CS348n: Neural Representations and Generative Models for 3D Geometry

Leonidas Guibas Computer Science Department Stanford University

02_07_EQUIV_INV 1

Last Time: Learning Vector and Mesh/CAD Representations

Vector (2D) and Mesh/CAD (3) Shape Models

Fonts

2D

Clip Art

Vector (2D) and Mesh/CAD (3D) Shape Models

Autodesk Fusion 360 Dataset

3D

Im2Vec Inference Architecture

4 step process.

Reconstruction

Input images are 128x128

Reconstruction

Input images are 128x128

Multiple spline curves with variable numbers of control points

• Whole model

Results

Attention Results

Irregular Unordered & Unoriented

Goal: CNN directly on the irregular mesh elements

Classification

Segmentation

Vase

Relative Geometric Features

Invariant to *similarity* transformations

5-dimensional vector

Face normal

- → Consistent ordering in each face
- → Two *valid* orderings

Solution: build symmetric features
→ e-> (a+c, |a-c|, b+d, |b-d|)

→ Network decides collapse

Strengthens the learned representation

→ Visual insights from network

Delete edge with smallest feature activations

→ Aggregate features

→ Update topology

Partial Inverse of Pooling

- Restores upsampled topology (reversible)
- Unpooled features
 weighted combination of pooled features

Applications of MeshCNN

Classification

- → Conv & Pooling Layers
- → Fully-Connected Layers

Segmentation

- → Fully convolutional
- → Conv & Pooling &Unpooling

Segmentation

BRepNet: A topological message passing system for solid models

Joseph G. Lambourne¹, Karl D.D. Willis¹, Pradeep Kumar Jayaraman¹, Aditya Sanghi¹, Peter Meltzer², Hooman Shayani¹

Autodesk Research¹, UCL, Computer Science²

Boundary representation models

Topological walks defining neighboring entities

BRepNet convolution

Input features

- Face features
 - Surface type (plane, cylinder, cone, sphere, torus, spline)
 - Face area
- Edge features
 - Curve type (line, circle, ellipse, intersection curve, spline)
 - Edge convexity (concave, convex, tangent plane continuous)
 - Edge length

Sketch2CAD Goal

• Gap: converting sketches to a CAD model?

User sketches

3D model

Sketch2CAD

 A learning-based modeling system that translates sketching operations to their corresponding CAD operations, along with the associated parameters.

Results

3D Equivariance and Invariance

Class Questionnaire

Class Questionnaire

- Please take the questionnaire below to provide us with feedback on the class:
- <u>https://forms.gle/igFFpmnWaWL11Tfw9</u>

CS348N Lecture 10: 3D Rotation Equivariance and Invariance

Why Equivariance / Invariance?

• What neural networks can do?

• But what is this?

Not too Hard for a Human...

Gestalt theory – how human perceive objects

- Emergence
- Reification
- Multistability
- Invariance

https://en.wikipedia.org/wiki/Gestalt_psychology#Properties

But Neural Networks Struggle...

- Many datasets are **aligned** (shapes under canonical poses)
- Networks trained aligned data cannot generalize to arbitrary poses

But Neural Networks Struggle...

Identical objects coming in different poses, scales, ratios, colors... – viewed as totally irrelevant entities by classical neural networks

A Naïve Solution: Data Augmentation

Apply random rotation to the training data

So we let the network "see" and learn from all possible poses

- Reducing the generalization gap but not eliminating it
- Sacrificing data-efficiency longer training time
- Statistically equivariant/invariant not guaranteed

A Less Naïve Solution: Multi-view Approach

Feed multiple poses of the same object to the network **at once** "If we don't know what pose to look at, why not just look at **all** poses!"

- Can reproduce fairly good results
- Sacrifice data-efficiency more memory consumption
- Theoretically equivariant up to precision errors caused by discretization

Summary: Why Equivariance / Invariance?

- ✓"Intelligence": More aligned with human perception
- ✓ **Generalization:** Eliminate the prior that all shapes in a dataset (e.g., ShapeNet) are aligned
- ✓ **Real-world applications:** Shapes (3D scans) in the wild may not have or come with canonical poses
- ✓ **Data-efficiency:** Avoid exhaustive data augmentation

chair

recline

So We're Looking for...

