
CS348n: Neural Representations and
Generative Models for 3D Geometry

02_07_EQUIV_INV 1

Leonidas Guibas
Computer Science Department
Stanford University

Last Time: Learning Vector and
Mesh/CAD Representations

2

3

Vector (2D) and Mesh/CAD (3) Shape Models

Fonts

Clip Art

2D

4

Vector (2D) and Mesh/CAD (3D) Shape Models

Autodesk Fusion 360 Dataset 3D

Im2Vec Inference Architecture

4 step process.

Reconstruction

Input images are 128x128

Reconstruction

Input images are 128x128

Multiple spline curves with variable numbers
of control points
• Whole model

2022/2/7 Jun Gao 11

Results

2022/2/7 Jun Gao 12

Attention Results

2022/2/7 Jun Gao 13

14

Irregular
Unordered

&
Unoriented

Classification Segmentation

Goal: CNN directly on the irregular
mesh elements

Vase

Fixed Size

Vertices
<x, y, z>

Faces
<vi, vj, vk>

Edges
<vi, vj>

Neighborhood

Input Edge Features

Relative Geometric Features
➔ Invariant to similarity

transformations

5-dimensional vector

Mesh Convolution Order

Face normal
➔ Consistent ordering in each face
➔ Two valid orderings

Solution: build symmetric features
➔ e-> (a+c, |a-c|, b+d, |b-d|)

Learned Edge Collapse

➔ Network decides collapse

➔ Strengthens the learned
representation

➔ Visual insights from network

Mesh Pooling

Delete edge with smallest feature
activations

➔ Aggregate features

➔ Update topology

Mesh Unpooling

Partial Inverse of Pooling
➔ Restores upsampled

topology (reversible)
➔ Unpooled features

weighted combination of
pooled features

Classification
➔ Conv & Pooling Layers
➔ Fully-Connected Layers

Applications of MeshCNN

Segmentation
➔ Fully convolutional
➔ Conv & Pooling &

Unpooling

Segmentation

BRepNet: A topological message passing system
for solid models

Joseph G. Lambourne1, Karl D.D. Willis1, Pradeep Kumar Jayaraman1, Aditya Sanghi1,
Peter Meltzer2, Hooman Shayani1

Autodesk Research1, UCL, Computer Science2

Boundary representation models

Topological walks defining neighboring entities

mate
previous

next
mate
next

BRepNet convolution

MLP
Layer 1

Concatenate feature
vectors

Input features

 Face features
 Surface type (plane, cylinder, cone, sphere,

torus, spline)
 Face area

 Edge features
 Curve type (line, circle, ellipse, intersection

curve, spline)
 Edge convexity (concave, convex, tangent

plane continuous)
 Edge length

Concave

Convex

Tangent
continuous

Sphere

Cylinder

Torus Plane

• Gap: converting sketches to a CAD model?

31

Sketch2CAD Goal

User sketches 3D model

Sketch2CAD
• A learning-based modeling system that translates sketching

operations to their corresponding CAD operations, along with the
associated parameters.

Sketch2CAD ..….

Protocol:
AddPolyhedron: <plane 3, length 0.25>

Sketch2CAD

edit
Sketch & context

32

Results

34

Step1

Step2

Step3

Step4

Step5

Results

36

3D Equivariance and
Invariance

37

Class Questionnaire

38

• Please take the questionnaire below to provide us with feedback on
the class:

• https://forms.gle/igFFpmnWaWL11Tfw9

39

Class Questionnaire

https://forms.gle/igFFpmnWaWL11Tfw9

CS348N Lecture 10:
3D Rotation Equivariance and Invariance

Stanford University

Why Equivariance / Invariance?

• What neural networks can do?

• But what is this?

Neural
Network “chair”

Not too Hard for a Human…

Gestalt theory – how human perceive objects
• Emergence
• Reification
• Multistability
• Invariance

https://en.wikipedia.org/wiki/Gestalt_psychology#Properties

• Many datasets are aligned (shapes under canonical poses)
• Networks trained aligned data cannot generalize to arbitrary poses

But Neural Networks Struggle…

Identical objects coming in different poses, scales, ratios, colors…
– viewed as totally irrelevant entities by classical neural networks

But Neural Networks Struggle…

A Naïve Solution: Data Augmentation

Apply random rotation to the training data
So we let the network “see” and learn from all possible poses

• Reducing the generalization gap – but not eliminating it
• Sacrificing data-efficiency – longer training time
• Statistically equivariant/invariant – not guaranteed

Feed multiple poses of the same object to the network at once
“If we don’t know what pose to look at, why not just look at all poses!”

