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Last Time: Learning Vector and 
Mesh/CAD Representations
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Vector (2D) and Mesh/CAD (3) Shape Models

Fonts

Clip Art

2D
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Vector (2D) and Mesh/CAD (3D) Shape Models

Autodesk Fusion 360 Dataset 3D



Im2Vec Inference Architecture

4 step process.



Reconstruction 

Input images are 128x128



Reconstruction 

Input images are 128x128



Multiple spline curves with variable numbers 
of control points
• Whole model 
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Results
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Attention Results
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Irregular
Unordered

&
Unoriented



Classification Segmentation

Goal: CNN directly on the irregular 
mesh elements

Vase



Fixed Size

Vertices
<x, y, z>

Faces
<vi, vj, vk>

Edges
<vi, vj>

Neighborhood



Input Edge Features

Relative Geometric Features
➔ Invariant to similarity

transformations

5-dimensional vector



Mesh Convolution Order

Face normal 
➔ Consistent ordering in each face
➔ Two valid orderings

Solution: build symmetric features
➔ e-> (a+c, |a-c|, b+d, |b-d|)



Learned Edge Collapse

➔ Network decides collapse

➔ Strengthens the learned 
representation

➔ Visual insights from network



Mesh Pooling

Delete edge with smallest feature 
activations

➔ Aggregate features

➔ Update topology



Mesh Unpooling

Partial Inverse of Pooling
➔ Restores upsampled 

topology (reversible)
➔ Unpooled features 

weighted combination of 
pooled features



Classification
➔ Conv & Pooling Layers
➔ Fully-Connected Layers 

Applications of MeshCNN 

Segmentation
➔ Fully convolutional
➔ Conv & Pooling & 

Unpooling



Segmentation



BRepNet: A topological message passing system 
for solid models

Joseph G. Lambourne1, Karl D.D. Willis1, Pradeep Kumar Jayaraman1, Aditya Sanghi1, 
Peter Meltzer2, Hooman Shayani1

Autodesk Research1, UCL, Computer Science2



Boundary representation models



Topological walks defining neighboring entities

mate
previous

next
mate 
next



BRepNet convolution

MLP
Layer 1

Concatenate feature 
vectors



Input features

 Face features
 Surface type (plane, cylinder, cone, sphere, 

torus, spline)
 Face area

 Edge features
 Curve type (line, circle, ellipse, intersection 

curve, spline)
 Edge convexity (concave, convex, tangent 

plane continuous)
 Edge length 

Concave

Convex

Tangent 
continuous

Sphere

Cylinder

Torus Plane



• Gap: converting sketches to a CAD model?
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Sketch2CAD Goal

User sketches 3D model



Sketch2CAD
• A learning-based modeling system that translates sketching 

operations to their corresponding CAD operations, along with the 
associated parameters.

Sketch2CAD ..….

Protocol:
AddPolyhedron: <plane 3, length 0.25>

Sketch2CAD

edit
Sketch & context
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Results
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Step1

Step2

Step3

Step4

Step5



Results
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3D Equivariance and 
Invariance
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Class Questionnaire
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• Please take the questionnaire below to provide us with feedback on 
the class:

• https://forms.gle/igFFpmnWaWL11Tfw9
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Class Questionnaire

https://forms.gle/igFFpmnWaWL11Tfw9


CS348N Lecture 10:
3D Rotation Equivariance and Invariance

Stanford University



Why Equivariance / Invariance?

• What neural networks can do?

• But what is this?

Neural 
Network “chair”



Not too Hard for a Human…

Gestalt theory – how human perceive objects
• Emergence
• Reification
• Multistability
• Invariance

https://en.wikipedia.org/wiki/Gestalt_psychology#Properties



• Many datasets are aligned (shapes under canonical poses)
• Networks trained aligned data cannot generalize to  arbitrary poses

But Neural Networks Struggle…



Identical objects coming in different poses, scales, ratios, colors…
– viewed as totally irrelevant entities by classical neural networks

But Neural Networks Struggle…



A Naïve Solution: Data Augmentation

Apply random rotation to the training data
So we let the network “see” and learn from all possible poses

• Reducing the generalization gap – but not eliminating it
• Sacrificing data-efficiency – longer training time
• Statistically equivariant/invariant – not guaranteed



Feed multiple poses of the same object to the network at once
“If we don’t know what pose to look at, why not just look at all poses!”