(or **invariant**, depending on data representation)

equivariant encoder invariant decoder

[W. Sun, A. Tagliasacchi, B. Deng, S. Sabour, S. Yazdani, G. Hinton, K. M. Yi, arXiv:2012.04718 (2020)] [J. J. Park, P. Florence, J. Straub, R. Newcombe, S. Lovegrove, CVPR 2019] We say a neural network $f(\cdot; \theta)$ is rotation equivariant, if for any 3D rotation $R \in SO(3)$ applied to its input \mathbf{x} , it is explicitly related to a transformation D(R) on the network output satisfying

 $f(\mathbf{x}R;\theta) = f(\mathbf{x};\theta)D(R)$

- + D(R) should be independent of ${\bf x}$
- Special case: when D(R) = R is the identity mapping, it is the common-sense "equivariance"
- Special case: when D(R) = I is the constant mapping, it is invariance

Vector Neurons (VN)

[C. Deng, O. Litany, Y. Duan, A. Poulenard, A. Tagliasacchi, L. J. Guibas, ICCV 2021]

Classical (scalar) feature $\boldsymbol{z} = [z_1, z_2, \cdots, z_C]^{ op} \in \mathbb{R}^C$, with $z_i \in \mathbb{R}$

Vector-list feature $m{V} = [m{v}_1, m{v}_2, \cdots, m{v}_C]^ op \in \mathbb{R}^{C imes 3}$, with $\ m{v}_i \in \mathbb{R}^3$

• For pointcloud with N points $\mathcal{V} = \{ m{V}_1, m{V}_2, \cdots, m{V}_N \} \in \mathbb{R}^{N imes C imes 3}$

Mapping between network layers:

 $f(\cdot;\theta): \mathbb{R}^{N \times C^{(d)} \times 3} \to \mathbb{R}^{N \times C^{(d+1)} \times 3}$

? Equivariance to rotation $R \in SO(3)$:

 $f(\mathcal{V}R;\theta) = f(\mathcal{V};\theta)R$

) : (classical) scalar neurons vector neurons

VN Features (for Point Cloud)

 $N \times C \times 3$ feature

VN Linear Layer

Linear operator: left multiply by the learnable weight matrix

 $C' \times 3$ feature

Equivariance: right multiply by the SO(3) rotation matrix

VN Linear Layer

Vector-list feature $V \in \mathbb{R}^{C \times 3}$

Linear operator $f_{\text{lin}}(\cdot; \mathbf{W})$ with learnable weights $\mathbf{W} \in \mathbb{R}^{C' \times C}$: $\mathbf{V}' = f_{\text{lin}}(\mathbf{V}; \mathbf{W}) = \mathbf{W}\mathbf{V} \in \mathbb{R}^{C' \times 3}$

Equivariance to rotation $R \in SO(3)$:

$$f_{\text{lin}}(\boldsymbol{V}R; \mathbf{W}) = \mathbf{W}\boldsymbol{V}R = f_{\text{lin}}(\boldsymbol{V}; \mathbf{W})R = \boldsymbol{V}'R$$

- W- left multiplication, R- right multiplication
- Note the absence of a bias term

VN Non-Linearity

ReLU Non-Linearity

Weights $\mathbf{W} \in \mathbb{R}^{1 imes C}$ and $\mathbf{U} \in \mathbb{R}^{1 imes C}$

Learn a feature $q = \mathbf{W} \mathbf{V} \in \mathbb{R}^{1 imes 3}$ Learn a direction $k = \mathbf{U} \mathbf{V} \in \mathbb{R}^{1 imes 3}$

