge two nodes into one

 Each node has an n-D feature vector, 
computed recursively

 p = f (W [c1;c2] + b)

Recursive Neural Network (RvNN)

f a non-linearity



Different Types of Merges, Varying Cardinalities

Adjacency Translational
symmetry

Rotational
symmetry

Reflectional
symmetry

• How to encode them to the same code space?
• How to decode them appropriately, given just a code?



𝑓𝑓𝑠𝑠(𝑥𝑥, p)

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

𝑓𝑓𝑠𝑠(𝑥𝑥, p)

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

Refl. sym.Refl. sym.

Recursively Merging Parts
Bo

tt
om

-u
p 

m
er

gi
ng

Adjacency 
encoder

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)



𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

𝑓𝑓𝑠𝑠(𝑥𝑥, p)

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

Refl. sym.Refl. sym.

Recursively Merging Parts
Bo

tt
om

-u
p 

m
er

gi
ng

Symmetry 
encoder

Root code

𝑓𝑓𝑠𝑠(𝑥𝑥, p)

Symmetry 
generator

Symmetry 
parameters

How to determine the 
merge order?



RvNN decoder RvNN encoder 

𝑛𝑛-D root code

𝐿𝐿 = 𝑋𝑋 − 𝑋𝑋𝑋 2

𝑋𝑋 𝑋𝑋𝑋

• Learn weights from a variety of randomly sampled merge orders for 
each box structure

Training with Reconstruction loss



In Training

• Encoding: Given a box structure, determine the merge 
order as:
• The hierarchy that gives the lowest reconstruction error

RvNN decoder RvNN encoder 



In Testing

• Encoding: Given a box structure, determine the merge 
order as:
• The hierarchy that gives the lowest reconstruction error

• Decoding: Given an arbitrary code, how to generate the 
corresponding structure?

RvNN decoder 
Some code Box structure

?



How to Know what Type of Encoder to Use?

Adjacent or 
symmetry ?

Node 
Classifier



maximize

𝑃𝑃(𝑋𝑋) ≈ 𝑃𝑃𝑔𝑔𝑡𝑡(𝑋𝑋)

• Variational Auto-Encoder (VAE): Learn a distribution that 
approximates the data distribution of true 3D structures

• Marginalize over a latent “DNA” code

Making the Network Generative

Parameters
Likelihood



maximize
𝑧𝑧 should reconstruct 
𝑋𝑋, given that it was 
drawn from 𝑄𝑄(𝑧𝑧|𝑋𝑋)

Assuming 𝑧𝑧’s follow a 
normal distribution

Variational Bayes Formulation ELBO

maximize

Evidence Lower Bound



maximize
Reconstruction loss KL divergence loss

En
co

de
r

𝑧𝑧
Decoder

𝑄𝑄 𝑧𝑧 𝑋𝑋 𝑃𝑃(𝑋𝑋|𝑧𝑧)𝑋𝑋 𝑋𝑋𝑋 = 𝑓𝑓(𝑧𝑧;𝜃𝜃)

𝐿𝐿 = 𝑋𝑋 − 𝑋𝑋𝑋 2

𝐾𝐾𝐿𝐿

Variational Autoencoder (VAE)



Enc Enc Enc

Variational Autoencoder (VAE)
𝑧𝑧𝑠𝑠~𝑁𝑁(𝜇𝜇,𝜎𝜎)

𝐸𝐸𝑛𝑛𝐸𝐸(𝑥𝑥)
𝑓𝑓𝜇𝜇

𝑓𝑓𝜎𝜎

𝜇𝜇

𝜎𝜎 𝑓𝑓𝑙𝑙

Encoder
Decoder



Sampling Near 𝜇𝜇 is Robust

(𝜇𝜇,𝜎𝜎)

𝑧𝑧𝑠𝑠~𝑁𝑁(𝜇𝜇,𝜎𝜎)

𝐸𝐸𝑛𝑛𝐸𝐸(𝑥𝑥)
𝑓𝑓𝜇𝜇

𝑓𝑓𝜎𝜎

𝜇𝜇

𝜎𝜎 𝑓𝑓𝑙𝑙

Encoder
Decoder



Sampling Far Away from 𝜇𝜇?