A Less Naïve Solution: Multi-view Approach

• Can reproduce fairly good
results

• Sacrifice data-efficiency –
more memory consumption

• Theoretically equivariant –
up to precision errors
caused by discretization

“Intelligence”: More aligned with human
perception

Generalization: Eliminate the prior that all shapes
in a dataset (e.g., ShapeNet) are aligned

Real-world applications: Shapes (3D scans) in the
wild may not have or come with canonical poses

Data-efficiency: Avoid exhaustive data
augmentation

Summary: Why Equivariance / Invariance?

[A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, ... F. Yu, arXiv:1512.03012 (2015)]

So We’re Looking for…

segmentation

airplane

classification reconstruction

invariant equivariant
(or invariant, depending
on data representation)

equivariant encoder
invariant decoder

[W. Sun, A. Tagliasacchi, B. Deng, S. Sabour, S. Yazdani, G. Hinton, K. M. Yi, arXiv:2012.04718 (2020)]
[J. J. Park, P. Florence, J. Straub, R. Newcombe, S. Lovegrove, CVPR 2019]

We say a neural network is rotation equivariant, if for any 3D
rotation applied to its input , it is explicitly related to a
transformation on the network output satisfying

• should be independent of
• Special case: when is the identity

mapping, it is the common-sense “equivariance”
• Special case: when is the constant

mapping, it is invariance

Equivariance!

Vector Neurons (VN)

[C. Deng, O. Litany, Y. Duan, A. Poulenard, A. Tagliasacchi, L. J. Guibas, ICCV 2021]

Classical (scalar) feature , with

Vector-list feature , with
• For pointcloud with 𝑁𝑁 points

Vector Neurons

(classical)
scalar neurons vector neurons

Mapping between network layers:

? Equivariance to rotation :

VN Features

Classical: scalar channels

VN: 3D vector channels

feature

feature

VN Features (for Point Cloud)

Classical:

VN:

feature

feature

VN Linear Layer

Linear operator: left multiply by the learnable weight matrix

feature

Equivariance: right multiply by the SO(3) rotation matrix

featureweight

feature featureweight

Vector-list feature
Linear operator with learnable weights :

Equivariance to rotation :

• - left multiplication, - right multiplication

• Note the absence of a bias term

VN Linear Layer

VN Non-Linearity
ReLU Non-Linearity

Weights and

Learn a feature
Learn a direction

For each output vector neuron

direction 𝒌𝒌 direction 𝒌𝒌
feature 𝒒𝒒

feature 𝒒𝒒
unchanged clip!

VN Non-Linearity
ReLU Non-Linearity

• Non-linear layer (with built-in
linear layer)

= input linear transformation +
non-linearity

• A single non-linear layer detached
from linear layer:

• introduce additional network depth!

• Other non-linearities

directions 𝒌𝒌

features 𝒒𝒒

learnable
nonlinearities

overall structure

VN Pooling

Mean pooling
? Max pooling

• (Similar to non-linearity)
• argmax alone learned directions

direction 𝒌𝒌
input 𝒗𝒗

direction 𝒌𝒌
input 𝒗𝒗

VN-
Linear

input

= argmax ,
directions output input

Mean pooling
? Max pooling

• similar to non-linearities → use learnable directions

Given a set of vector-lists
Learn data-dependent directions with
learnable weights

Max pool along 𝒦𝒦 directions: for each channel

VN Pooling

LayerNorm
InstanceNorm
Dropout

? BatchNorm
averaging across
arbitrarily rotated
inputs would not
necessarily be
meaningful

VN Normalizations

B B B
C C CN N N

LayerNorm BatchNorm InstanceNorm

B B B
N N N

3C 3C 3C

LayerNorm BatchNorm InstanceNorm

(classical) scalar neurons

Vector neurons

VN Normalizations
BatchNorm

ElementWiseNorm

BatchNorm… …

element-wise
2-norm

output

VN Normalizations
BatchNorm

• Normalize the 2-norm (invariant component) of the vector-list
feature

• Element-wise norm: 2-norm for each vector

VN Invariant Layer

(equivariant feature) × (equivariant feature)T = (invariant feature)

T

input

output

VN Invariant Layer

Specifically…

T

input

output

copy

equivariant
coordinate

system canonicalized
feature

VN Invariant Layer

For pointcloud: combine global information with local features

concatenate with
global mean

input

equivariant
coordinate

system

• Product of an equivariant signal by the transpose of
another equivariant signal → invariant signal

• Special case: - an equivariant coordinate system
• For pointcloud, concatenate local feature with global

mean

Invariant layer:

VN Invariant Layer

DGCNN

VN-DGCNN

Build VN Networks: VN-DGCNN

[Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, J. M. Solomon, TOG 2019]

Edge feature:

Aggregation:

Edge feature:

Aggregation

Convolution in latent spaces, graph edges not embedded in

DGCNN: scalar features

Edge conv

Aggregation

VN-DGCNN: vector-list features

Edge conv

Aggregation

Build VN Networks: VN-DGCNN

[Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, J. M. Solomon, TOG 2019]

PointNet

VN-PointNet

Build VN Networks: VN-PointNet

[C. R. Qi, H. Su, K. Mo, L. J. Guibas, CVPR 2017]

No convolutions, only point-wise feature transformations

PointNet:

VN-PointNet:

• MLP, VN-MLP
• First layer single channel → edge conv to lift dimensionality

• “Cannot apply per-channel transformation to gray-scale images”

Build VN Networks: VN-PointNet

[C. R. Qi, H. Su, K. Mo, L. J. Guibas, CVPR 2017]

Classification
Classification results on
ModelNet40

VN Networks

Rotation sensitive
methods

Rotation robust
methods

Classification

• VN networks are robust to
(seen & unseen) rotations

• Excellent performance
compared with other methods

• SO(3)/SO(3): equivariance by
construction is better than
rotation augmentation

Classification results on
ModelNet40

OccNet

VN-
OccNet

I/I I/SO(3) SO(3)/SO(3)

Vanilla OccNet:
Can’t learn rotated
shapes even trained
with augmentation

VN-OccNet:
Consistent across
rotations

Neural Implicit Reconstruction
Results on ShapeNet (Examples)

Neural Implicit Reconstruction
Results on ShapeNet (Examples)

OccNet

VN-
OccNet

I/I I/SO(3) SO(3)/SO(3)

Vanilla OccNet:
Blurry shapes

Neural Implicit Reconstruction
Results on ShapeNet (Examples)

OccNet

VN-
OccNet

I/I I/SO(3) SO(3)/SO(3)

Vanilla OccNet:
Averaged shapes

Neural Implicit Reconstruction
Results on ShapeNet (Examples)

OccNet

VN-
OccNet

I/I I/SO(3) SO(3)/SO(3)

Vanilla OccNet:
False shape priors

• Vector Neurons:
Lift latent features to 3D vector lists

• Building blocks:
• Linear layer
• Non-linearity (ReLU)
• Pooling (MaxPool)
• Normalizations (BatchNorm)
• Invariance

• Network examples:
• VN-DGCNN
• VN-PointNet

Summary: Vector Neurons

Tensor Field Networks and
Equivariant CNNs

78

79

SO(3) Equivariant Features

80

Tensor Field Networks (TFN)

81

Examples of Type 0 Features

82

Examples of type 1 Features

83

Spherical Harmonics & Higher Degree Features

84

Spherical Harmonics & Higher Degree Features

85

SH & TFN Feature Applications (ConDor)

86

How does TFN work ?

87

Convolutions on Different Domains

88

Convolutional Layers in Neural Nets

89

Convolutions and Rotations

90

Steerable Kernel Basis

91

3D Steerable Basis

92

Example of Steerable Basis (2D)

93

Steerable Convolution

94

Comparing Regular and Steerable Convolution

95

Steerable Convolution is Equivariant

96

Why not Mix Different Types?

97

Stacking Steerable Convolutions

98

Equivariant non-Linearities

That’s All

99

	CS348n: Neural Representations and�Generative Models for 3D Geometry
	Last Time: Learning Vector and Mesh/CAD Representations
	Slide Number 3
	Slide Number 4
	Im2Vec Inference Architecture
	Reconstruction
	Reconstruction
	Multiple spline curves with variable numbers of control points
	Results
	Attention Results
	
Irregular
Unordered
&
Unoriented

	Goal: CNN directly on the irregular mesh elements
	Fixed Size
	Input Edge Features
	Mesh Convolution Order
	Learned Edge Collapse
	Mesh Pooling
	Mesh Unpooling
	Applications of MeshCNN
	Slide Number 25
	Slide Number 26
	Boundary representation models
	Topological walks defining neighboring entities
	BRepNet convolution
	Input features
	Sketch2CAD Goal
	Sketch2CAD
	Results
	Results
	3D Equivariance and Invariance
	Class Questionnaire
	Class Questionnaire
	CS348N Lecture 10:�3D Rotation Equivariance and Invariance
	Why Equivariance / Invariance?
	Not too Hard for a Human…
	But Neural Networks Struggle…
	But Neural Networks Struggle…
	A Naïve Solution: Data Augmentation
	A Less Naïve Solution: Multi-view Approach
	Summary: Why Equivariance / Invariance?
	So We’re Looking for…
	Equivariance!
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Tensor Field Networks and Equivariant CNNs
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Convolutions on Different Domains
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99