For each output vector neuron $oldsymbol{v}'\inoldsymbol{V}'$

 $oldsymbol{v}' = egin{cases} oldsymbol{q} & ext{if } \langle oldsymbol{q}, oldsymbol{k}
angle & ext{if } \langle oldsymbol{q}, oldsymbol{k}
angle & ext{otherwise} \ oldsymbol{q} - \langle oldsymbol{q}, rac{oldsymbol{k}}{\|oldsymbol{k}\|} & ext{otherwise} \ egin{array}{c} ext{if } \langle oldsymbol{q}, oldsymbol{k}
angle \geqslant 0 \ oldsymbol{q} - \langle oldsymbol{q}, rac{oldsymbol{k}}{\|oldsymbol{k}\|} & ext{otherwise} \ egin{array}{c} ext{if } \langle oldsymbol{q}, oldsymbol{k}
angle \geqslant 0 \ oldsymbol{q} - \langle oldsymbol{q}, rac{oldsymbol{k}}{\|oldsymbol{k}\|} & ext{otherwise} \ egin{array}{c} ext{if } \langle oldsymbol{q}, oldsymbol{k}
angle \geqslant 0 \ oldsymbol{k} \ ellsymbol{k} \ ellsymb$

VN Non-Linearity

ReLU Non-Linearity

- Non-linear layer (with built-in linear layer)
 = input linear transformation q + non-linearity k
- A single non-linear layer detached from linear layer: $oldsymbol{q}=oldsymbol{v}$
 - introduce additional network depth!
- Other non-linearities

overall structure

VN Pooling

✓ Mean pooling

? Max pooling

- (Similar to non-linearity)
- argmax alone learned directions

VN Pooling

✓ Mean pooling

? Max pooling

• similar to non-linearities \rightarrow use learnable directions

Given a set of vector-lists $\mathcal{V} = \{V_1, V_2, \cdots, V_N\} \in \mathbb{R}^{N \times C \times 3}$ Learn data-dependent directions $\mathcal{K} = \{WV_n\}_{n=1}^N \in \mathbb{R}^{N \times C \times 3}$ with learnable weights $\mathbf{W} \in \mathbb{R}^{C \times C}$

Max pool along \mathcal{K} directions: for each channel $c \in [C]$ $f_{MAX}(\mathcal{V})[c] = V_{n^*}[c]$ where $n^* = \operatorname{argmax} \langle \mathbf{W} V_n[c], V_n[c] \rangle$

VN Normalizations

VN Normalizations

BatchNorm

VN Normalizations

BatchNorm

 Normalize the 2-norm (invariant component) of the vector-list feature

$$N_{b} = \text{ElementWiseNorm}(V_{b}) \in \mathbb{R}^{N \times 1}$$
$$\{N_{b}^{\prime}\}_{b=1}^{B} = \text{BatchNorm}\left(\{N_{b}\}_{b=1}^{B}\right)$$
$$V_{b}^{\prime} = V_{b}[c] \frac{N_{b}^{\prime}[c]}{N_{b}[c]} \quad \forall c \in [C]$$

• Element-wise norm: 2-norm for each vector $oldsymbol{v}_c \in oldsymbol{V}_b$

(equivariant feature) \times (equivariant feature)^T = (invariant feature)

Specifically...

For pointcloud: combine global information with local features

- Product of an equivariant signal $m{V}\in\mathbb{R}^{C imes3}$ by the transpose of another equivariant signal $m{T}\in\mathbb{R}^{C' imes3}$ invariant signal
- Special case: $oldsymbol{T} \in \mathbb{R}^{3 imes 3}$ an equivariant coordinate system
- For pointcloud, concatenate local feature $V \in \mathbb{R}^{C imes 3}$ with global mean $\overline{V} = rac{1}{N} \sum_{n=1}^{N} V_n \in \mathbb{R}^{C imes 3}$

Invariant layer:
$$oldsymbol{T}_n = \mathrm{VN-MLP}([oldsymbol{V}_n, \overline{oldsymbol{V}}])$$