(𝜇𝜇,𝜎𝜎)



𝑧𝑧𝑠𝑠~𝑁𝑁(𝜇𝜇,𝜎𝜎)

𝐸𝐸𝑛𝑛𝐸𝐸(𝑥𝑥)
𝑓𝑓𝜇𝜇

𝑓𝑓𝜎𝜎

𝜇𝜇

𝜎𝜎 𝑓𝑓𝑙𝑙

Encoder
Decoder

𝑧𝑧𝑝𝑝~𝑝𝑝(𝑧𝑧)



Adversarial Training: VAE-GAN

𝑧𝑧𝑠𝑠~𝑁𝑁(𝜇𝜇,𝜎𝜎)

𝐸𝐸𝑛𝑛𝐸𝐸(𝑥𝑥)

Variational Auto-Encoder
Generative Adversarial Network

𝑓𝑓𝜇𝜇

𝑓𝑓𝜎𝜎

𝜇𝜇

𝜎𝜎

𝑧𝑧𝑝𝑝~𝑝𝑝(𝑧𝑧)

𝑓𝑓𝑙𝑙

Encoder
Decoder or 
Generator

𝐺𝐺(𝑧𝑧)

Discriminator

Real box 
structures



VAE

Benefit of Adversarial Training



Voxelized Part Geometry Synthesis

32D

part code

32x32x32 output 
part volume

Concatenated part code 

?



Results: Shape Synthesis



Results: Inferring Consistent Hierarchies



Results: Shape Retrieval
Concatenated part code 



Results: Shape Interpolation

3-fold

4-fold

4-fold 5-fold

5-fold 6-fold4-fold

5-fold



Results: Shape Interpolation



Exploting PartNet:
StructureNet

StructureNet: Hierarchical Graph Networks for 3D Shape Generation. Kaichun Mo, Paul Guerrero, Li Yi, 
Hao Su, Peter Wonka, Niloy Mitra, Leonidas J. Guibas. Siggraph Asia 2019.
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PartNet: Part Segmentation Annotation

https://partnet.cs.stanford.edu/ Mo et al., “PartNet: A Large-scale Benchmark for Fine-grained and 
Hierarchical Part-level 3D Object Understanding”, CVPR 2019

Synthetic, 3D Shapes
Based upon ShapeNet
573,585 Part Instances
26,671 Objects, 24 Categories

Part Segmentations
• Fine-grained
• Hierarchical
• Instance-level

https://partnet.cs.stanford.edu/


Point Cloud Geometry and Structure



Geometry and Structure

backrest

seat

leg

armrest



Structure: Part Hierarchy



Structural Consistency

…



Object Representation: Sibling Relationships

Reflectional Symmetry
Rotational Symmetry
Translational Symmetry
Adjacency



Object Representation: Example



Architecture Overview: VAE Training

encoder decoder

shape space

object with structure
Reconstructed

object with structure
reconstruction loss

structure consistency loss
(variational regularization)



A Hierarchy of Graphs



Hierarchical Graph Encoder

feature
vector

feature
vector



Hierarchical Graph Decoder

feature
vector

v

feature
vector



Application 1: Generation

decoder

novel object

random

shape space

+ structure



Generation



Generation



Novelty
generated closest training samples



Comparison to GRASS
input GRASS StructureNet

no edges with edges

relative quality 0.788 0.984 1.0
relative coverage 0.818 0.989 1.0



Application 2: Interpolation

encoder
decoderob

je
ct

 1

interpolated object

ob
je

ct
 2

encoder

shape space

+ structure

+ structure

+ structure



Interpolation



Interpolation



With vs. Without Structure

source target
w

ith
ou

t
st

ru
ct

ur
e

w
ith

st
ru

ct
ur

e



Interpolation StructureNet vs. GRASS

StructureNet

GRASS

StructureNet

GRASS



Application 3: Scan Abstraction

decoder

shape space

partial scan reconstructed object

+ structure

point cloud
encoder



Abstraction of Full Scans



Abstraction of Partial Scans



Shape Abstraction via
Volumetric Primitives

Tulsiani, Shubham, Hao Su, Leonidas J. Guibas, Alexei A. Efros, and Jitendra Malik. Learning 
Shape Abstractions by Assembling Volumetric Primitives. CVPR 2017.
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Input

Shape Collection



Output

Unsupervised Consistent Abstractions



Approach

Size vs

Rotation vs

Existence
Probability vs

vsPosition



Unsupervised Loss Function

Loss

The predicted parameters are trained with a loss that tries to minimize the distance
between assembled boxes and ground-truth mesh



Unsupervised Loss Function

Loss



Coverage Loss

L1(     ,         )

+ + … +



Coverage Loss



Consistency Loss

L2(     ,         )

+ + +

where

+ …+



Approach Summary

Loss

We train a CNN to predict primitive parameters such that the assembled shape is similar to the underlying object



Results



Analysis

Shapes become more parsimonious as training progresses (due to our parsimony 
reward)



Unsupervised Parsing

Projection of the predicted primitives onto the original shape.
We visualize the parsing by coloring each point according to the assigned primitive.
We see that similar parts e.g. airplane wings, chair seat, etc. are consistently colored.
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That’s All
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