A Less Naïve Solution: Multi-view Approach

• Can reproduce fairly good 
results

• Sacrifice data-efficiency –
more memory consumption

• Theoretically equivariant –
up to precision errors 
caused by discretization



“Intelligence”: More aligned with human 
perception

Generalization: Eliminate the prior that all shapes 
in a dataset (e.g., ShapeNet) are aligned

Real-world applications: Shapes (3D scans) in the 
wild may not have or come with canonical poses

Data-efficiency: Avoid exhaustive data 
augmentation

Summary: Why Equivariance / Invariance?

[A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, ... F. Yu, arXiv:1512.03012 (2015)]



So We’re Looking for…

segmentation

airplane

classification reconstruction

invariant equivariant
(or invariant, depending 
on data representation)

equivariant encoder
invariant decoder

[W. Sun, A. Tagliasacchi, B. Deng, S. Sabour, S. Yazdani, G. Hinton, K. M. Yi, arXiv:2012.04718 (2020)]
[J. J. Park, P. Florence, J. Straub, R. Newcombe, S. Lovegrove, CVPR 2019]



We say a neural network              is rotation equivariant, if for any 3D 
rotation                      applied to its input    , it is explicitly related to a 
transformation            on the network output satisfying

• should be independent of
• Special case: when                      is the identity 

mapping, it is the common-sense “equivariance”
• Special case: when                      is the constant 

mapping, it is invariance

Equivariance!



Vector Neurons (VN)

[C. Deng, O. Litany, Y. Duan, A. Poulenard, A. Tagliasacchi, L. J. Guibas, ICCV 2021]



Classical (scalar) feature                                                     , with 

Vector-list feature                                                          , with
• For pointcloud with 𝑁𝑁 points

Vector Neurons

(classical)
scalar neurons vector neurons

Mapping between network layers:

? Equivariance to rotation                     :



VN Features

Classical: scalar channels

VN: 3D vector channels

feature

feature



VN Features (for Point Cloud)

Classical:

VN:

feature

feature



VN Linear Layer

Linear operator: left multiply by the learnable weight matrix

feature

Equivariance: right multiply by the SO(3) rotation matrix

featureweight

feature featureweight



Vector-list feature
Linear operator                      with learnable weights                         :

Equivariance to rotation                     :

• - left multiplication,     - right multiplication

• Note the absence of a bias term

VN Linear Layer



VN Non-Linearity
ReLU Non-Linearity

Weights                      and

Learn a feature
Learn a direction

For each output vector neuron

direction 𝒌𝒌 direction 𝒌𝒌
feature 𝒒𝒒

feature 𝒒𝒒
unchanged clip!



VN Non-Linearity
ReLU Non-Linearity

• Non-linear layer (with built-in 
linear layer)

= input linear transformation    + 
non-linearity 

• A single non-linear layer detached 
from linear layer:

• introduce additional network depth!

• Other non-linearities

directions 𝒌𝒌

features 𝒒𝒒

learnable 
nonlinearities

overall structure



VN Pooling

Mean pooling
?  Max pooling

• (Similar to non-linearity)
• argmax alone learned directions

direction 𝒌𝒌
input 𝒗𝒗

direction 𝒌𝒌
input 𝒗𝒗

VN-
Linear

input

= argmax ,
directions output input



Mean pooling
?  Max pooling

• similar to non-linearities → use learnable directions

Given a set of vector-lists
Learn data-dependent directions                                                          with 
learnable weights

Max pool along 𝒦𝒦 directions: for each channel 

VN Pooling



LayerNorm
InstanceNorm
Dropout

? BatchNorm
averaging across 
arbitrarily rotated 
inputs would not 
necessarily be 
meaningful

VN Normalizations

B B B
C C CN N N

LayerNorm BatchNorm InstanceNorm

B B B
N N N

3C 3C 3C

LayerNorm BatchNorm InstanceNorm

(classical) scalar neurons

Vector neurons



VN Normalizations
BatchNorm

ElementWiseNorm

BatchNorm… …

element-wise 
2-norm

output



VN Normalizations
BatchNorm

• Normalize the 2-norm (invariant component) of the vector-list 
feature

• Element-wise norm: 2-norm for each vector



VN Invariant Layer

(equivariant feature) × (equivariant feature)T = (invariant feature)