 $\mathrm{VN-In}(oldsymbol{V}_n) = oldsymbol{V}_n oldsymbol{T}_n^ op$

Build VN Networks: VN-DGCNN

Convolution in latent spaces, graph edges not embedded in \mathbb{R}^3

 $oldsymbol{x} \in \mathbb{R}^{C}, oldsymbol{e}'_n, oldsymbol{x}'_n \in \mathbb{R}^{C'}$ scalar features DGCNN: Edge conv $e'_{nm} = \operatorname{ReLU}(\Theta(\boldsymbol{x}_m - \boldsymbol{x}_n) + \Phi \boldsymbol{x}_n)$ Aggregation $x'_n = \text{Pool}_{m:(n,m) \in \mathcal{E}}(e'_{nm})$ **VN-DGCNN:** $V \in \mathbb{R}^{C \times 3}, E'_n, V'_n \in \mathbb{R}^{C' \times 3}$ vector-list features Edge conv $E'_{nm} = \text{VN-ReLU}(\Theta(V_m - V_n) + \Phi V_n)$ Aggregation $V'_n = \text{VN-Pool}_{m:(n,m) \in \mathcal{E}}(E'_{nm})$

Build VN Networks: VN-PointNet

PointNet

$$\operatorname{Pool}_{\boldsymbol{x}_n \in \mathcal{X}}(h(\operatorname{Pool}_1), h(\operatorname{Pool}_2) \cdots, h(\operatorname{Pool}_N))$$

VN-PointNet

$$' = \text{VN-Pool}_{V_n \in \mathcal{V}}(f(1), f(2), \cdots, f(N))$$

No convolutions, only point-wise feature transformations

PointNet:
$$x' = \operatorname{Pool}_{x_n \in \mathcal{X}}(h(x_1), \cdots, h(x_N))$$

VN-PointNet:
$$V' = \text{VN-Pool}_{V_n \in \mathcal{V}}(f(V_1), \cdots, f(V_N))$$

- h MLP, f VN-MLP
- First layer single channel \rightarrow edge conv to lift dimensionality
 - "Cannot apply per-channel transformation to gray-scale images"

Classification

Classification results on	Methods	z/z	z/SO(3)	SO(3)/SO(3)
ModelNet40	Point / mesh inputs			
	PointNet [25]	85.9	19.6	74.7
	DGCNN [35]	90.3	33.8	88.6
V/N Notworks	VN-PointNet	77.5	77.5	77.2
VININELWORKS	VN-DGCNN	89.5	89.5	90.2
-	PCNN [2]	92.3	11.9	85.1
	ShellNet [40]	93.1	19.9	87.8
Rotation sensitive	PointNet++ [26]	91.8	28.4	85.0
methods	PointCNN [20]	92.5	41.2	84.5
methods	Spherical-CNN [11]	88.9	76.7	86.9
	a^{3} S-CNN [21]	89.6	87.9	88.7
	SFCNN [27]	91.4	84.8	90.1
	TFN [32]	88.5	85.3	87.6
Rotation robust	RI-Conv [39]	86.5	86.4	86.4
methods	SPHNet [24]	87.7	86.6	87.6
	ClusterNet [6]	87.1	87.1	87.1
	GC-Conv [41]	89.0	89.1	89.2
	RI-Framework [18]	89.4	89.4	89.3

Classification

Classification results on ModelNet40

- VN networks are robust to (seen & unseen) rotations
- Excellent performance compared with other methods
- **SO(3)/SO(3):** equivariance by construction is better than rotation augmentation

Methods	z/z	z/SO(3)	$\mathrm{SO}(3)/\mathrm{SO}(3)$
Point / mesh inputs			
PointNet [25]	85.9	19.6	74.7
DGCNN [35]	90.3	33.8	88.6
VN-PointNet	77.5	77.5	77.2
VN-DGCNN	89.5	89.5	90.2
PCNN [2]	92.3	11.9	85.1
ShellNet [40]	93.1	19.9	87.8
PointNet++ [26]	91.8	28.4	85.0
PointCNN [20]	92.5	41.2	84.5
Spherical-CNN [11]	88.9	76.7	86.9
a^{3} S-CNN [21]	89.6	87.9	88.7
SFCNN [27]	91.4	84.8	90.1
TFN [32]	88.5	85.3	87.6
RI-Conv [39]	86.5	86.4	86.4
SPHNet [24]	87.7	86.6	87.6
ClusterNet [6]	87.1	87.1	87.1
GC-Conv [41]	89.0	89.1	89.2
RI-Framework [18]	89.4	89.4	89.3

Summary: Vector Neurons

• Vector Neurons:

Lift latent features to 3D vector lists

• Building blocks:

- Linear layer
- Non-linearity (ReLU)
- Pooling (MaxPool)
- Normalizations (BatchNorm)
- Invariance

Network examples:

- VN-DGCNN
- VN-PointNet

Tensor Field Networks and Equivariant CNNs

SO(3) Equivariant Features

• A type $\ell \in \mathbb{N}$ equivariant feature map $f^{\ell} : \mathbb{R}^{n \times 3} \to \mathbb{R}^{2\ell+1}$ satisfying $f^{\ell}(XR^{\top}) = D^{\ell}(R)f^{\ell}(X)$ for $R \in SO(3)$, where $D^{\ell}(R) \in SO(2\ell+1)$ is the type ℓ wigner matrix.

Tensor Field Networks (TFN)

• Given a pointcloud X a TFN can produce pointwise or global equivariant features of different types $(\ell \in \mathbb{N})$:

global features

 $g^{\ell}(X)_{c,:}$ channel

Examples of Type 0 Features

• Type 0 features are rotation invariant as $D^0(R) = 1$:

Examples of type 1 Features

 We have D¹(R) = R, thefore type 1 features are 3D vectors rotating with the pointcloud X.

Pointcloud normals are type 1 features.

R Bounding box center and principal directions are type 1 features, lengths are type 0 features

Spherical Harmonics & Higher Degree Features

- Spherical harmonics are homogeneous polynomials on \mathbb{R}^3 , their restriction to \mathcal{S}_2 form an orthonormal basis of $L^2(\mathcal{S}_2)$.
- Just like type ℓ equivariant features the vector of degree ℓ spherical harmonics $Y^{\ell}(x) \in \mathbb{R}^{2\ell+1}$, satisfies $Y^{\ell}(Rx) = D^{\ell}(R)Y^{\ell}(x)$.

Spherical Harmonics & Higher Degree Features

• Spherical harmonics rotating arround the z axis:

SH & TFN Feature Applications (ConDor)

- Dot products of type ℓ features are invariant.
- We can view TFN features as coefficients of functions in the SH basis.
- The dot prods $\langle f^{\ell}(X)_{ic}, Y^{\ell}(X_i) \rangle$ give an invariant embedding of X.

14 × × × × × • Invariant embeddings can be used to: 1. canonicalize shape pose. 2. segment the shape (see ConDor).

How does TFN work ?

- TFN is a convolutional architecture.
- It inherits its equivariance properties from SH kernels.

TFN =

Convolutions on Different Domains

• The convolution between a function $f: \mathbb{R}^d \to \mathbb{R}$ and a kernel $\kappa: \mathbb{R}^d \to \mathbb{R}$ is defined by:

$$f * \kappa(x) := \int_{\mathbb{R}^d} f(t)\kappa(t-x)dt.$$

• Similarly the convolution a function f over a pointcloud X and a kernel $\kappa : \mathbb{R}^d \to \mathbb{R}$ is defined by:

$$f *_X \kappa(X_i) := \sum_j f_j \kappa(X_j - X_i).$$

• We can view images as functions over the pointcloud \mathbb{Z}^d (d=2,3).

Convolutional Layers in Neural Nets

- Typically, we are given a collection of functions $(f_i)_i$ on a pointcloud X and a collection of kernel filters $(\kappa_j)_j$ and a weight tensor W_{kij} .
- A convolutional layer outputs a collection of functions by taking linear combinations of convolutions:

$$\operatorname{Conv}_X(f,\kappa,W)_k := \sum_{ij} W_{kij} f_i *_X \kappa_j.$$

• For any rotation R we have:

$$f *_{XR^{\top}} \kappa_j(X_i) = \sum_k f_k \kappa_j(R(X_k - X_i)).$$

• Problem what is the relation between $(f *_X \kappa_j)_j$ and $(f *_{XR^{\top}} \kappa_j)_j$?