T

input

output



VN Invariant Layer

Specifically…

T

input

output

copy

equivariant 
coordinate 

system canonicalized 
feature



VN Invariant Layer

For pointcloud: combine global information with local features

concatenate with 
global mean

input

equivariant 
coordinate 

system



• Product of an equivariant signal                     by the transpose of 
another equivariant signal                       → invariant signal

• Special case:                       - an equivariant coordinate system
• For pointcloud, concatenate local feature                      with global 

mean

Invariant layer:

VN Invariant Layer



DGCNN

VN-DGCNN

Build VN Networks: VN-DGCNN

[Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, J. M. Solomon, TOG 2019]

Edge feature:

Aggregation:

Edge feature:

Aggregation



Convolution in latent spaces, graph edges not embedded in

DGCNN:                                                     scalar features

Edge conv

Aggregation

VN-DGCNN:                                                         vector-list features

Edge conv    

Aggregation

Build VN Networks: VN-DGCNN

[Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, J. M. Solomon, TOG 2019]



PointNet

VN-PointNet

Build VN Networks: VN-PointNet

[C. R. Qi, H. Su, K. Mo, L. J. Guibas, CVPR 2017]



No convolutions, only point-wise feature transformations

PointNet:          

VN-PointNet:

• MLP,     VN-MLP
• First layer single channel → edge conv to lift dimensionality

• “Cannot apply per-channel transformation to gray-scale images”

Build VN Networks: VN-PointNet

[C. R. Qi, H. Su, K. Mo, L. J. Guibas, CVPR 2017]



Classification
Classification results on 
ModelNet40

VN Networks

Rotation sensitive 
methods

Rotation robust 
methods



Classification

• VN networks are robust to 
(seen & unseen) rotations

• Excellent performance 
compared with other methods

• SO(3)/SO(3): equivariance by 
construction is better than 
rotation augmentation

Classification results on 
ModelNet40



OccNet

VN-
OccNet

I/I                  I/SO(3)          SO(3)/SO(3) 

Vanilla OccNet:
Can’t learn rotated 
shapes even trained 
with augmentation

VN-OccNet:
Consistent across 
rotations

Neural Implicit Reconstruction
Results on ShapeNet (Examples)



Neural Implicit Reconstruction
Results on ShapeNet (Examples)

OccNet

VN-
OccNet

I/I                  I/SO(3)          SO(3)/SO(3) 

Vanilla OccNet:
Blurry shapes



Neural Implicit Reconstruction
Results on ShapeNet (Examples)

OccNet

VN-
OccNet

I/I                  I/SO(3)          SO(3)/SO(3) 

Vanilla OccNet:
Averaged shapes



Neural Implicit Reconstruction
Results on ShapeNet (Examples)

OccNet

VN-
OccNet

I/I                  I/SO(3)          SO(3)/SO(3) 

Vanilla OccNet:
False shape priors



• Vector Neurons:
Lift latent features to 3D vector lists

• Building blocks:
• Linear layer
• Non-linearity (ReLU)
• Pooling (MaxPool)
• Normalizations (BatchNorm)
• Invariance

• Network examples:
• VN-DGCNN
• VN-PointNet

Summary: Vector Neurons



Tensor Field Networks and 
Equivariant CNNs
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SO(3) Equivariant Features
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Tensor Field Networks (TFN)
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Examples of Type 0 Features
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Examples of type 1 Features
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Spherical Harmonics & Higher Degree Features
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Spherical Harmonics & Higher Degree Features
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SH & TFN Feature Applications (ConDor)
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How does TFN work ?
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Convolutions on Different Domains
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Convolutional Layers in Neural Nets
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Convolutions and Rotations
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Steerable Kernel Basis
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3D Steerable Basis
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Example of Steerable Basis (2D)
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Steerable Convolution
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Comparing Regular and Steerable Convolution
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Steerable Convolution is Equivariant
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Why not Mix Different Types?
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Stacking Steerable Convolutions
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Equivariant non-Linearities



That’s All
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