• A steerable kernel basis, is a kernel basis $(\kappa_k)_k$ such that, the rotation of any kernel κ_j linearly decomposes onto the basis by a rotation matrix D(R):

$$\kappa_j(Rx) = \sum_k D(R)_{jk} \kappa_k(x).$$

• Using a steerable basis we can relate convolutions on X and on XR^{\top} by a simple linear relation:

$$f *_{XR^{\top}} \kappa_j(x) = \sum_j D(R)_{jk} f *_X \kappa_k(x)$$

3D Steerable Basis

• For each ℓ we have a sterrable basis of the form:

$$\kappa_{rm}^{\ell}(x) := \varphi_r(\|x\|_2) Y_m^{\ell}\left(\frac{x}{\|x\|_2}\right)$$

• Where φ_r is any radial function e.g. a gaussian shell:

$$\varphi_r(y) := \exp\left(\frac{-(y-\rho_r)^2}{2\sigma^2}\right)$$

Example of Steerable Basis (2D)

• For each ℓ in \mathbb{Z} we can build a steerable kernel basis on \mathbb{R}^2 using polar coordinates:

$$\kappa_r^{\ell}(\theta,\rho) := \varphi_r(\rho) e^{i\ell\theta}$$

here we have $D^{\ell}(t) = e^{i\ell t}$.

Example of steerable kernels, (source Learning Steerable Filters with Rotation Equivariant CNNs) • We consider a collection of steerable kernel bases $(\kappa_r^{\ell})_{\ell r}$ over \mathbb{R}^d indexed by an equivariance type ℓ such that for any rotation $R \in SO(d)$ we have:

$$\kappa^{\ell}(Rx) = D^{\ell}(R)\kappa^{\ell}(x)$$

• For each ℓ we define the associated steerable convolution operator:

$$\operatorname{SConv}_X^{\ell}(f, \kappa_r^{\ell}, W)_{km} := \sum_{ir} W_{kir} f_i *_X \kappa_{rm}^{\ell}.$$

Comparing Regular and Steerable Convolution

• Regular convolution takes linear combination over all indices of the kernel basis:

$$\operatorname{Conv}_X(f,\kappa,W)_k := \sum_{ij} W_{kij} f_i *_X \kappa_j.$$

• Steerable convolution does not take linear combination over the "steerable" index m in order to preserve equivariance:

$$\operatorname{SConv}_X^{\ell}(f, \kappa_r^{\ell}, W)_{km} := \sum_{ir} W_{kir} f_i *_X \kappa_{rm}^{\ell}.$$

Steerable Convolution is Equivariant

• A rotation R of the pointcloud X induces a linear transform $D^{\ell}(R)$ which is independent of X:

$$\begin{aligned} \operatorname{SConv}_{XR^{\top}}^{\ell}(f,\kappa_{r}^{\ell},W)_{k} &= \sum_{ir} W_{kir} f_{i} \ast_{XR^{\top}} \kappa_{r}^{\ell} \\ &= \sum_{ir} W_{kir} f_{i} \ast_{X} D^{\ell}(R) \kappa_{r}^{\ell} \\ &= D^{\ell}(R) \operatorname{SConv}_{X}^{\ell}(f,\kappa_{r}^{\ell},W)_{k} \end{aligned}$$

• In 2D a type ℓ features makes ℓ turns when the input makes one turn:

$$v(e^{i\theta}X) = e^{i\ell\theta}v(X).$$

• There is no single rotation that rotates different types, or a linear combination of different types.

- We have described steerable convolution of rotation invariant pointwise features with a steerable basis.
- TFN extends steerable convolution to equivariant inputs, by linearly decomposing the resulting convolutional features into equivariant features of different types.

• Dot products and norms of type ℓ features are rotation invariant:

 $\langle f(R.X), g(R.X) \rangle = \langle D^{\ell}(R)f(X), D^{\ell}(R)g(X) \rangle = \langle f(X), g(X) \rangle.$

• Non linearities can by applied to the norms of features as they are invariant:

$$\xi(f^{\ell}(X), b) = \xi(\|f^{\ell}(X)\|_2 + b)f^{\ell}(X).$$

